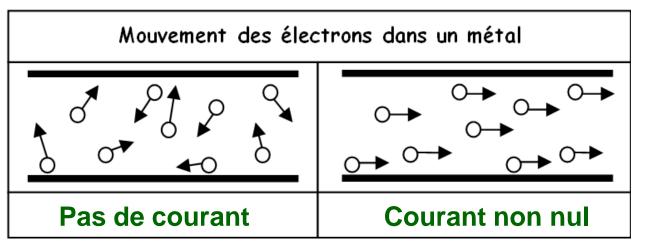
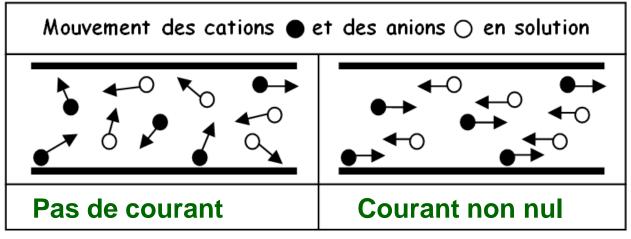
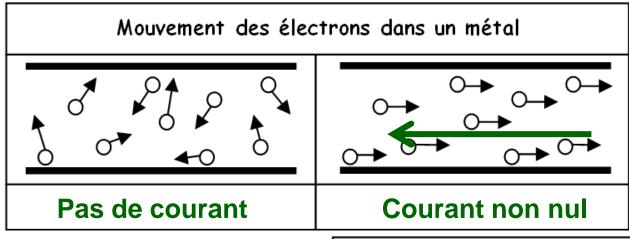
- Signaux électriques en régime stationnaire -

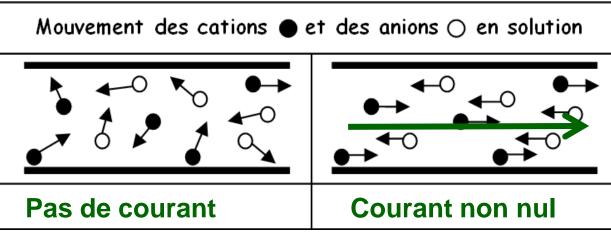

Notions et contenus	Capacités exigibles	
Grandeurs électriques - Charge électrique, intensité du courant électrique. Régime variable et régime stationnaire. Potentiel électrique, référence de potentiel, tension électrique. Mise à la terre.	t - Relier l'intensité d'un courant électrique au débit de charg é électriques.	
Circuits en régime continu - Source de tension.	- Modéliser une source de tension en utilisant la représentation de Thévenin.	
 Dipôle résistif, résistance, loi d'Ohm. Associations de deux résistances. Pont diviseur de tension. 	 Remplacer une association série ou parallèle de deux résistances par une résistance équivalente. Exploiter des ponts diviseurs de tension. (TP) Mettre en œuvre un capteur résistif. 	
Aspect énergétique - Puissance et énergie électriques. Effet Joule.	- Établir un bilan de puissance dans un circuit électrique.	


I- Les deux principales grandeurs électriques 1) L'intensité du courant électrique

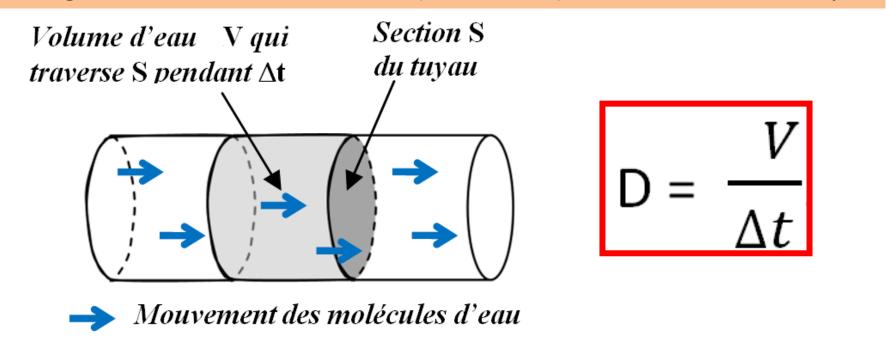
<u>Le COURANT ELECTRIQUE</u>: Le courant électrique est un <u>déplacement</u> d'ensemble de <u>charges électriques</u>


I- Les deux principales grandeurs électriques 1) L'intensité du courant électrique

<u>Le COURANT ELECTRIQUE</u>: Le courant électrique est un <u>déplacement</u>
 <u>d'ensemble</u> de <u>charges électriques</u> (électrons dans un métal, ions en solution ...)



<u>Le COURANT ELECTRIQUE</u>: Le courant électrique est un <u>déplacement</u> <u>d'ensemble</u> de <u>charges électriques</u> (électrons dans un métal, ions en solution ...)


> - App 1: Indiquer en vert le sens conventionnel du courant sur les schémas ci-dessus.

◆ SENS CONVENTIONNEL du courant électrique : C'est le sens dans lequel se déplace(raie)nt les charges positives. Les charges négatives se déplacent en sens contraire.

- SENS CONVENTIONNEL du courant électrique: C'est le sens dans lequel se déplace(raie)nt les charges positives. Les charges négatives se déplacent en sens contraire.
- **☞** L'INTENSITE du courant électrique :

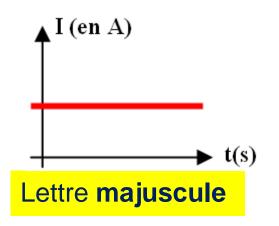
Analogie avec le débit de l'eau **D** (en **m³.s** -1) circulant dans un tuyau

De même, on peut considérer que l'intensité I d'un courant électrique est un débit de charges donné par la relation :

où **q** est la charge électrique (en **Coulomb**, **C**) qui traverse la section **S** d'un fil conducteur pendant une durée Δ**t** (en **secondes**, **s**).

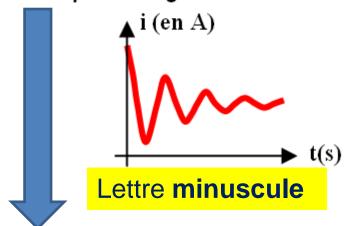
 $I = \frac{q}{\Delta t}$

De même, on peut considérer que l'intensité I d'un courant électrique est un débit de charges donné par la relation :


 $I = \frac{q}{\Delta t}$

où **q** est la charge électrique (en **Coulomb**, **C**) qui traverse la section **S** d'un fil conducteur pendant une durée Δ**t** (en **secondes**, **s**).

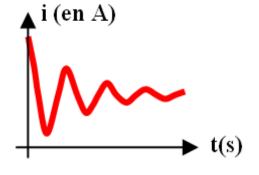
- UNITE de l'intensité du courant électrique : L'Ampère (A) ; $1 A = 1 C.s^{-1}$
- **▼ NOTATION de l'intensité du courant électrique** : I ou i ?


Régime STATIONNAIRE

L'intensité du courant électrique a une *valeur constante*.

