► Définition ·

- Description des systèmes thermodynamiques -

Notions et contenus	Capacités exigibles
Caractérisation d'un système thermodynamique - Système thermodynamique. Échelles microscopique, mésoscopique et macroscopique État d'équilibre thermodynamique.	 Préciser les paramètres nécessaires à la description d'un état microscopique et d'un état macroscopique d'un système thermodynamique. Définir l'échelle mésoscopique et en expliquer la nécessité. Associer qualitativement la température et la pression aux propriétés physiques du système à l'échelle microscopique.
Gaz parfait - Modèle du gaz parfait. Masse volumique, température, pression Équation d'état du gaz parfait.	- Exploiter l'équation d'état du gaz parfait pour décrire le comportement d'un gaz.
- Énergie interne du gaz parfait. Extensivité de l'énergie interne. - Capacité thermique à volume constant d'un gaz considéré comme parfait.	- Exploiter l'expression de la variation d'énergie interne d'un gaz considéré comme parfait, l'expression de la capacité thermique à volume constant étant fournie.
Phase condensée indilatable et incompressible - Modèle de la phase condensée indilatable et incompressible.	
- Énergie interne et capacité thermique à volume constant d'une phase condensée indilatable et incompressible.	- Exploiter l'expression de la variation de l'énergie interne d'une phase condensée incompressible et indilatable en fonction de sa température.

La thermodynamique est la branche de la physique qui étudie l'aspect énergétique des systèmes physiques; cette science est née au début du 19^{ème} siècle avec l'apparition des machines à vapeur dont la modélisation a nécessité l'introduction des notions d'énergie et d'échange d'énergie. A partir des propriétés macroscopiques d'un système (comme sa température, sa pression, son volume), la thermodynamique permet ainsi d'étudier comment ont lieu les échanges d'énergie entre le système et son environnement extérieur. Elle a ensuite apporté des éclaircissements sur des phénomènes aussi divers que le magnétisme, le fonctionnement des cellules, la structure des planètes et des étoiles.

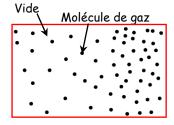
Le but de ce chapitre est de présenter les notions de base qu'il est nécessaire de maîtriser quand on aborde des problèmes dans ce domaine de la physique.

I- Les outils de description de la thermodynamique

1) Le système thermodynamique

Avant toute étude, il faut commencer par définir le système thermodynamique qui sera étudié.

- <u>Befinaion</u> .
Des transferts d'énergie ou de matière peuvent se produire avec l'extérieur à travers la surface de contrôle. On caractérise alors les systèmes en fonction de la possibilité ou non de ces transferts d'énergie avec l'extérieur :
◆ <u>Système ISOLE</u> :
◆ <u>Système FERME</u> :
◆ <u>Système OUVERT</u> :
a- Application 2 : Pour les trois dispositifs ci-dessous, identifier le système thermodynamique le plus naturel, la surface de contrôle qui le délimite, et indiquer s'il est isolé fermé ou ouvert :


	Système thermodynamique	Surface de contrôle	Isolé / Fermé / Ouvert ?
Une bouée			
Un thermos de café			
Un bol d'eau chaude			

2) Les échelles d'observation

On distingue trois échelles d'observation pour décrire un système thermodynamique :

•	: elle correspond au <i>domaine observable à l'œil nu</i> .
À	cette échelle, on observe le système dans son ensemble et <i>la matière apparaît continue</i> car
0	n ne neut nas distinguer les atomes les uns des autres

