TP Physique 06 BCPST 1C
Détermination d une capacité thermique et d une capacité thermique massique - CORRIGE

I- CAPACITE THERMIQUE C,l D’UN CALORIMETRE

wl- Le calorimétre n’étant pas idéal, ses parois internes réalisent des échanges thermiques avec 'eau froide
et 'eau chaude. Ainsi, si on étudiait le systéeme {eau froide + eau chaude}, on n’aurait aucun moyen de
calculer les transferts thermiques Q réalisés par ce systéme avec I'extérieur, dont les parois du calorimetre
feraient alors patrtie.

En incluant le calorimétre dans le systéme, les transferts thermiques Q entre le systéme et I'extérieur
deviennent nuls puisque les parois du calorimétre sont supposées parfaitement calorifugées (les échanges
thermiques réalisés entre I'eau et les parois internes du calorimétre ne sont en effet plus a considérer car ce
sont des échanges d’énergie entre parties du systéme et non avec 'extérieur de celui-ci).

w2- La transformation subie par le systéme, fermé, est monobare car la pression extérieure est constante.
D’autre part, le systéme est uniquement constitué de phases condensées (liquide et solide) pour lesquelles
on peut considérer que la pression est la méme que la pression extérieure, ce qui fait qu’on peut considérer
que le systéme est en équilibre mécanique dans I'état initial et dans I'état final. On peut donc appliquer le
premier principe de la thermodynamique sous la forme d’un bilan d’enthalpie :
AE, +AH =W’ + Q.
Avec : AE,, = variation d’énergie mécanigue macroscopique du systéme = 0 car le systeme est macrosco-
piguement au repos ;
AH = variation d’enthalpie du systeme ;
W’ = travaux (des forces autres que celles de pression) algébriquement regus par le systeme =0 car
il N’y a pas d’autres forces que celles de pression qui agissent sur le systéeme ;
Q = transferts thermiques algébriquement regus par le systeme = 0 car le calorimétre est parfaite-
ment calorifugé, empéchant tout transfert thermique avec I'extérieur.

Donc AH = 0.

Or, I'enthalpie est une grandeur extensive, donc la variation d’enthalpie AH du systéme est égale a la
somme des variations d’enthalpie de chaque partie du systéme :

AH = AH(eau froide) + AH(eau chaude) + AH(calorimétre)

|0 =My X Ceau X (TeE=T1) + My X Ceay X (TE=To) + Cea X (Te— T1)|

»3- On en déduit I'expression suivante de Ccy : co-oo- POt

m, X (Tp —Tp) +my x (T — Tp)| + _M=100g 5 m,=100g
Ccal = Ceau X T T : Tl = 20’0 C : T2 - 60,0 C :
—F l Te=350°C :

0,100 x (35 — 20) + 0,100 x (35 — 60)
20— 35

wd- On cherche une masse d’eau |, de capacité thermique massique Ceq, dont la capacité thermique Cgqay
serait la méme que celle du calorimétre C, ; autrement dit, C.y = Ceqy.

Or, par définition Ceay = [ X Ceau. On en déduit donc que p X Ceay = Ceal, SOit|U = Cear / Cead

279
" 4180

AN—> Cgy = 4180 x

soit Cca = 279 J/K

AN- u soitu=6,67.10"2kg = 66,7 g

w»5- ¢ Demi-étendues sur les masses déterminées avec une balance affichant un résultata 1 g pres :
a(m,) = a(m,) = 0,001 kg

» Demi-étendues sur les températures T, et Tr relevées graphiqguement a 'aide de LatisPro :
a(T]_) = a(T;:) =0,3°C

» Demi-étendues sur la température T, relevée a I'aide d’'un thermomeétre affichant un résultat a 0,1 °C prés :

a(T,)=0,1°C
®6- #Importation des bibliothéques utiles :
import numpy as np # Pour faire des calculs, des tableaux ...
import matplotlib.pyplot as plt # Pour tracer des graphiques
import numpy.random as rd # Pour générer des nombres aléatoires sous l'alias rd

# Définition des grandeurs physiques :




m1=0.100
m2 =0.100
T1=20
T2=60
TF=35
c_eau=4180

# Renseigner la valeur de la masse d'eau froide introduite (en kg)

# Renseigner la valeur de la masse d’eau chaude introduite (en kg)

# Renseigner la valeur de la température initiale de I'eau froide et du calorimetre (en °C)
# Renseigner la valeur de la température initiale de I'eau chaude (en °C)

