
Physique 06                                                                   BCPST 1C                                        

- Bilans d’énergie pour un système thermodynamique - 
 

 

Constante des gaz parfaits : R = 8,314 J.K
 – 1 

.mol
 – 1

 
 

Masses molaires (à chercher si besoin) 
 

 

 EXERCICE 01 : 
 

On considère un cylindre en position horizontale séparé en deux compartiments 
par un piston mobile vertical pouvant se déplacer sans frottements. 
 

Dans la suite, on considèrera que les parois du cylindre ainsi que le piston sont 
athermanes et que le cylindre est fermé et de volume invariable. 
 

Dans un état d’équilibre initial (figure 1), les deux compartiments A et B contien-
nent une quantité de matière identique n de gaz parfait monoatomique et sont dans le 
même état défini par une pression P0 = 1,00 bar, une température T0 = 0 °C et un 
volume V0 = 5,00 L. 
 

On chauffe extrêmement lentement le compartiment A grâce à une résistance 
chauffante de valeur R = 50 Ω, parcourue par un courant continu d’intensité I = 0,40 A. 

La durée du chauffage vaut ∆t = 50 minutes. Dans l’état final d’équilibre (figure 2), la 
pression dans le compartiment A vaut P1 = 2,14 bar et la température dans le compar-
timent B vaut T2 = 66,1 °C.  
 

 
 
 
 
 
 
 
 
 

   Figure 1 : Etat initial du système étudié                   Figure 2 : Etat final du système étudié 
 
 

1- Quelle donnée montre qu’il y a équilibre mécanique pour chaque gaz dans l’état initial ? 
 

2- Déterminer les valeurs de V1, T1, P2 et V2. 
 

3- Les gaz des compartiments A et B subissent-ils une transformation isotherme ? iso-
chore ? isobare ? adiabatique ?  
 

4- Pour le type de transformation subie par le gaz du compartiment B, le produit P × V γ 

est une constante, avec γ une constante sans dimension appelée coefficient de Lapla-

ce. En admettant cette relation, donner l’expression de γ en fonction de V0, V2, P2 et P0 
pour la situation étudiée. Faire l’application numérique. 
 

5- Déterminer la valeur du transfert thermique algébriquement reçu par le gaz du 
compartiment A puis par le gaz du compartiment B.  
 

On considère désormais un système en tout point identique au précédent, sauf 
que la paroi verticale droite du compartiment B est maintenant diathermane et mise en 
contact avec de la glace fondante à la pression atmosphérique. 
 

6- Pourquoi la glace fondante peut-elle être considérée comme un thermostat ? En 
déduire si les gaz des compartiments A et B subissent une transformation isotherme, 
isochore, isobare ou adiabatique. 
 

7- Donner le signe du transfert thermique algébriquement reçu par le gaz du comparti-
ment A puis par le gaz du compartiment B dans cette nouvelle situation.  
 
 

 EXERCICE 02 : 
 

Une quantité de matière n0 = 7,50.10 – 2 mol de diazote gazeux subit la suite de 
transformations décrites ci-dessous : 
 

 A partir des conditions initiales PA, VA et TA (état A), un échauffement isochore 
fait tripler sa pression et sa température atteint TB (état B) ; 

 

 Une détente isotherme réversible lui fait ensuite retrouver sa pression initiale 
mais le volume de gaz devient égal à VC (état C) ; 

 

 Un refroidissement isobare réversible ramène le gaz à l’état initial (état A). 
 

Données : - Coefficient de Laplace pour le diazote : γ = 
�

�
  ; 

- Capacité thermique molaire à volume constant du diazote : CVm = 
�

� ��
   .   

    
  

1- Exprimer TB en fonction de TA et VC en fonction de VA.  
 

2- Représenter la suite de transformations subies par le gaz dans un diagramme de 
Watt (flécher chaque transformation). 
 