→	Distance caractéristique	·
----------	--------------------------	---

système ne le décriront qu'en moyenne. Prenons l'exemple du calcul de la masse volumique d'un gaz non homogène : à cette
échelle, le rapport de la masse m de fluide sur le volume macroscopique V qu'il occupe conduira à une masse volumique
moyenne, qui ne rendra donc pas compte de l'existence de zones plus ou moins denses au sein du gaz (dans l'exemple
précédent, la masse volumique est en effet plus faible à gauche qu'à droite).
• : elle correspond au domaine des particules (atomes, molécules,) constituant la
matière. À cette échelle, <i>la matière apparaît discontinue</i> car on peut distinguer les atomes les uns des autres et même
« voir » l'absence de matière.
→ Distance caractéristique :
Cette échelle <i>n'est PAS DU TOUT ADAPTEE pour décrire le système</i> car certaines
grandeurs physiques ne peuvent pas être définies. Reprenons l'exemple du calcul de la masse
volumique d'un gaz non homogène : on constate alors que celle-ci passe d'une valeur non nulle
(présence de molécules de gaz) à une valeur nulle (absence de molécules de gaz) si on décale
très légèrement l'emplacement du volume microscopique.
Pour que la valeur de la masse volumique dans ce volume microscopique ait un sens, il faudrait faire une moyenne
statistique des masses volumiques calculées à proximité immédiate de ce volume ; puis, si on veut connaître l'information sur
la totalité du gaz, refaire ce genre de calculs pour tous les volumes microscopiques du système. Or, ceci est impossible à
réaliser, même par les ordinateurs les plus puissants, car le nombre de calculs à réaliser serait infini!
c'est une échelle d'observation qui est intermédi-
aire entre les deux précédentes :
→ elle est <i>grande par rapport à l'échelle</i> ,
pour que chaque élément de volume contienne un grand nombre de particu-
les et que <i>la matière paraisse continue</i> ;
→ elle est petite par rapport à l'échelle , ce • • • • • • • • • • • • • • • • • •
qui permet une description locale du système.
Cette échelle est TOUJOURS ADAPTEE pour décrire le système car les grandeurs physiques qui caractérisent le
système peuvent être définies et car celles-ci ne le décrivent pas qu'en moyenne. Reprenons l'exemple du calcul de la masse
volumique d'un gaz non homogène. On peut imaginer qu'on décompose celui-ci en différentes zones :
→ zones suffisamment grandes pour que le nombre de molécules de gaz présentes dans chaque zone soit
important et que la valeur de la masse volumique ait un sens (celle-ci ne change alors pas brusquement si on
décale très légèrement l'emplacement de la zone) ;
→ des zones suffisamment petites pour que chacune soit caractérisée par sa propre masse volumique. La
description de l'ensemble de ces zones rend alors correctement compte des fluctuations de la masse
volumique d'une zone à l'autre du fluide.
0) I 12/4-4
<u>3) Les grandeurs d'état</u>
◆ <u>Définition</u> :
Exemples:
a/ Classification des grandeurs d'état
◆ Grandeurs d'état EXTENSIVES ou INTENSIVES :
Conséquence :
(soit G une grandeur extensive valant G_1 et G_2 pour deux systèmes différents : si on réunit les deux systèmes, $G = G_1 + G_2$)
Pour savoir si une grandeur d'état est extensive ou intensive, il suffit de regarder si sa valeur change
quand la taille du système change

Cette échelle n'est PAS TOUJOURS ADAPTEE pour décrire le système car les grandeurs physiques caractéristiques du

A- Application 3: pour chaque grandeur d'état qui suit, indiquer si elle est intensive ou extensive.

Masse	Quantité de matière	Pression	Température	Volume	Masse volumique	Concentration			0		()
							1	+	11	=	3
							U		()		{ }

- ◆ Grandeurs d'état MOLAIRE et MASSIQUE : pour toute grandeur d'état G extensive, on peut définir :
 - La grandeur molaire associée :
 - La grandeur massique associée :
- **a-** Application 4 : Considérons un système de volume V, de masse m et contenant n moles.
- a) Donner les expressions du volume molaire et du volume massique.
- **b)** Relier le volume massique à la masse volumique.

b/ Deux grandeurs d'état particulières : la température et la pression

Dans un gaz macroscopiquement au repos, les entités ne sont pas immobiles. Elles sont animées de mouvements incessants qui constituent l'agitation thermique. Dans des conditions usuelles, une molécule de gaz se déplace à une vitesse de l'ordre de quelques centaines de mètres par seconde et subit de l'ordre de 109 chocs par seconde.

Certaines grandeurs d'état tirent leur origine de cette agitation thermique : c'est le cas de la pression et de la température.

Interprétation microscopique :

- → Unité du système international :
- → Autres unités : -
 - Le degré Fahrenheit (°F) : $T(°F) = 1.8 \times \theta(°C) + 32$.

