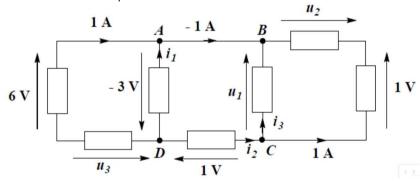
# - Signaux électriques en régime stationnaire -

#### ★ Exercice 01:

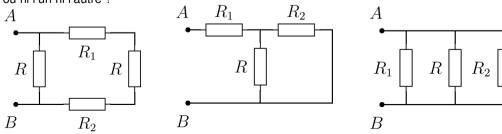
Pour recouvrir les pièces d'argent, on utilise des solutions de nitrate d'argent. Ces solutions sont soumises au passage d'un courant électrique par l'intermédiaire de deux électrodes : l'anode (plaque d'argent pur) et la cathode, constituée par la pièce à argenter. La cathode fixe des atomes d'argent, qui résultent de la capture d'un électron par des ions Ag† de la solution. Dans les conditions de l'expérience, on recueille 108 g d'argent sur la cathode en faisant passer une charge électrique Q = 96500 C entre les électrodes.

Dans ces mêmes conditions, quelle durée  $\Delta T$  permettra de fixer 10 g d'argent à la cathode, sous un courant d'intensité I = 5,0 A ?

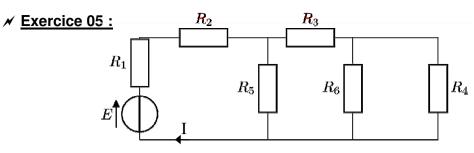

#### **★ Exercice 02:**

Combien d'électrons traversent un fil parcouru par un courant électrique d'intensité constante  $I=100\ mA$  pendant 15 minutes ?

**Donnée**: Charge élémentaire :  $e = 1,60.10^{-19}$  C


# ★ Exercice 03:

Déterminer les valeurs des tensions  $u_1$ ,  $u_2$ ,  $u_3$  et les valeurs des intensités électriques  $i_1$ ,  $i_2$  et  $i_3$  dans le circuit électrique ci-contre.




# ★ Exercice 04:

**1-** Les résistances  $R_1$  et  $R_2$  des circuits ci-dessous sont-elles associées en série, en parallèle ou ni l'un ni l'autre ?



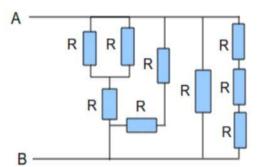
2- Exprimer la résistance équivalente  $R_{AB}$  de ces circuits en fonction de  $R,\,R_1$  et  $R_2.\,$ 

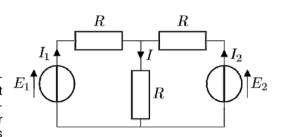


- 1- Pour les différents couples de résistances ci-dessous, indiquer si elles sont associées en série, en parallèle ou ni l'un l'autre :  $\{R_1; R_2\}, \{R_2; R_5\}, \{R_2; R_3\}, \{R_4; R_6\}, \{R_5; R_6\}$ .
- **2-**  $R_1$  =  $R_3$  =  $R_5$  =  $R_5$  = 1,0  $k\Omega$  et  $R_2$  =  $R_4$  =  $R_6$  = 2  $R_5$  = 2,0  $R_5$  = 2.0 Montrer que ce montage se résume à un générateur de tension idéale  $R_6$  = 2  $R_6$  = 2  $R_6$  = 2,0  $R_6$  = 2,0
- **3-** Déterminer la valeur I du courant électrique délivré par le générateur si E = 6,0 V.

# **✗** Exercice 06:

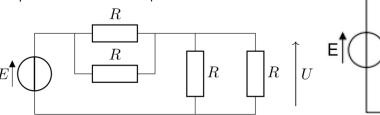
Toutes les résistances de ce circuit ont une valeur égale à R.

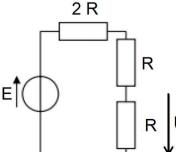

Déterminer l'expression de la résistance équivalente  $R_{\rm \acute{e}q}$  vue entre les bornes A et B en fonction de R.


# ✓ Exercice 07:

Exprimer les intensités  $I_1$ ,  $I_2$  et I en fonction de  $E_1$ ,  $E_2$  et R.

#### Méthode:


- 1- Appliquer la loi des nœuds.
- **2-** Choisir une intensité (exemple : I<sub>1</sub>) et appliquer deux lois des mailles convenablement choisies afin d'exprimer les deux autres intensités en fonction de celle choisie. Injecter alors ces expressions dans la loi des nœuds et exprimer I<sub>1</sub> en fonction de E<sub>1</sub>, E<sub>2</sub> et R.

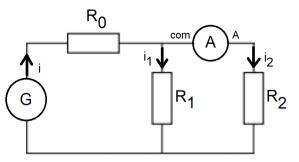





# **✗** Exercice 08:

A l'aide de la formule du pont diviseur de tension, exprimer la tension électrique U en fonction de E.