3- On donne PA = 1,00 bar et TA = 300 K. Exprimer puis calculer la variation d’énergie 
interne, le travail algébriquement reçu par le gaz et le transfert thermique algébrique-
ment reçu par le gaz au cours des transformations A  B, B  C et C  A. 
 

4- Que vaut la variation d’énergie interne du gaz sur l’ensemble du cycle ? 
 
 

 EXERCICE 03 : 
 

On enferme une masse m = 20,0 g d’hélium gazeux (capacité 
thermique massique à volume constant cV = 3,12 J.K – 1 .kg – 1 ; masse 
molaire MHe = 4,0 g.mol – 1) dans un cylindre vertical aux parois dia-
thermanes clos par un piston de masse négligeable et de section S.  

 

Le piston est initialement maintenu pour que le gaz soit à la pres-
sion PA = 5 P0 où P0 est la pression atmosphérique extérieure. Le gaz 
occupe initialement le volume VA. La température extérieure T0 est 
constante et l’ensemble est initialement à l’équilibre thermique.  

 

On réalise deux expériences à partir de ce même état initial : 
 On relâche brutalement le piston et on attend l’équilibre. 
 On relâche très lentement le piston de façon à ce que le système passe par une 
suite d’états d’équilibres infiniment voisins. 



1- Les transformations  et  sont-elles isothermes ? monothermes ? isobares ? mo-
nobares ? Justifier rapidement. 
 

2- On note VB


 et VB


 le volume atteint par le gaz dans l’état final à l’issue des trans-

formations  et . Exprimer VB


 et VB


  en fonction de VA. 
 

3- On note ∆U


 et ∆U


 la variation d’énergie interne du gaz au cours des transforma-

tions  et . Calculer ∆U


 et ∆U


. Commenter. 
 

4- On note W


 et W


 le travail algébriquement reçu par le gaz au cours des trans-

formations  et . Exprimer W


 et W


  en fonction de P0 et de VA. Commenter. 
 

5- On note Q


 et Q


 le transfert thermique algébriquement reçu par le gaz au cours 

des transformations  et . Exprimer Q


 et Q


 en fonction de P0 et de VA. Commenter. 
 

 

6- Pour aller plus loin … On peut imaginer que le piston est maintenu dans son état 
initial grâce à une masse M posée sur celui-ci. A l’aide des données supplémentaires 
ci-dessous, déterminer la valeur de la masse M afin que PA = 5 P0.  
Données supplémentaires :  # Section du piston : S = 10 cm² ; 

 # Intensité de la pesanteur terrestre : g = 9,8 m.s – 2. 

 
 

 EXERCICE 04 : 
 

La brique réfractaire (ou terre cuite) est un matériau très souvent utilisé en 
cuisine car elle a une valeur élevée de capacité thermique massique. Le but de cet 
exercice est de déterminer la valeur de la capacité thermique massique cB de ce 
matériau. Pour cela, on réalise la suite de manipulations suivantes : 
 

 Dans un calorimètre idéal (enceinte ne participant pas aux échanges thermiques 
avec l’extérieur ni avec ce qu’il contient), on introduit me = 600 g d’eau et on mesure sa 
température une fois stabilisée au bout de quelques minutes : Te = 19,7 °C.  
 

 On y introduit une brique de masse mB = 77,5 g qui a préalablement séjourné dans 
une étuve à la température TB = 100 °C pendant une très longue durée. 
 

 On mesure la température finale d’équilibre dans le calorimètre : TF = 21,7 °C. 
 

Données : Capacité thermique massique à volume constant et à pression constante 
de l’eau : ceau = 4,18.10 3 J.K – 1.kg – 1 
 

1- Quel(s) type(s) de transfert(s) thermique(s) observe-t-on entre le moment où la 
brique est plongée dans l’eau et le moment où l’équilibre thermique est atteint ? Dans 
quel sens a-t-il (ont-ils) lieu ?  