- Dans un gaz monoatomique, l'énergie cinétique moyenne d'une molécule est reliée à la température **T** en Kelvin par la formule : $\langle E_c \rangle = 3/2 \times k_B \times T$ où k_B est la constante de Boltzman $(k_B = 1,38.0^{-23} \text{ J.K}^{-1})$, traduisant une proportionnalité entre énergie cinétique et température.
- La température en Kelvin est parfois appelée température absolue, par référence au zéro absolu, température la plus basse possible correspondant à un état de repos des particules.

a PRESSION

◆ <u>Interprétation microscopique</u> :	Paroi solide de surface S Fluide
◆ <u>Définition</u> :	
→ Unité du système international :→ Autre unité :	

(a) La définition précédente permet de calculer la pression exercée par un fluide sur une surface de solide, également appelée pression cinétique. Par extrapolation, on définit la pression au sein d'un fluide (même s'il n'est pas en contact avec une paroi) comme la pression qui serait mesurée sur une surface fictive qui serait située en cet endroit du fluide. Une pression est mesurée par un manomètre.

II- Etat d'équilibre thermodynamique

1) Définition

	L'état d	'équilibre	thermodyr	namique e	st <i>l'éta</i>	t vers	lequel	tend d	à évoluer	spontaném	ent n'imp	orte q	quel s	système
thermo	dynamiq	jue aband	lonné à lui-ı	même . Da	ns cet é	tat :								

•
L'état d'équilibre thermodynamique implique que soient réalisés <i>au moins deux équilibres particuliers</i> :
• <u>l'équilibre MECANIQUE</u> :
• <u>l'équilibre THERMIQUE</u> :
Application 5 : Si un système (par exemple un gaz) est séparé du milieu extérieur par des parois mobiles (ex : piston), que peut-on dire de la pression du système et de la pression extérieure une fois l'équilibre thermodynamique atteint ?
Application 5-bis : Si un <u>système est séparé du milieu extérieur par des parois permettant les transferts thermiques</u> , que peut-on dire de la température du système et de la température extérieure une fois l'équilibre thermodynamique atteint ?
<u>2) Equation d'état</u> Lorsqu'un système est dans un état d'équilibre thermodynamique, <i>les grandeurs d'état sont reliées entre elles par une EQUATION D'ETAT</i> . Cette équation est spécifique à chaque système étudié, mais les comportements des gaz et des phases condensées (liquides et solides) peuvent, dans certaines conditions, être étudiés en utilisant des modèles dont les équations d'état sont très simples.
a/ Systèmes gazeux : modèle du GAZ PARFAIT L'étude des propriétés des gaz aux faibles pressions (P < 1 bar) a permis de dégager un modèle , appelé MODELE DU GAZ PARFAIT, et une équation d'état qui lui est associée. Loi de BOYLE-MARIOTTE (1670) Le produit P×V d'une quantité de gaz fixée reste constant à température fixée
Loi de GAY-LUSSAC et CHARLES (1800) Le produit P*V ne dépend pas de la nature du gaz, mais n'est fonction que de la température
Loi d'Avogadro-Ampère (1810) Le produit P×V, à température fixée, est proportionnel au nombre de molécules de gaz
 ♣ Un gaz qui satisfait rigoureusement aux lois de Boyle-Mariotte, Gay-Lussac, Charles et Avogadro-Ampère est appelé « GAZ PARFAIT ». En combinant ces trois lois, on obtient l'équation d'état des gaz parfaits (EEGP) :
Conversions « Pression » : 1 bar = 10 ⁵ Pa et 1 hPa = 10 ² Pa Conversion « Volume »: 1 m³ = 1000 L Conversion « Température »: T(K) = T(°C) + 273,15

^{-} Application 6: En considérant l'air comme un gaz parfait de masse molaire 29,0 g.mol $^{-1}$, déterminer son volume molaire et sa masse volumique à 1013 hPa et à 25,0 °C.

→ Volume molaire :

→ Masse volumique :

A quelles conditions un gaz peut-il être considéré comme parfait ?

•

•

Application 7: Calculer la valeur attendue pour le produit P.V pour une mole de méthane à 0 °C et à 50 °C si on considère ce gaz comme parfait.

→ CONCLUSION: à quelle condition de température et de pression un gaz se comporte-t-il le plus comme un gaz parfait?

b/ Systèmes solides ou liquides : modèle de la PHASE CONDENSEE INDILATABLE et INCOMPRESSIBLE

Par définition, on appelle "phase condensée" un <u>liquide</u> ou un <u>solide</u>. Cette appellation vient du fait que <u>la masse</u> volumique des liquides et des solides est en général environ 1000 fois supérieure à celle des gaz : l'état liquide et l'état solide sont donc les états les plus "condensés" de la matière.