Régime VARIABLE

L'intensité du courant électrique a une valeur qui change au cours du temps


Dans ce cas, <u>l'intensité instantanée s'écrit</u> : où **dq** est la charge électrique qui traverse la section **S** d'un fil conducteur pendant une durée infiniment petite **dt**.

$$i = \frac{dq}{dt}$$

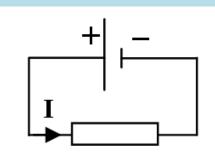
Régime VARIABLE

L'intensité du courant électrique a une valeur qui change au cours du temps

Lettre minuscule

Dans ce cas, <u>l'intensité instantanée s'écrit</u>: où **dq** est la charge électrique qui traverse la section **S** d'un fil conducteur pendant une durée infiniment petite **dt**.

$$i = \frac{dq}{dt}$$


▼ REPRESENTATION du courant électrique :

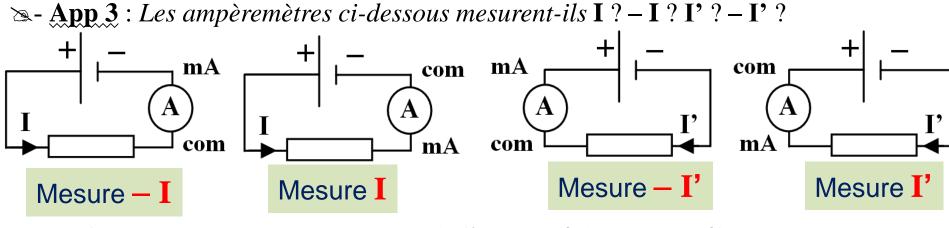
On choisit arbitrairement un sens pour le courant électrique dans chaque fil : - si le courant circule réellement dans le sens indiqué,

chaque fil : - si le courant circule réellement dans le se l'intensité du courant électrique est **positive** ;

- sinon elle est **négative**.
- **App 2**: Quel est le signe de l'intensité du courant électrique représentée sur les circuits ci-contre ?

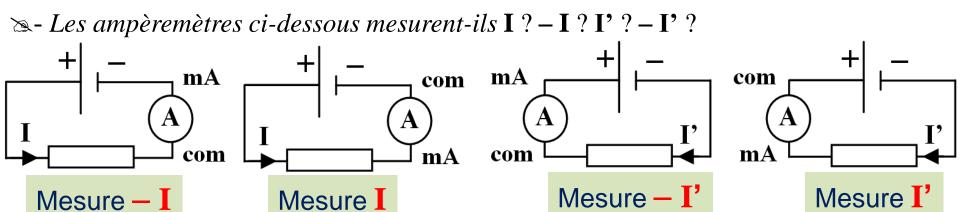
A l'extérieur d'un générateur, le courant électrique circule **réellement** de la borne + vers la borne -.

➤ L'intensité du courant électrique représentée sur les circuits ci-contre est-elle positive ou négative ?
 △ l'extérieur d'un générateur le courant électrique circuit.


A l'extérieur d'un générateur, le courant électrique circule réellement de la borne + vers la borne -.

<u>I est donc positive</u> alors que <u>I' est négative</u> On a la relation <u>I' = - I</u>

▼ MESURE de l'intensité du courant électrique :


Ampèremètre placé en SERIE

Mesure l'intensité du courant électrique <u>qui rentre par la borne A/mA</u>

<u>Quelques ORDRES DE GRANDEURS de l'intensité du courant électrique :</u>

Domaine	Neurones	TP, ordinateur, téléphone portable	Electroménager
Ordre de	A	A	40.4
grandeur	μΑ	mA	10 A

Quelques ORDRES DE GRANDEURS de l'intensité du courant électrique :

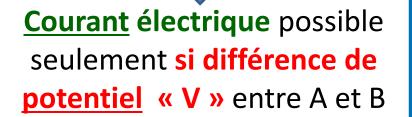
Mesure I

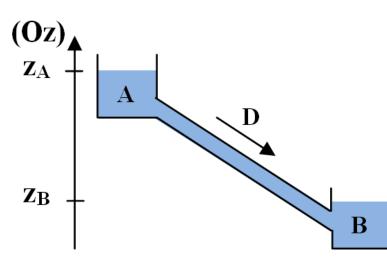
Mesure – I

Domaine	Ordre de grandeur	10.4	Arrêt du cœur
Neurones	μA	1 A ◆	Seuil de fibrillation
TP, ordinateur, téléphone	mA	75 mA ←	cardiaque irréversible
portable		30 mA ◆	Seuil de paralysie respiratoire
Electroménager	10 A	100	Seuil de non lâcher
Moteurs d'usine	100 A	10 mA ←	Contraction musculaire
TGV	kA	0,5 mA ◆	Seuil de perception très faible
Orages	10-100 kA		Sensation très faible

• Quelques ordres de grandeurs de l'intensité du courant électrique :

Domaine	Neurones	TP, ordinateur, téléphone portable	Electroménager
Ordre de	A	A	40.4
grandeur	μΑ	mA	10 A

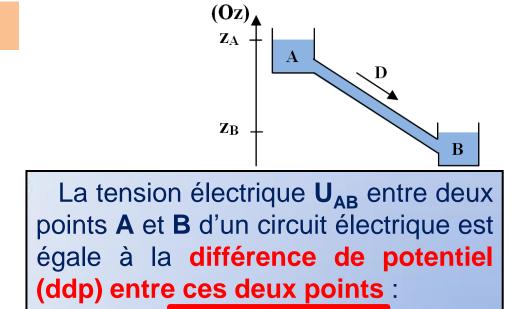

Domaine	Moteurs d'usine	TGV	Orages
Ordre de	100 A	kA	10-100 kA
grandeur	IOU A	NA.	10-100 KA


2) La tension électrique

a/ Définitions et caractéristiques

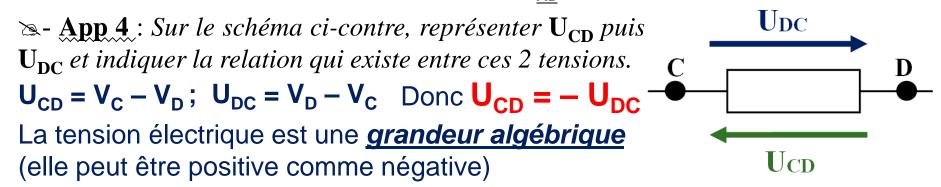
Analogie avec le débit d'eau

<u>Débit</u> d'eau possible seulement si différence d'<u>altitude</u> « z » entre A et B


La tension électrique U_{AB} entre deux points A et B d'un circuit électrique est égale à la différence de potentiel (ddp) entre ces deux points :

$$\mathbf{U}_{\mathsf{A}\mathsf{B}} = \mathbf{V}_{\mathsf{A}} - \mathbf{V}_{\mathsf{B}}$$

Analogie avec le débit d'eau


<u>Débit</u> d'eau possible seulement si différence d'<u>altitude</u> « z » entre A et B

Courant électrique possible seulement si différence de potentiel « V » entre A et B

 $U_{AB} = V_A - V_B$

- UNITE de la tension électrique U_{AB} et des potentiels V_A et V_B : Le Volt (V)
- ullet NOTATION de la tension électrique : U_{AB} ou u_{AB} ? Même remarque que pour l'intensité électrique
- * REPRESENTATION de la tension électrique U_{AB} : Flèche orientée de B vers A.