 
 

2- On étudie le système {eau + brique}. En utilisant le 1er principe, déterminer 
l’expression de la capacité thermique massique cB de la brique en fonction de ceau, me, 
mB, TE, TB et TF. Faire l’application numérique.  

 
 

En réalité, les parois intérieures du calorimètre interviennent dans les échanges 
thermiques. Le calorimètre n’est donc pas idéal et est caractérisé par une capacité 
thermique notée Ccalo dont on estime la valeur à 200 J.K – 1. 

 

3- On étudie le système {eau + brique + calorimètre}. En utilisant le 1er principe, 
déterminer l’expression la capacité thermique massique cB de la brique en fonction de 
Ccalo, ceau, me, mB, TE, TB et TF. Faire l’application numérique. 
 
 

On met en contact la brique réfractaire de masse mB = 77,5 g à la température 
uniforme TB = 100 °C avec un morceau de cuivre de masse mC = 200 g de températu-
re uniforme TC = 25,0 °C et de capacité thermique molaire Cm = 3 R (où R est la 
constante des gaz parfaits). 
 

Données : Masse molaire atomique du cuivre : MCu = 63,5 g.mol – 1.  
 

4- Quel(s) type(s) de transfert(s) thermique(s) observe-t-on à partir du moment où les 
deux solides sont mis en contact ? Dans quel sens a-t-il (ont-ils) lieu ?  
 

5- En étudiant le système {brique + cuivre} qu’on supposera isolé, exprimer la tempé-
rature finale TF’ des deux solides une fois l’équilibre thermique atteint en fonction de 
mB, mC, TB, TC, R et MCu. Faire l’application numérique. 
 

6- Si on faisait l’expérience à l’air libre au laboratoire, obtiendrait-on une température 
TF’ supérieure ou inférieure à celle calculée précédemment ? Justifier qualitativement. 
 
 

 EXERCICE 05 : 
 

 Madame Michu a acheté une statue garantie en or massif, de masse m = 860 g. 
Pour vérifier sa composition, elle souhaite mesurer la capacité thermique massique c 
du métal qui la constitue.  
 

 Pour cela, elle plonge la statue, à la température initiale T0 = 293 K, dans une 
masse me = 300 g d’eau, de température initiale Te = 353 K et de capacité thermique 
massique ce = 4,18.103 J.K – 1.kg –1, contenue dans un calorimètre aux parois 
parfaitement athermanes, initialement à la température Te. Elle mesure alors la tempé-

rature finale TF du système Σ {eau + statue + calorimètre} à l’équilibre thermodynami-
que et obtient TF = 346 K. 
 

 Le calorimètre est caractérisé par une valeur en eau µ = 40,0 g. Il s’agit de la 
masse d’eau qui aurait la même capacité thermique Ccal que celle du calorimètre. 

Pendant toute la transformation, le système Σ est en contact avec l’atmosphère où 
règne une pression P0 constante. 
 

1- Quelle relation existe-t-il entre µ, Ccal et ce ?  
 

2- Exprimer la capacité thermique c de la statue en fonction de m0, m, µ, ce, TF et 
T0. Faire l’application numérique. 

 

3- Pour tous les métaux à température ordinaire, la loi de Dulong et Petit indique 
que la capacité thermique molaire vaut Cm = 3 R = 24,9 J.K – 1 .mol – 1. En déduire 
la masse molaire du métal constituant la statue et la comparer à celle de l’or 
valant 197 g.mol – 1. Conclure. 

 



 EXERCICE 06 : 
 

Dans un récipient parfaitement calorifugé, une masse m0 = 200 g d’eau liquide à 

la température θ0 = 20,0 °C et de capacité thermique massique c0 = 4,18 kJ.K – 1 .kg – 1  

est mise en contact avec un filament de cuivre initialement à θ0 = 20,0 °C, de capacité 
thermique massique c = 0,39 kJ.K – 1 .kg – 1 et de masse m = 30 g.  
 

Le filament de cuivre a une résistance R = 20 Ω et il est parcouru par un courant 

d’intensité I = 10 A pendant une durée ∆t = 5,0 s.  
 