Par comparaison aux gaz, les phases condensées sont en général :

- peu COMPRESSIBLES :
- peu DILATABLES :

En quoi consiste le modèle de la PHASE CONDENSEE INDILATABLE ET INCOMPRESSIBLE ?

Conséquence sur le volume molaire d'une phase condensée :

A-Application 8: Donner un ordre de grandeur du volume molaire des liquides et des solides (à 25 °C) en vous basant sur l'eau liquide et le fer solide dont les caractéristiques sont précisées ci-dessous.

<u>Données</u>: $\rho_{EAU} = 1000 \text{ g.L}^{-1}$; $\rho_{FER} = 7870 \text{ kg.m}^{-3}$; $M_{EAU} = 18.0 \text{ g.mol}^{-1}$; $M_{FER} = 55.8 \text{ g.mol}^{-1}$

III- Energie interne et capacité thermique à volume constant

1) Energie interne

a/ Définition et propriétés

• Généralisation :

Dans le cours de mécanique du lycée, on définit l'énergie mécanique E_m d'un objet macroscopique comme la somme de son énergie cinétique E_c et de son énergie potentielle E_p , soit $E_m = E_c + E_p$. Cette énergie est "macroscopique", dans le sens où elle est "visible à l'œil nu" : en effet, on "voit" bien qu'un camion qui roule à 130 km.h⁻¹ a beaucoup d'énergie cinétique, ou qu'une boule de bowling posée sur une étagère à 3 m de hauteur a beaucoup d'énergie potentielle.

Considérons maintenant un bol contenant de l'eau à 90°C. A priori, on ne "voit" pas que l'eau dans le bol contient de l'énergie : elle est parfaitement calme et immobile. Pourtant, si on met la main dedans, cela va être très douloureux ! Le bol contient donc bien de l'énergie, mais c'est une énergie "microscopique", invisible à l'œil nu, due à l'agitation thermique des molécules d'eau, qui se déplacent dans toutes les directions de l'espace, avec une vitesse d'autant plus grande que la température est grande. Cette énergie microscopique, invisible à l'œil nu mais que l'on peut facilement ressentir au toucher, s'appelle ENERGIE INTERNE.

s'appelle ENERGIE INTERNE.
◆ <u>Définition</u> :
L'énergie interne possède <i>deux propriétés principales</i> . C'est une :
• a l'équilibre thermodynamique, <u>on peut connaître la valeur de U grâce aux valeurs des grandeurs d'état T, P, V, n du système thermodynamique dont elle dépend</u> . Une propriété importante des fonctions d'état concerne leur variation entre deux états d'équilibre, l'état initial El d'un système et son état final EF : <u>la variation ΔU de l'énergie interne entre ces deux états ΔU = U(EF) – U(EI) ne dépend que de EI et de EF mais pas du chemin suivi entre ces <u>deux états</u>. Nous reviendrons sur l'intérêt de cette notion dans le chapitre suivant.</u>
• (et par conséquent <i>additive</i>) : soit 2 systèmes disjoints d'énergie internes respectives U_1 et U_2 . L'énergie interne du système correspondant à la réunion des 2 systèmes précédents vaut $U_1 + U_2$. Du fait de cette dernière propriété, on peut définir pour un système contenant n moles et de masse m :
L'énergie interne MOLAIRE : L'énergie interne MASSIQUE :
b/ Application aux modèles du GAZ PARFAIT et de la PHASE CONDENSEE INDILATABLE et INCOMPRESSIBLE
Prenons l'exemple d'un gaz parfait monoatomique, c'est-à-dire constitué uniquement d'atomes (cas des gaz nobles comme l'hélium ou le néon). Dans ce cas, l'énergie interne se résume à la somme des énergies cinétiques de chaque atome puisqu'on rappelle que dans un gaz parfait, les particules n'interagissent pas entre elles. On montre alors que l'énergie cinétique moyenne de chaque particule vaut $\langle E_c \rangle = 3/2 \times k_B \times T$ où k_B est la constante de Boltzman ($k_B = 1,38.0^{-23} J.K^{-1}$). $-23 J.K^{-1}$). $-23 J.K^{-1}$.