#### **★ Exercice 09:**

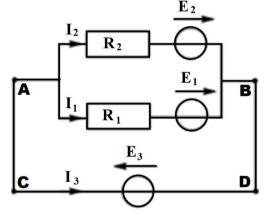
Un générateur réel de tension de force électromotrice E = 17 V est placé dans le circuit ci-contre où :

$$R_0 = 5 \Omega$$
;  $R_1 = 10 \Omega$ ;  $R_2 = 20 \Omega$ 

Déterminer la valeur de la résistance interne r de ce générateur sachant que l'ampèremètre indique une intensité de – 0,5 Å.



#### Méthode:


- 1- Réécrire le schéma en utilisant le modèle de Thévenin d'un générateur réel puis en rajoutant des flèches de tension pour chaque dipôle (sauf l'ampèremètre).
- 2- Exprimer i<sub>1</sub> puis i en fonction de R<sub>1</sub>, R<sub>2</sub> et i<sub>2</sub>.
- **3-** En déduire l'expression de r en fonction de E, R<sub>0</sub>, R<sub>1</sub>, R<sub>2</sub> et i<sub>2</sub>.

#### ★ Exercice 10:

Dans le circuit ci-contre :

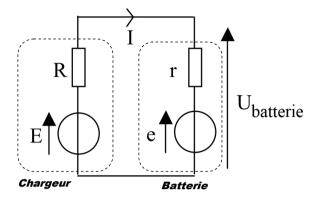
# 
$$R_1 = 2.0 \Omega$$
;  $R_2 = 5.0 \Omega$   
#  $E_1 = E_2 = 2.0 V$  et  $E_3 = 5.0 V$ .

- 1- Montrer que  $I_1=3,5$  A et  $I_2=1,4$  A puis en déduire la valeur de  $I_3$ . Interpréter les signes obtenus.
- **2-** Calculer la puissance électrique P<sub>AB,sup</sub> algébriquement reçue par la branche supérieure du dipôle AB puis la puissance électrique P<sub>AB,inf</sub> algébriquement reçue par la branche inférieure du dipôle AB Commenter les signes obtenus.



**3-** Calculer de deux manières différentes la puissance électrique  $P_{CD}$  algébriquement fournie par la branche CD contenant le générateur idéal.

# **★ Exercice 11:**


Un étudiant ne dispose pas de beaucoup de prises électriques dans sa cuisine. A l'aide d'une multiprise, il décide donc de brancher sur la même prise 220 V sa bouilloire électrique et son grille-pain.

Les puissances consommées en régime sinusoïdal par la bouilloire et le grille-pain valent respectivement  $P_B = 1300 \text{ W}$  et  $P_G = 1000 \text{ W}$ . La prise est protégée par un fusible de 10,0 A, valeur correspondant à l'intensité maximale qu'il peut supporter.

- 1- Faire le schéma électrique du circuit ainsi réalisé en assimilant la prise à un générateur de tension idéal.
- 2- L'étudiant pourra-t-il utiliser de manière simultanée sa bouilloire et son grille-pain ?
- **3-** Si seule la bouilloire est branchée, quelle énergie sera consommée pour 10 min de fonctionnement ?

# ★ Exercice 12:

Une batterie de voiture déchargée est modélisée par une F.É.M. e = 12,0 V en série avec une résistance r = 200 m $\Omega$ . Pour recharger cette batterie, on la branche sur un chargeur modélisé par une F.É.M. E = 13,0 V et de résistance interne R = 300 m $\Omega$ .



- 1- Déterminer la valeur du courant I circulant dans la batterie et la valeur U<sub>batterie</sub> de la tension à ses bornes lors de la charge.
- **2-** Calculer la puissance  $P_1$  délivrée par la source E, la puissance  $P_2$  dissipée par effet Joule dans l'ensemble du circuit et la puissance  $P_3$  que la batterie reçoit et stocke sous forme chimique pendant la charge.

On lit sur la batterie qu'elle a une « capacité » de 50,0 A.h (ampère-heures).

- 3- a) À quelle autre grandeur physique la capacité de 50,0 A.h est-elle homogène ?
- **b)** Avant qu'on commence à recharger la batterie, celle-ci n'a plus que 10,0 % de sa capacité. Déterminer la durée  $\Delta t$  nécessaire pour la recharger complètement.
  - c) Que vaut l'énergie dissipée par effet Joule pendant cette durée ?

#### **★ Exercice 13:**

Soit un générateur réel de tension caractérisé par sa f.e.m. E et sa résistance interne r. On branche entre ses bornes, une résistance réglable R.

- **1-** Déterminer l'expression de l'intensité I du courant électrique qui circule dans le circuit en fonction de E, r et R.
- 2- Déterminer l'expression de la puissance P absorbée par R en fonction de E, r et R.
- **3-** On considère la fonction P = f(R). Pour quelle valeur de R cette fonction passe-t-elle par un maximum ? Déterminer la valeur de ce maximum pour E = 100 V er  $r = 10,0 \Omega$ .