- * <u>REPRESENTATION de la tension électrique U_{AB}</u>: Flèche orientée de B vers A.
- U_{DC} et indiquer la relation qui existe entre ces 2 tensions. $U_{CD} = V_C V_D$; $U_{DC} = V_D V_C$ Donc $U_{CD} = -U_{DC}$ La tension électrique est une <u>grandeur algébrique</u> (elle peut être positive comme négative)

MESURE d'une tension électrique :

Voltmètre placé en PARALLELE

Mesure U_{AB} si la borne V est reliée au point A

 $\mathbf{U}_{\mathbf{C}\mathbf{D}}$

Domaine	Neurones	Téléphone portable	EDF
Ordre de grandeur	mV	mV – 0,1 V	230 V

Domaine	Clôture électrique	TGV	Orages
Ordre de	1 kV	10 kV	1 GV
grandeur	IKV	IUKV	101

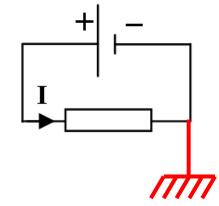
App 5: Sur le schéma ci-contre, rajouter un voltmètre qui

mesure la	tension	U _{CD} .
-----------	---------	-------------------

Domaine	Neurones	Téléphone portable	EDF
Ordre de	mV	m\/ 0.1 \/	230 V
grandeur	111 V	mV – 0,1 V	230 V

			V Com
Domaine	Clôture électrique	TGV	Orages
Ordre de arandeur	1 kV	10 kV	1 GV

b/ Quelques points particuliers d'un circuit

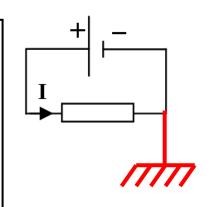


Analogie avec le débit d'eau

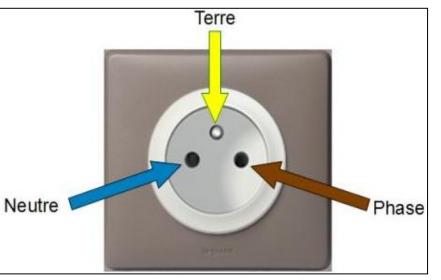
- → Choix d'une référence pour l'altitude zéro.
- → Choix qui n'a aucune influence sur la valeur du dénivelé.

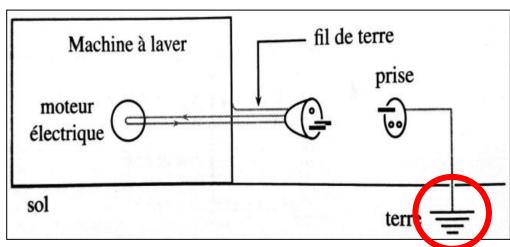
De même, la masse d'un circuit est un **point** particulier du circuit où on suppose arbitrairement que <u>le potentiel V est nul</u>.

On représente la masse d'un circuit par le symbole :

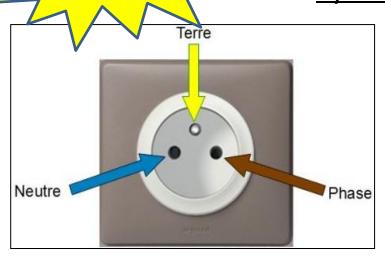


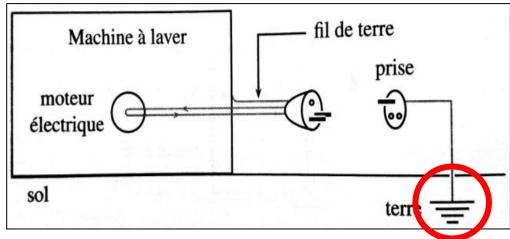
Ucd

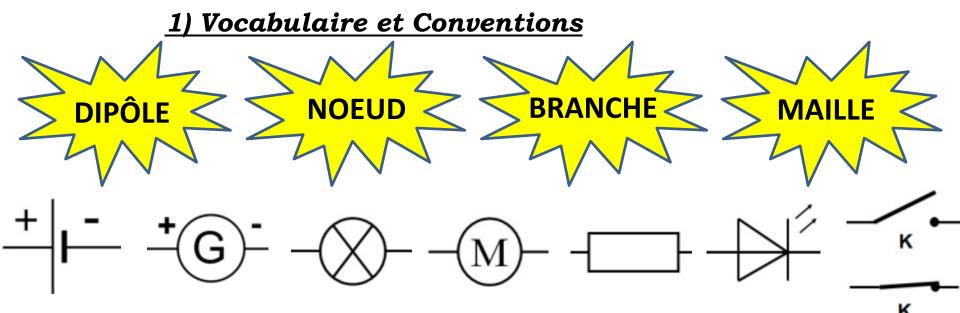

De même, la masse d'un circuit est un point particulier du circuit où on suppose arbitrairement que le potentiel V est nul.

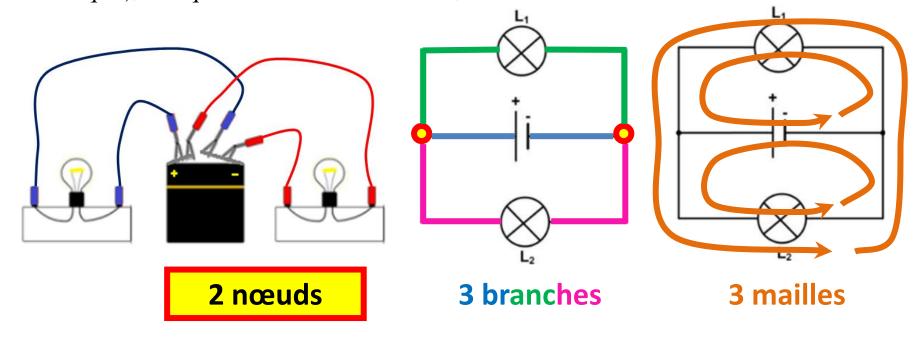

On représente la masse d'un circuit par le symbole :

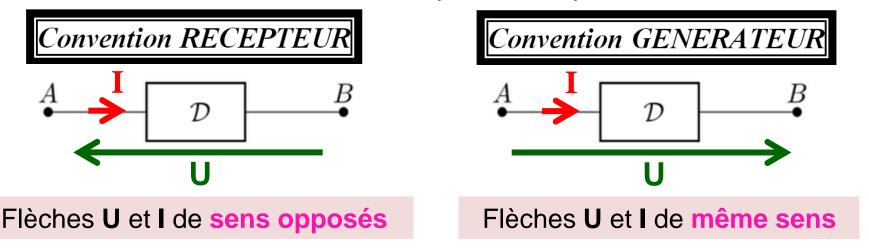
- → Raison de **SECURITE**
- → <u>Symbole</u> de la TERRE sur un schéma :

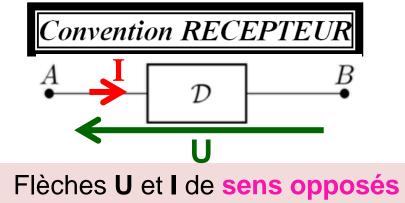


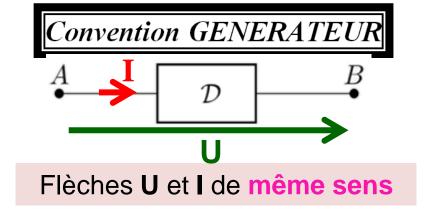





La TERRE


II- Les lois dans les circuits




≈- App 6 : Sur le circuit électrique ci-dessous (accompagné de sa représentation schématique), indiquer le nombre de nœuds, de branches et de mailles.