# Renseigner la valeur de la température finale du systeme (en °C)

# Renseigner la valeur de la capacité thermique massique de I'eau (en J/K/kg)

# Définition des demi-étendues estimées :

a_m1=0.001
a_m2=0.001
a_T1=03
a_T2=0.1
a_TF=0.3

# Renseigner la valeur de la demi-étendue estimée pour la masse m1 (en kg)
# Renseigner la valeur de la demi-étendue estimée pour la masse m2 (en kg)
# Renseigner la valeur de la demi-étendue estimée pour la température T1 (en °C)
# Renseigner la valeur de la demi-étendue estimée pour la température T2 (en °C)
# Renseigner la valeur de la demi-étendue estimée pour la température TF (en °C)

# Saisie du nombre N d'expériences numériques a simuler pour la méthode de Monte-Carlo :

N =1000

# Renseigner le nombre d'expériences a simuler

# Tirage de valeurs des grandeurs physiques mesurées :

m1s=rd.uniform(m1-a_m1,m1+a_m1,N)
m2s=rd.uniform(m2-a_m2,m2+a_m2,N)
T1s=rd.uniform(T1-a_T1,T1+a_T1,N)
T2s=rd.uniform(T2-a_T2,T2+a_T2,N)
TFs=rd.uniform(TF-a_TF,TF+a_TF,N)

# Formule qui permet de simuler N valeurs de m1 dans l'intervalle [m1 —a(m1) ; m1 + a(m1)]
# Formule qui permet de simuler N valeurs de m2 dans l'intervalle [m2 — a(m2) ; m2 + a(m2)]
# Formule qui permet de simuler N valeurs de T1 dans l'intervalle [T1 —a(T1) ; T1 + a(T1)]
# Formule qui permet de simuler N valeurs de T2 dans l'intervalle [T2 - a(T2) ; T2 + a(T2)]
# Formule qui permet de simuler N valeurs de TF dans l'intervalle [TF — a(TF) ; TF + a(TF)]

# Formule pour calculer la capacité thermique C_cal du calorimétre a partir de ¢_eau et des valeurs simulées m1s, m2s, T1s, T2s et TFs :

C_cal = c_eau*(m1s*(TFs-T1s)+m2s*(TFs-T2s))/(T1s-TFs)

# Formule qui calcule la valeur moyenne de C_cal et son incertitude a partir des N expériences numériques aléatoires :

C_cal_moy=np.mean(C_cal)
u_C_cal=np.std(C_cal,ddof=1)

# Valeur moyenne des N valeurs simulées de C_cal
# Ecart-type des N valeurs simulées de C_cal

# Formule qui permet d’afficher la valeur moyenne de C_cal et son incertitude :

print('C_cal_moy=",C_cal_moy,'J/K')

print('u(C_cal)=",u_C_cal,'J/K)

# Affiche la valeur moyenne des N valeurs simulées de C_cal avec son unité

# Affiche I'écart-type des N valeurs simulées de C_cal avec son unité

w7- L’exécution du programme Python conduit au résultat suivant :

C_cal _moy= 279.3325066207917 J/K

u(C_cal)= 16.366965098703332 J/K

On conclue donc en écrivant C., = (279 +/- 17) J.K -1

II- CAPACITE THERMIQUE C, D’UN SOLIDE

»8- Par analogie avec la partie I-, il est ici conseillé d’étudier le systéme {eau + solide + calorimétre}.

w9- De méme que dans la partie |-, pour le systeme {eau + solide + calorimétre}, on a la relation :
AH = AH(eau) + AH(solide) + AH(calorimétre)
0=m3 X Ceay X (TF=T3) + Mc X Cs X (Te=Tc) + Cea X (Te—Ta)

»10- On en déduit I'expression suivante de cs :
_ (mg3 X Ceau + Ca) X (Tg — T3)

AN - Cg = —

Cg =

me X (Tg — T¢)

(0,200 x 4180 + 279) x (30 — 28)

0,072 x (30 — 66)

| ms=72g ; mMc=58¢
' T3=280°C ; Tc=66,0°C
' Teg=30,0°C (aluminium)

_____________________________

soitcg = 860 J. K~ 1. kg™!

w.11- #Importation des bibliothéques utiles

import numpy as np
import matplotlib.pyplot as plt
import numpy.random as rd

# Pour faire des calculs, des tableaux ...

# Pour tracer des graphiques

# Pour générer des nombres aléatoires sous l'alias rd

# Définition des grandeurs physiques :

m3 =0.200
mc = 0.072

# Renseigner la valeur de la masse d'eau présente dans le calorimeétre (en kg)
# Renseigner la valeur de la masse du cylindre métallique utilisé (en kg)



T3=28 # Renseigner la valeur de la température initiale de I'eau et du calorimétre (en °C)

Tc=66 # Renseigner la valeur de la température initiale du cylindre métallique (en °C)