2) Capacité thermique à volume constant

a/ Définition et propriétés

Quand on chauffe un système thermodynamique (par exemple de l'eau dans une casserole ou l'air dans une pièce), on modifie son énergie interne. La question importante qui se pose alors est : « quelle est la variation d'énergie interne associée à une variation de la température de x degrés ? » : la capacité thermique à volume constant est une grandeur qui a été introduite pour faire un lien entre ces deux variations.

◆ <u>Définition</u> :

▼ Formule : dU = variation élémentaire de l'énergie interne du système

dT = variation élémentaire de la température du système

Du fait de l'extensivité de cette grandeur, on peut définir pour un système contenant n moles et de masse m :

- La capacité thermique MOLAIRE à volume constant :
- La capacité thermique MASSIQUE à volume constant :

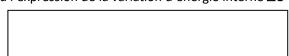
Pour une **phase condensée indilatable et incompressible**, on n'est pas obligé de préciser « à volume constant », car pour de telles phases, le volume est supposé constant. On trouve alors les notations \mathbf{C} , \mathbf{C}_{m} et \mathbf{c} .

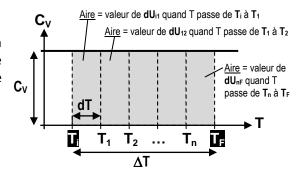
 $ag{Application 10}$: Dans l'Application 9, on a établi U = 3/2 nRT pour un gaz parfait monoatomique. En déduire que la capacité thermique à volume constant d'un gaz parfait monoatomique ne dépend pas de la température.

b/ Application : calcul d'une variation \(\Delta \text{U} d'\)energie interne lors d'une transformation

Pour calculer la variation d'énergie interne ΔU d'un système lors d'une transformation à volume constant où la température passe de la valeur T_i à la valeur T_F , on va découper cette transformation en une suite de transformations élémentaires où la température varie elle-même de façon élémentaire (variation notée dT). Pour chacune de ces transformations élémentaires, on peut calculer la variation élémentaire d'énergie interne dU en appliquant la formule : $dU = C_V \times dT$.

On obtiendra alors la valeur de ΔU pour la transformation globale en additionnant toutes les valeurs de dU, soit :

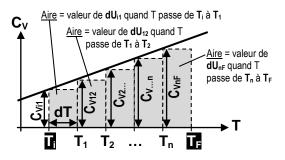

$$\Delta U = dU_{i1} + dU_{12} + ... + dU_{nF}$$


Si C_V ne DEPEND PAS de la température

(toujours le cas cette année)

On constate que toutes les valeurs dU_{i1} , dU_{12} , ..., dU_{nF} sont égales à l'aire d'un même rectangle de largeur dT et de hauteur C_V . On en déduit que ΔU sera la somme de toutes ces aires, c'est-à-dire celle d'un grand rectangle de largeur $\Delta T = T_F - T_i$ et de hauteur C_V .

D'où l'expression de la variation d'énergie interne ΔU :



 ${}^{-}$ Application 11: La capacité thermique massique à volume constant de l'eau vaut $c_V = 4,18.10^3$ J.K $^{-1}$.kg $^{-1}$ et on peut la considérer comme une constante. On chauffe $m_{eau} = 250$ g d'eau initialement à une température $T_i = 20$ °C. Quelle sera sa température finale T_F si on lui apporte une énergie de 15 kJ?

Si C_V DEPEND de la température (jamais le cas cette année)

On constate que toutes les valeurs dU_{i1} , dU_{12} , ..., dU_{nF} sont égales à l'aire d'un rectangle de largeur dT et de hauteur C_V ; mais cette hauteur n'est pas la même d'un rectangle à l'autre car C_V dépend de T. Or, on rappelle que ΔU est la somme des aires de tous ces rectangles.

Comme <u>dT est choisi infiniment petit</u>, les zones blanches situées entre la courbe et les rectangles grisés sont en réalité infiniment petites et négligeables par rapport aux aires grises. <u>La somme des aires grises s'identifie à l'aire située entre l'axe des abscisses et la courbe représentant C_V.</u>

En mathématiques, on dispose d'un outil (l'intégrale) qui permet de réaliser ce <u>calcul d'aire sous la courbe $C_{\underline{v}}(T)$ </u> quand T varie de T_i à T_F . On formule alors la variation d'énergie interne ΔU sous la forme :

$$\Delta U = U_F - U_i = Aire sous la courbe $C_V(T)$ entre T_i et $T_F = \int_{T_i}^{T_F} C_V(T) . dT$$$