Deux conventions d'orientation pour les dipôles :



2) Loi concernant les intensités des courants électriques

Charge électrique = grandeur conservative qui ne peut s'accumuler en aucun point du circuit

$$dq_1 = dq_2 + dq_3 \Leftrightarrow \frac{dq_1}{dt} = \frac{dq_2}{dt} + \frac{dq_3}{dt}$$
(Conservation de la charge électrique)

Généralisation (LOI DES NŒUDS):

La somme des intensités des courants *arrivant à un nœud* est égale à la somme des intensités des courants *qui en repartent*.

App 7: Quelle relation existe-t-il entre dq₁, dq₂ et dq₃? Entre i₁, i₂ et i₃?

 $\underline{\mathbf{i}_1 = \mathbf{i}_2 + \mathbf{i}_3}$

Généralisation (LOI DES NŒUDS):

La somme des intensités des courants *arrivant à un nœud* est égale à la somme des intensités des courants *qui en repartent*.

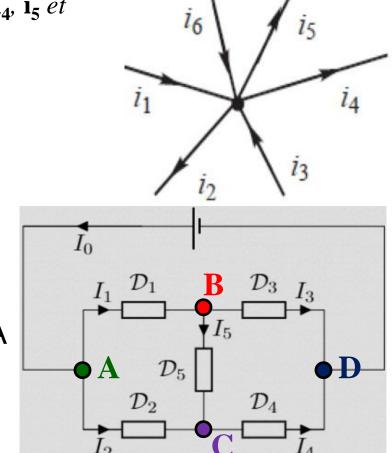
App 8: Quelle relation existe-t-il entre i_1 , i_2 , i_3 , i_4 , i_5 et i_6 pour le nœud représenté ci-contre ?

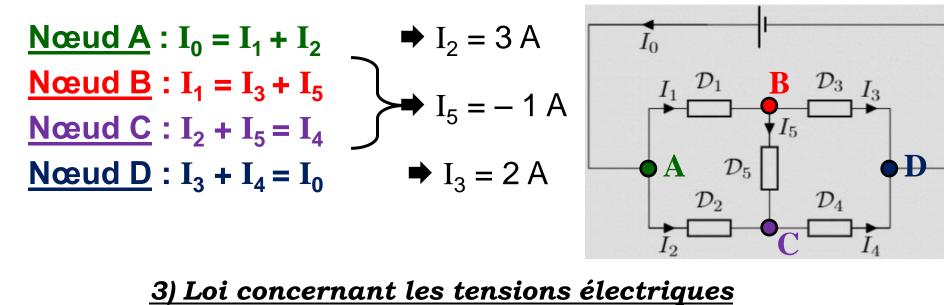
$$i_1 + i_3 + i_6 = i_2 + i_4 + i_5$$

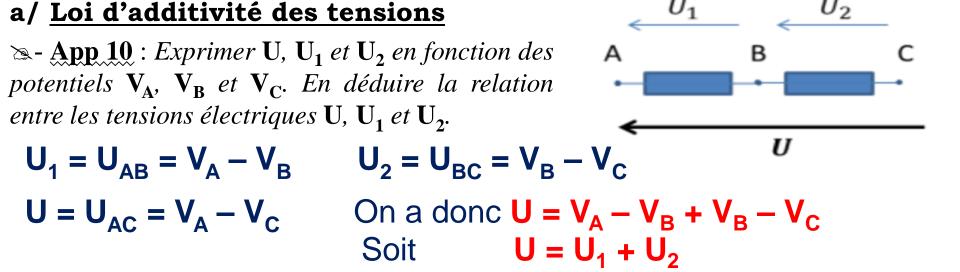
Déterminer les valeurs des intensités I₂, I₃ et I₅.

$$\underline{\mathsf{Nœud}\;\mathsf{A}}: \mathrm{I}_0 = \mathrm{I}_1 + \mathrm{I}_2$$

$$\underline{\text{Nœud B}}: I_1 = I_3 + I_5$$


Nœud C:
$$I_2 + I_5 = I_4$$


$$\underline{\text{Nœud D}}: I_3 + I_4 = I_0$$


→
$$I_2 = 3 A$$

$$\rightarrow$$
 $I_5 = -1 A$

→
$$I_3 = 2 A$$

Généralisation (LOI D'ADDITIVITE DES TENSIONS): $U_{AC} = U_{AB} + U_{BC}$

(relation analogue à la relation de Chasles)

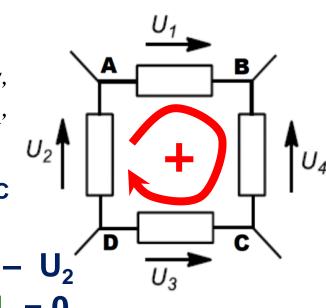
a/ Loi d'additivité des tensions

 \cong - App 10: Exprimer U, U₁ et U₂ en fonction des potentiels V_A, V_B et V_C. En déduire la relation entre les tensions électriques U, U₁ et U₂.

$$U_1 = U_{AB} = V_A - V_B$$
 $U_2 = U_{BC} = V_B - V_C$ $U_3 = U_{AC} = V_A - V_C$ On a donc $U = V_A - V_B + V_B - V_C$ Soit $U = U_1 + U_2$

Généralisation (LOI D'ADDITIVITE DES TENSIONS) :

 $U_{AC} = U_{AB} + U_{BC}$ (relation analogue à la relation de Chasles)


b/ Loi des mailles (2ème Loi de Kirchoff)

🖎 - App 11 : D'après la loi d'additivité des tensions, quelle relation existe-t-il entre les tensions électriques U₁, $\mathbf{U_2}$, $\mathbf{U_3}$ et $\mathbf{U_4}$?

$$U_1 = U_{BA}$$
 $U_2 = U_{AD}$ $U_3 = U_{CD}$ $U_4 = U_{BC}$

D'après la loi d'additivité des tensions,

$$U_{BA} = U_{BC} + U_{CD} + U_{DA} \Leftrightarrow U_1 = U_4 + U_3 - U_2$$

 $\Leftrightarrow U_1 + U_2 - U_3 - U_4 = 0$

b/ Loi des mailles (2ème Loi de Kirchoff)

 $riangle - App 11 : D'après la loi d'additivité des tensions, quelle relation existe-t-il entre les tensions électriques <math>U_1$, U_2 , U_3 et U_4 ?

$$U_1 = U_{BA}$$
 $U_2 = U_{AD}$ $U_3 = U_{CD}$ $U_4 = U_{BC}$

D'après la loi d'additivité des tensions,

$$U_{BA} = U_{BC} + U_{CD} + U_{DA} \Leftrightarrow U_{1} = U_{4} + U_{3} - U_{2}$$

$$\Leftrightarrow U_{1} + U_{2} - U_{3} - U_{4} = 0$$

Tensions orientées comme le sens de parcours de la maille

Tensions orientées dans le sens opposé au sens de parcours de la maille

Généralisation (LOI DES MAILLES) :

Dans une maille orientée, la somme algébrique des tensions est nulle.