En étudiant le système {eau + fil de cuivre}, déterminer  

la température finale θF de l’eau. 
  

 
 

 EXERCICE 07 : 
 

 On prélève 5 glaçons pesant chacun m = 12,0 g d’un congélateur où la pression 
vaut PA = 1,00 bar et la température TA = - 18,0 °C. Dans la suite, on travaille à la 
pression constante PA = 1,00 bar.  
 

Données :  
- Enthalpies massiques de fusion de l’eau à 1 bar :  ∆hfusion = 3,36.105 J.kg − 1 ;   
- Capacité thermique massique de l’eau liquide :  ce = 4,20.103 J.K−1.kg−1. 
- Capacité thermique massique de la glace :   cg = 2,06.103 J.K−1.kg−1. 
 

1- Quelle énergie faut-il fournir à ces 5 glaçons pour les transformer en eau liquide 
à une température TB = 25,0 °C et à la pression PB = 1,00 bar ? 

 

2- On réalise l’opération en plaçant les glaçons dans un erlenmeyer dont le fond est 

en contact avec une plaque chauffante de puissance P = 300 W. Quelle durée ∆t 
sera nécessaire pour réaliser l’opération si on considère que toute l’énergie four-
nie par la plaque sert à réaliser la transformation évoquée à la question 1- ?  

 

3- En réalité, on constate qu’il faut trois minutes pour réaliser l’opération. Justifier 
l’écart observé et calculer le rendement de la plaque chauffante.   

 

 

 EXERCICE 08 : 
 

Données :  
- Enthalpie massique de fusion de l’eau à 1 bar :   ∆hfusion = 3,36.105 J.kg − 1 ;   
- Enthalpie massique de vaporisation de l’eau à 1 bar :  ∆hvaporisation = 2,26.106 J.kg − 1. 
- Capacité thermique massique de l’eau liquide :   ce = 4,20.103 J.K−1.kg−1. 
- Capacité thermique massique de la glace :    cg = 2,06.103 J.K−1.kg−1. 
- Capacité thermique massique de la vapeur d’eau :  cV = 1,85.103 J.K−1.kg−1. 
 

Dans un récipient parfaitement calorifugé, on place une masse M = 1,00 kg 
d’eau liquide à la température T1 = 20,0 °C et une masse m = 500 g de glace à la 
température T2 = 0,00 °C. On travaille à la pression constante de 1,00 bar. 
 

1- La transformation étudiée est-elle adiabatique ?  

 

2- On suppose que dans l’état final, la totalité de l’eau est liquide. Déterminer la 
température TF de l’eau obtenue et montrer que le résultat n’est pas cohérent. 

 

3- On suppose que dans l’état final, seulement une partie de la glace a fondu. 

Déterminer la température TF de l’eau obtenue et la masse ml de glace qui a 

fondu (on notera ms la masse de glace qui n’a pas fondu). 

 
 

 EXERCICE 09 : 
 

Un récipient de taille variable et dont les parois sont athermanes contient une 
quantité de matière n de gaz parfait. On fait subir à ce gaz une transformation réversi-
ble le faisant passer de l’état (P0, V0, T0) à l’état (P1, V1, T1).  

Lors d’une telle transformation, le gaz suit l’équation de Laplace : P × V γ = Cte 

tout au long de la transformation (où γ est une constante sans dimension différente de 
1, appelée coefficient de Laplace). 
 
 

1- Donner l’expression de la pression P du système au cours de cette transforma-

tion en fonction de P0, V0 et γ. 
 
2- Montrer que le travail algébriquement reçu par le gaz au cours de cette transfor-

mation vaut W =  
�	
	 �  ��
�

� �  �
.  

 

3- En déduire l’expression de ce même travail en fonction de γ et des températures. 
 
4- En déduire l’expression de la capacité thermique à volume constant d’un gaz 

parfait en fonction de n, R et γ. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 