TF=30 # Renseigner la valeur de la température finale du systeme (en °C)

c_eau =4180 # Renseigner la valeur de la capacité thermique massique de I'eau (en J/K/kg)

C_calo =279 # Renseigner la valeur de la capacité thermique du calorimétre (en JIK)

uC_calo=17 # Renseigner la valeur de I'incertitude obtenue sur la capacité thermique du calorimetre dans la partie I- (en J/K)

# Définition des demi-étendues estimées :

a_m3=0.001 # Renseigner la valeur de la demi-étendue estimée pour la masse m3 d'eau (en kg)

a_mc =0.001 # Renseigner la valeur de la demi-étendue estimée pour la masse mc du cylindre (en kg)

a_T3=03 # Renseigner la valeur de la demi-étendue estimée pour la température T3 (en °C)

a_Tc=01 # Renseigner la valeur de la demi-étendue estimée pour la température Tc (en °C)

a_TF=0.3 # Renseigner la valeur de la demi-étendue estimée pour la température TF (en °C)

a_C_calo = uC_calo™np.sqrt(3) # Renseigner la valeur de la demi-étendue estimée pour la capacité thermique C(calo) du calorimétre (en J/K)

# Saisie du nombre N d'expériences numériques a simuler pour la méthode de Monte-Carlo :
N =1000 # Renseigner le nombre d’expériences a simuler

# Tirage de valeurs des grandeurs physiques mesurées :

m3s=rd.uniform(m3-a_m3,m3+a_m3,N) # Formule qui permet de simuler N valeurs de m3 dans l'intervalle [n3 — a(m3) ; m3 + a(m3)]
mes=rd.uniform(mc-a_mc,mc+a_mc,N) # Formule qui permet de simuler N valeurs de mc dans l'intervalle [mc — a(mc) ; mc + a(mc)]
T3s=rd.uniform(T3-a_T3,T3+a_T3,N) # Formule qui permet de simuler N valeurs de T3 dans l'intervalle [T3 - a(T3) ; T3 + a(T3)]
Tes=rd.uniform(Tc-a_Tc,Tcta_Tc,N) # Formule qui permet de simuler N valeurs de Tc dans l'intervalle [Tc —a(Tc) ; Tc + a(Tc)]
TFs=rd.uniform(TF-a_TF,TF+a_TF,N) # Formule qui permet de simuler N valeurs de TF dans l'intervalle [TF — a(TF) ; TF + a(TF)]

C_calos=rd.uniform(C_calo-a_C_calo, C_calot+a_C_calo,N) # Formule qui permet de simuler N valeurs de C(calo) dans l'intervalle
[Ccalo — a(Ccalo) ; Ccalo + a(Ccalo)]

# Expression de la capacité thermique massique ¢_s du solide a partir de c_eau et des valeurs simulées m3s, mcs, T3s, Tcs TFs et C_calos :
c_s = -(m3s*c_eau+C_calos)*(TFs-T3s)/(mcs*(TFs-TcS))

# Formule qui calcule la valeur moyenne de c_s et son incertitude a partir des N expériences numériques aléatoires :
C_S_moy=np.mean(c_s) # Valeur moyenne des N valeurs simulées de ¢_s
u_c_s=np.std(c_s,ddof=1) # Ecart-type des N valeurs simulées de c_s

# Formule qui permet d’afficher la valeur moyenne de c_s et son incertitude :
print('c_s_moy=",c_s_moy, J/K/kg') # Affiche la valeur moyenne des N valeurs simulées de c_s avec son unité
print('u(c_s)=",u_c_s, J/IK/kg') # Affiche I'écart-type des N valeurs simulées de c_s avec son unité

w12- L'exécution du programme Python conduit au résultat suivant :

c_s_moy= 862.4383693612691 J/K/kg

u(c_s)= 107.96210203303023 1/K/kg

1

On conclue donc en écrivant cs = (8,6 +/- 1,1).102J. K~ 1.kg ™

w13- La capacité thermique massique théorique de I'aluminium vaut 897 J.K~*.kg~*. Pour comparer cette valeur
théorique a la valeur obtenue expérimentalement, on peut calculer I'écart normalisé entre ces deux valeurs,
ce qui conduit a:

cq(exp) — cq(théo c.(exp) — cq(théo
EN |cs(exp) — cg( )| coit EN — lcs(exp) — cs( )]

B Ju(cs(exp))? + u(cg(théo))? u(cs(exp))

car il 'y a a priori pas d’incertitude sur la capacité massique thermique théorique, ou, du moins, elle est
probablement négligeable par rapport a I'incertitude sur la capacité thermique massique expérimentale.

_ |8,6.10% — 897
- 1.102

P Cet écart normalisé inférieur a 2 témoigne d’un bon accord entre la valeur expérimentale et |la
valeur théorique.
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