$$\sum_{k} \epsilon_{k} U_{k} = 0$$

 ε_k = + 1 si la tension U_k est *orientée dans le sens de parcours* de la maille ; ε_k = - 1 si la tension U_k est *orientée dans le sens opposé* ;

$$\Leftrightarrow U_1 + U_2 - U_3 - U_4 = 0$$

Tensions orientées comme le sens de parcours de la maille

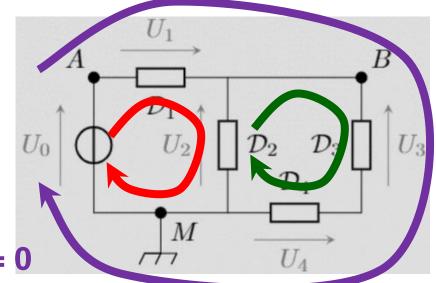
Tensions orientées dans le sens opposé au sens de parcours de la maille

Généralisation (LOI DES MAILLES):

Dans une maille orientée, la somme algébrique des tensions est nulle.

$$\sum_{k} \epsilon_{k} U_{k} = 0$$

 ε_k = + 1 si la tension U_k est *orientée dans le sens de parcours* de la maille ; ε_k = - 1 si la tension U_k est *orientée dans le sens opposé* ;

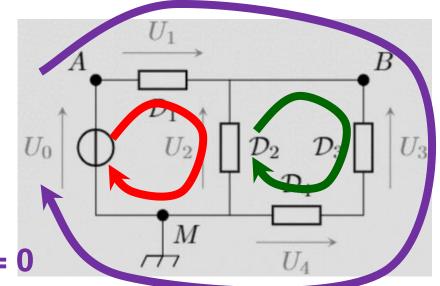

 \cong - App 12: $U_0 = 5$ V, $U_2 = 1$ V et $U_3 = 3$ V. Déterminer les valeurs des tensions U_1 et U_4 .

Maille rouge : $U_0 + U_1 - U_2 = 0$

Maille verte : $U_2 - U_3 - U_4 = 0$

Maille violette : $U_0 + U_1 - U_3 - U_4 = 0$

→
$$U_1 = U_2 - U_0 = -4 V$$

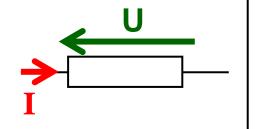

→
$$U_4 = U_2 - U_3 = -2 V$$

Maille rouge :
$$U_0 + U_1 - U_2 = 0$$

Maille verte :
$$U_2 - U_3 - U_4 = 0$$

Maille violette :
$$U_0 + U_1 - U_3 - U_4 = 0$$

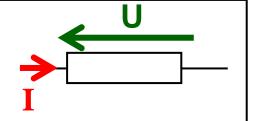
$$\rightarrow$$
 U₁ = U₂ - U₀ = -4 V



→
$$U_4 = U_2 - U_3 = -2 V$$

III- Exemples de dipôles présents dans les circuits 1) Le conducteur ohmique

a/ La Loi d'OHM


Un conducteur ohmique est un dipôle aux bornes duquel la tension \mathbf{U} est proportionnelle à l'intensité \mathbf{I} du courant qui le traverse : $\mathbf{U} = \mathbf{R} \times \mathbf{I}$

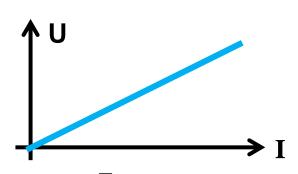
avec U en Volt, I en Ampère et R la résistance en Ohm (1 Ω = 1 V.A⁻¹)

a/ La Loi d'OHM

Un conducteur ohmique est un dipôle aux bornes duquel la tension **U** est proportionnelle à l'intensité **I** du courant qui le traverse :

avec U en Volt, I en Ampère et R la résistance en Ohm (1 Ω = 1 V.A⁻¹)

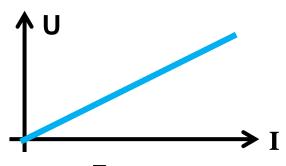
Attention, cette loi n'est valable qu'en <u>CONVENTION RECEPTEUR</u>, c'est-à-dire en orientant les flèches du courant et de la tension dans des sens opposés. Sinon, la loi devient $U = -R \times I$.


- **App 13**:
- Quelle est l'allure de la caractéristique $\mathbf{U} = \mathbf{f}(\mathbf{I})$ pour un conducteur ohmique ?
 - On obtient une droite passant par l'origine.
- Comment en déduire la valeur de sa résistance R ?

La *loi d'Ohm en convention récepteur* s'écrit $U = \mathbb{R} \times I$.

Donc R s'identifie au coefficient directeur de la caractéristique U = f(I)

b/ Applications aux fils électriques et aux interrupteurs


Fils électriques & Interrupteurs fermés → <u>RESISTANCE NULLE</u> Interrupteurs ouverts → <u>RESISTANCE INFINIE</u>

- **App** 13:
- Quelle est l'allure de la caractéristique $\mathbf{U} = \mathbf{f}(\mathbf{I})$ pour un conducteur ohmique ?

On obtient une droite passant par l'origine.

• Comment en déduire la valeur de sa résistance **R** ?

La *loi d'Ohm en convention récepteur* s'écrit $U = \mathbb{R} \times \mathbb{I}$. Donc \mathbb{R} s'identifie au <u>coefficient directeur</u> de la caractéristique U = f(I)

b/ Applications aux fils électriques et aux interrupteurs

Fils électriques & Interrupteurs fermés → <u>RESISTANCE NULLE</u>
Interrupteurs ouverts → <u>RESISTANCE INFINIE</u>

- **App 14**: Laquelle de ces descriptions correspond à un interrupteur ouvert ? À un interrupteur fermé ?
 - a) $\underline{\mathbf{u}_{AB}} = \mathbf{0}$ quelle que soit la valeur de \mathbf{i}_{AB}
 - **b**) $\underline{\mathbf{i}}_{AB} = \mathbf{0}$ quelle que soit la valeur de $\underline{\mathbf{u}}_{AB}$

Fil électrique / Interrupteur fermé car R = 0, donc U = R x I = 0
Interrupteur ouvert

car R est infini, donc I = U / R = 0

b/ Applications aux fils électriques et aux interrupteurs

Fils électriques & Interrupteurs fermés → <u>RESISTANCE NULLE</u> Interrupteurs ouverts → <u>RESISTANCE INFINIE</u>

 $ag{App.} 14 : Laquelle de ces descriptions correspond à un interrupteur ouvert ? À un interrupteur fermé ? a) <math> extbf{u}_{AB} = 0$ quelle que soit la valeur de $extbf{i}_{AB}$

Fil électrique / Interrupteur fermé car R = 0, donc U = R x I = 0

b) $\underline{\mathbf{i}_{AB}} = \mathbf{0}$ quelle que soit la valeur de $\underline{\mathbf{u}_{AB}}$

Interrupteur ouvert car R est infini, donc I = U / R = 0

2) La source de tension

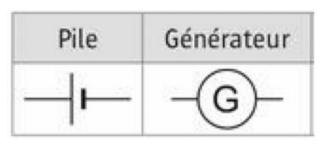
Source de tension = dispositif qui crée une différence de potentiel entre ses bornes et force ainsi les électrons à se déplacer

a/ La source de tension IDEALE

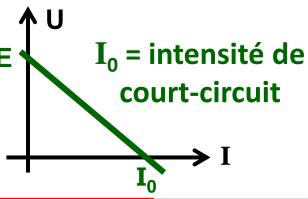
Une source idéale de tension impose à ses bornes une tension E constante appelée force électromotrice fem (ou tension à vide), quel que soit le courant qui la traverse.

U = E avec U et E en Volt

a/ La source de tension IDEALE


Une source idéale de tension impose à ses bornes une tension E constante appelée force électromotrice fem (ou tension à vide), quel que soit le courant qui la traverse.

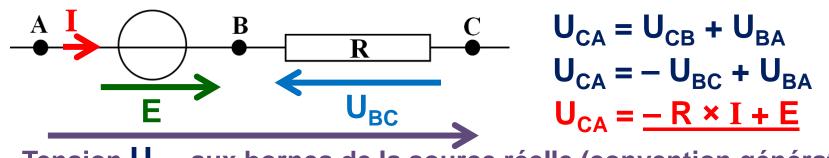
U = E avec U et E en Volt



Attention, cette loi n'est valable qu'en <u>CONVENTION GENERATEUR</u>, c'est-à-dire en orientant les flèches du courant et de la tension dans le même sens.

b/ La source de tension REELLE

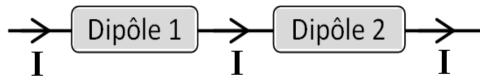
Caractéristique U = f(I) différente

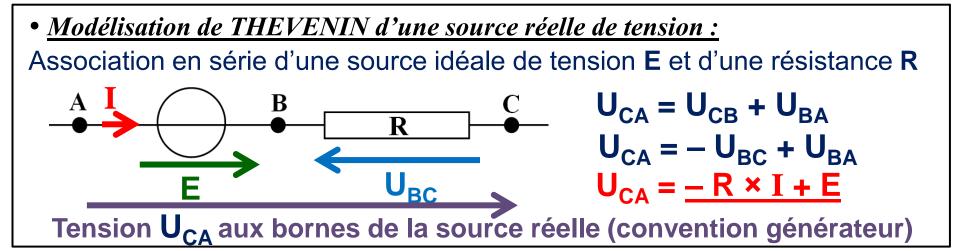


- <u>Tension aux bornes de la source réelle de tension</u> : $U = E R \times I$
- Avec : E la *force électromotrice* du générateur (en V)
 - R la *résistance interne* du générateur (en Ω)

b/ La source de tension REELLE

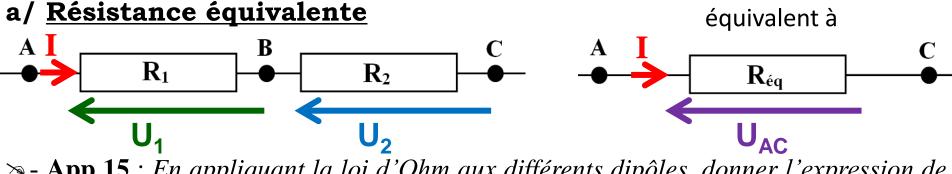
- <u>Tension aux bornes de la source réelle de tension :</u> $U = E R \times I$
- Avec : E la *force électromotrice* du générateur (en V)
 - R la *résistance interne* du générateur (en Ω)
- Modélisation de THEVENIN d'une source réelle de tension :


Association en série d'une source idéale de tension E et d'une résistance R


Tension U_{CA} aux bornes de la source réelle (convention générateur)

IV- Outils de simplification : association de dipôles

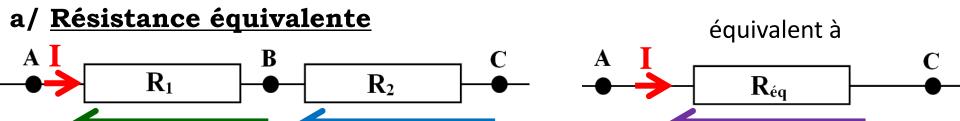
- 1) Association SERIE de conducteurs ohmiques
- Dipôles *placés dans une même branche*



Conséquence : dipôles parcourus par le même courant électrique.

IV- Outils de simplification : association de dipôles

1) Association SERIE de conducteurs ohmiques



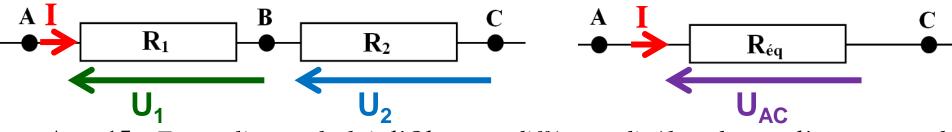
 \cong - $\underbrace{App \ 15}$: En appliquant la loi d'Ohm aux différents dipôles, donner l'expression de $\mathbf{R}_{\acute{e}a}$ en fonction de \mathbf{R}_1 et de \mathbf{R}_2 . En convention récepteur :

$$U_1 = U_{AB} = R_1 \times I$$
; $U_2 = U_{BC} = R_2 \times I$; $U_{AC} = R_{\acute{e}q} \times I$ (même courant I dans les deux résistances R_1 et R_2 car elles sont en série)

Or, $U_{AC} = U_{AB} + U_{BC} \Leftrightarrow R_{\acute{e}q} \times I = R_1 \times I + R_2 \times I \Leftrightarrow R_{\acute{e}q} = R_1 + R_2$

1) Association SERIE de conducteurs ohmiques

$$U_1 = U_{AB} = R_1 \times I$$
; $U_2 = U_{BC} = R_2 \times I$; $U_{AC} = R_{\acute{e}q} \times I$ (même courant I dans les deux résistances R_1 et R_2 car elles sont en série)


Or,
$$U_{AC} = U_{AB} + U_{BC} \Leftrightarrow R_{\acute{e}q} \times I = R_1 \times I + R_2 \times I \Leftrightarrow R_{\acute{e}q} = R_1 + R_2$$

 $\underline{G\acute{e}n\acute{e}ralisation}$: L'association en série de **n conducteurs** ohmiques de résistance R_k est équivalente à un unique conducteur ohmique de résistance $R_{\acute{e}q}$ égale à la somme des résistances R_k .

$$R_{\acute{\mathrm{e}}q} = \sum_{k} R_{k}$$

b/ Pont diviseur de tension

 \cong - App 16: Dans l'App 15, exprimer U_1 et U_2 en fonction de R_1 , R_2 et U_{AC} .

- App 15 : En appliquant la loi d'Ohm aux différents dipôles, donner l'expression de $\mathbf{R}_{\acute{\mathbf{e}q}}$ en fonction de \mathbf{R}_1 et de \mathbf{R}_2 .

$$U_1 = U_{AB} = R_1 \times I \quad ; \quad U_2 = U_{BC} = R_2 \times I \quad ; \quad U_{AC} = R_{\acute{e}q} \times I$$
Or,
$$U_{AC} = U_{AB} + U_{BC} \Leftrightarrow R_{\acute{e}q} \times I = R_1 \times I + R_2 \times I \quad \Leftrightarrow R_{\acute{e}q} = R_1 + R_2$$

<u>Généralisation</u>: L'association en série de n conducteurs ohmiques de résistance R_k est équivalente à un <u>unique</u> conducteur ohmique de résistance $R_{\acute{e}q}$ égale à la somme des résistances R_k .

$$R_{\acute{e}q} = \sum_{k} R_k$$

b/ Pont diviseur de tension

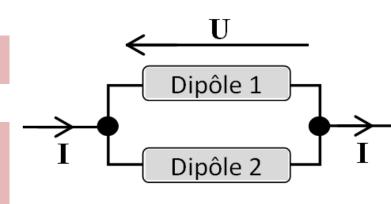
 $\rightarrow App 16 : Dans l'App 15, exprimer <math>U_1$ et U_2 en fonction de R_1 , R_2 et U_{AC} .

$$\bullet \ U_1 = R_1 \times I \ \text{Or, } I = \frac{U_{AC}}{R_{\text{\'eq}}} \Leftrightarrow I = \frac{U_{AC}}{R_1 + R_2} \Leftrightarrow \boxed{U_1 = \frac{R_1}{R_1 + R_2} \times U_{AC}}$$

$$(U_1 < U_{AC})$$

b/ Pont diviseur de tension

 $\longrightarrow App 16 : Dans l'App 15, exprimer <math>U_1$ et U_2 en fonction de R_1 , R_2 et U_{AC} .


•
$$U_1 = R_1 \times I$$
 Or, $I = \frac{U_{AC}}{R_{\acute{e}q}} \Leftrightarrow I = \frac{U_{AC}}{R_1 + R_2} \Leftrightarrow \boxed{U_1 = \frac{R_1}{R_1 + R_2} \times U_{AC}} (U_1 < U_{AC})$

• De même,
$$U_2 = R_2 \times I$$
 \Leftrightarrow $U_2 = \frac{R_2}{R_1 + R_2} \times U_{AC}$ $(U_2 < U_{AC})$

2) Association PARALLELE de conducteurs ohmiques


→ Dipôles reliés à 2 mêmes noeuds

<u>Conséquence</u>: même tension électrique aux bornes des 2 dipôles

2) Association PARALLELE de conducteurs ohmiques

 \cong - $\underbrace{App 17}$: En appliquant la loi d'Ohm aux différents dipôles, donner l'expression de $\mathbf{R}_{\acute{eq}}$ en fonction de \mathbf{R}_1 et de \mathbf{R}_2 .

En convention récepteur $\mathbf{U}_{AB} = \mathbf{R}_1 \times \mathbf{I}_1$; $\mathbf{U}_{AB} = \mathbf{R}_2 \times \mathbf{I}_2$; $\mathbf{U}_{AB} = \mathbf{R}_{\acute{e}q} \times \mathbf{I}$ De plus, <u>au nœud A (et au nœud B)</u>, $\mathbf{I} = \mathbf{I}_1 + \mathbf{I}_2$

Donc
$$\frac{U_{AB}}{R_{\acute{e}q}} = \frac{U_{AB}}{R_{1}} + \frac{U_{AB}}{R_{2}}$$
 Soit: $\frac{1}{R_{\acute{e}q}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$

<u>Généralisation</u>: L'association en parallèle de **n conducteurs ohmiques** de résistance R_k est **équivalente** à un <u>unique conducteur ohmique</u> dont l'inverse de la résistance $R_{\acute{eq}}$ est égale à la **somme des inverses** des résistances R_k .

$$\frac{1}{R_{\acute{e}q}} = \sum_{k} \frac{1}{R_k}$$

Donc $\frac{U_{AB}}{R_{\acute{e}q}} = \frac{U_{AB}}{R_1} + \frac{U_{AB}}{R_2}$

Soit: $\frac{1}{R_{\acute{e}q}} = \frac{1}{R_1} + \frac{1}{R_2}$

<u>Généralisation</u>: L'association en parallèle de **n conducteurs ohmiques** de résistance R_k est **équivalente** à un <u>unique conducteur ohmique</u> dont l'inverse de la résistance $R_{\acute{eq}}$ est égale à la **somme des inverses** des résistances R_k .

$$\frac{1}{R_{\acute{e}q}} = \sum_{k} \frac{1}{R_k}$$

V- Aspect énergétique

1) Puissance et énergie électrique échangée par un dipôle

a/ Puissance électrique

en Volt en Ampère

<u>Définition</u>: La **puissance électrique** P échangée par un dipôle est égale au produit de la **tension** U à ses bornes par l'**intensité** I **du courant électrique** qui la traverse.

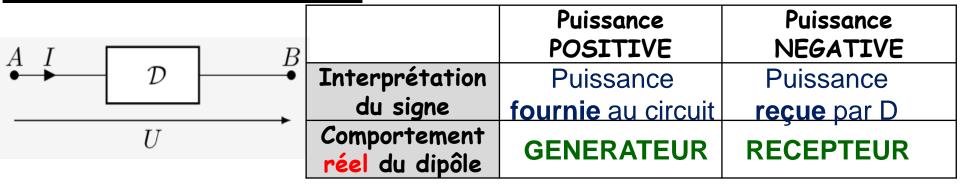
en Watt (1 W = 1 V.A)

Comment interpréter le signe d'une puissance électrique ?

en Volt en Ampère

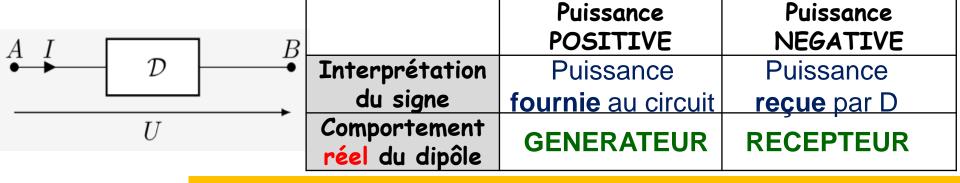
<u>Définition</u>: La **puissance électrique** P échangée par un dipôle est égale au produit de la **tension** U à ses bornes par l'**intensité** I **du courant électrique** qui la traverse.

en Watt (1 W = 1 V.A)


Convention RECEPTEUR

Flèches **U** et **I** de sens opposés

		Puissance POSITIVE	Puissance NEGATIVE
\mathcal{D}	Interprétation	Puissance	Puissance
	du signe	reçue par D	fournie au circuit
lacktriangledown	Comportement réel du dipôle	RECEPTEUR	GENERATEUR


Convention GENERATEUR

Flèches U et I de même sens

Convention GENERATEUR

Flèches **U** et **I** de même sens

Il existe bien des dipôles qui se comportent comme des générateurs à un instant et qui se comportent comme des récepteurs à un autre instant (<u>exemples</u> : les condensateurs, les batteries ...).

b/ Energie électrique

en Watt en Seconde

Définition: L'énergie électrique E_{él} échangée par un dipôle est égale au produit de la puissance électrique P qu'il échange par la durée Δt de son fonctionnement

en **Joule** (1 **J** = 1 **W.s**)

Il existe une autre unité d'énergie : **le wattheure (Wh)** qui correspond à la quantité d'énergie transférée avec une puissance de **1 W** pendant **1 h**, soit : **1 Wh = 3600 J**.

b/ Energie électrique

en Watt en **Seconde**

<u>Définition</u>: L'**énergie électrique** E_{él} échangée par un dipôle est égale au produit de la puissance électrique P qu'il échange par la durée At de son fonctionnement

en **Joule** (1 **J** = 1 **W.s**)

Il existe une autre unité d'énergie : le wattheure (Wh) qui correspond à la quantité d'énergie transférée avec une puissance de 1 W pendant **1 h**, soit : **1 Wh = 3600 J**.

2) Comportement de certains dipôles

a/ Le conducteur ohmique

• Expression de la puissance échangée par un conducteur ohmique :

$$P = U \times I \Leftrightarrow P = (R \times I) \times I \Leftrightarrow P = R \times I^2$$
(en convention récepteur)

• <u>Interprétation du signe</u> :

 $R \times I^2 > 0$ Donc, en convention récepteur, cela signifie que le conducteur ohmique reçoit réellement cette puissance électrique : il se comporte donc réellement comme un récepteur.

a/ Le conducteur ohmique

• Expression de la puissance échangée par un conducteur ohmique :

P = U × I
$$\Leftrightarrow$$
 P = (R × I) × I \Leftrightarrow (en convention récepteur)

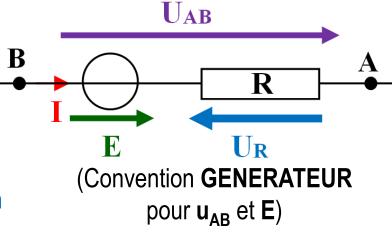
• Interprétation du signe : (Convention Récepteur)

- Interprétation du signe :
- Donc, en convention récepteur, cela signifie que le conducteur $R \times I^2 > 0$ ohmique reçoit réellement cette puissance électrique : il se comporte donc réellement comme un récepteur.
 - En quoi cette puissance est-elle ensuite transformée ?

Cette puissance dite « par effet JOULE » est ensuite dissipée sous forme de transfert thermique au milieu extérieur.

• <u>Citer des applications de la vie courante où ce phénomène a lieu</u> : Grille-pain / Bouilloire / Radiateurs électriques / Plaques de cuisson électriques (échauffement de n'importe quel appareil électrique)

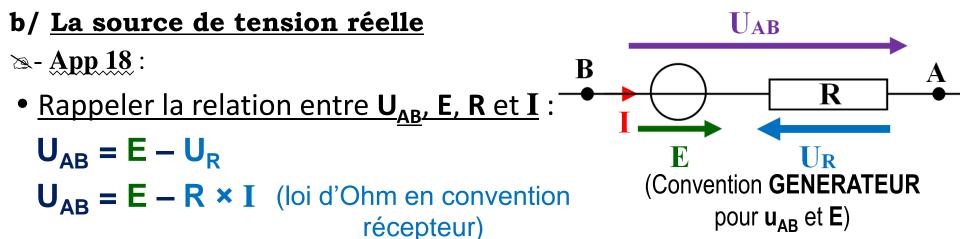
En quoi cette puissance est-elle transformée ?
 Cette puissance dite « par effet JOULE » est ensuite dissipée sous forme de transfert thermique au milieu extérieur.

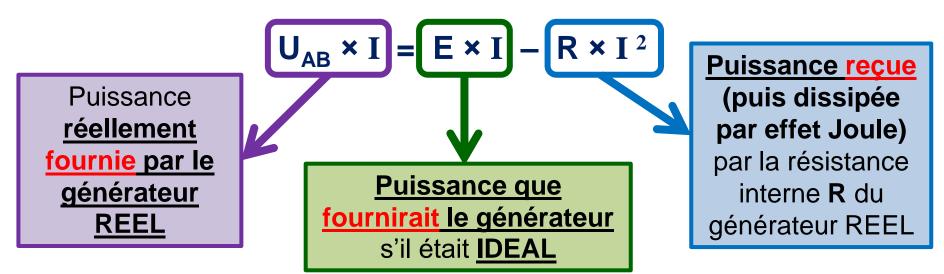


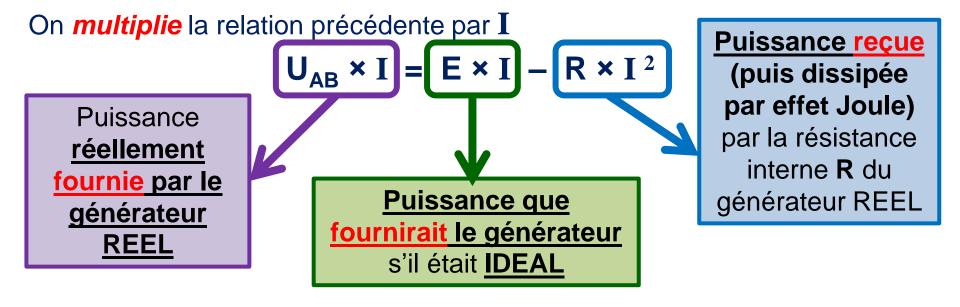
<u>Citer des applications de la vie courante où ce phénomène a lieu</u>:
 Grille-pain / Bouilloire / Radiateurs électriques / Plaques de cuisson électriques (échauffement de n'importe quel appareil électrique)

b/ <u>La source de tension réelle</u>

- **App 18**:
- Rappeler la relation entre **U**_{AB}, **E**, **R** et **I** :

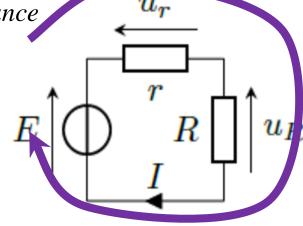

$$U_{AB} = E - U_{R}$$
 $U_{AB} = E - R \times I$ (loi d'Ohm en convention récepteur)


• Exprimer la *puissance fournie par le générateur réel* en fonction de deux autres puissances : On *multiplie* la relation précédente par **I**


$$U_{AB} \times I = E \times I - R \times I^{2}$$

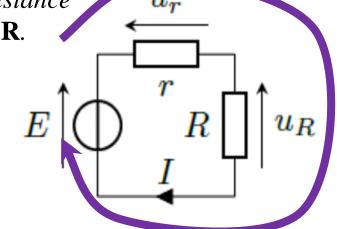
<u>Citer des applications de la vie courante où ce phénomène a lieu</u>:
 Grille-pain / Bouilloire / Radiateurs électriques / Plaques de cuisson électriques (échauffement de n'importe quel appareil électrique)

• Exprimer la *puissance fournie par le générateur réel* en fonction de deux autres puissances : On *multiplie* la relation précédente par **I**


3) Bilan de puissance dans un circuit électrique

App 19: Un générateur réel, de f.e.m. E et de résistance interne r, alimente un conducteur ohmique de résistance R.

- Donner la relation existant entre E, r, R et I : Loi des mailles : $E - u_r - u_R = 0$
- \Leftrightarrow E r × I R × I = 0 (Lois d'Ohm en convention récepteur)



On *multiplie* tout par $I: E \times I - r \times I^2 - R \times I^2 = 0$

3) Bilan de puissance dans un circuit électrique

- ≥ App 19: Un générateur réel, de f.e.m. E et de résistance interne **r**, alimente un conducteur ohmique de résistance **R**.
- Donner la relation existant entre E, r, R et I : Loi des mailles : $\mathbf{E} - \mathbf{u_r} - \mathbf{u_R} = \mathbf{0}$
- \Leftrightarrow E r x I R x I = 0 (Lois d'Ohm en convention récepteur)

• Exprimer la *puissance fournie par le générateur idéal* en fonction de

 $E \times I = r \times I^2 + R \times I^2$

<u>deux autres puissances</u>: On *multiplie* tout par $I : E \times I - r \times I^2 - R \times I^2 = 0$

Puissance fournie par le générateur de tension idéal

Puissance reçue (puis dissipée par effet Joule) par la résistance interne r du générateur réel

Puissance reçue (puis dissipée par effet Joule) par le conducteur ohmique de résistance R

Généralisation:

Puissances fournies = Puissance reçues