Manipulation d'expressions algébriques

I. Fractions.

Rappel 1 Pour tous réels (complexes) a et b, pour tous réels (complexes) non nuls c et d: NE PAS CONFONDRE \times et +!! Exemples:

$$\frac{a+b}{c} = \frac{a \times c}{c} = \frac{a \times c}{c}$$

$$\frac{a \times b}{c} = \frac{a + c}{c} = \frac{a + c}{c}$$

Quand on somme , on met sur le PLUS PETIT dénominateur COMMUN. Exemples :

$$\frac{a}{c\,d} + \frac{b}{d} =$$

$$\frac{a}{c} + \frac{b}{2c} =$$

ATTENTION à la PLACE de = !! Exemples :

$$\frac{a}{\frac{1}{c}} = \frac{a}{\frac{c}{c}} = \frac{a}{c}$$

$$\frac{\frac{a}{1}}{c} = \frac{\frac{a}{c}}{1} = \frac{a}{1}$$

Exercice 1 Calculer (on donnera le résultat sous forme de fraction irréductible):

1.
$$\frac{2}{2+3} = \frac{2}{3} + \frac{4}{3} = \frac{2}{3} + \frac{5}{6} = \frac{1}{\frac{5}{3}} + \frac{1}{\frac{4}{6}} = \frac{1}{3}$$

$$\frac{2}{3} + \frac{4}{3} =$$

$$\frac{2}{3} + \frac{5}{6} =$$

$$\frac{1}{\frac{5}{3}} + \frac{1}{\frac{4}{6}} =$$

2.
$$\frac{4 \times 6 \times 9}{5 \times 8 \times 3} = \frac{\frac{2}{3}}{8} = \frac{\frac{2}{3}}{\frac{4}{3}} = \frac{\frac{7}{5}}{\frac{7}{3}} =$$

$$\frac{\frac{2}{3}}{8} =$$

$$\frac{\frac{7}{5}}{\frac{7}{2}} =$$

3.
$$5 \times \frac{2+3}{20} = \frac{3 \times 4 + 3 \times 7}{24} =$$

Exercice 2 Écrire sous forme de fraction irréductible :

$$A = \frac{1 + \frac{1}{2} - \frac{2}{3} \times 5}{1 - \frac{1}{2} + \frac{5}{3}}$$

Exercice 3 Simplifier les expressions suivantes (on n'étudiera pas les conditions d'existence):

1.
$$\frac{\frac{1}{a} + \frac{1}{b}}{\frac{1}{a} - \frac{1}{b}}$$

$$2. \ \frac{1}{1 - \frac{1}{2+x}}$$

Exercice 4 Mettre sous la forme d'un quotient :

1.
$$\frac{1}{2x} + \frac{1}{2x+2}$$

4.
$$\frac{2x-3}{x+1} + \frac{3}{x-1} - \frac{2x^2}{x^2-1}$$

$$2. \ \frac{1}{2x-2} - \frac{1}{x} + \frac{1}{2x+2}$$

5.
$$\frac{1}{x - \frac{1}{3 + \frac{x-2}{2}}}$$

$$3. \ \frac{\frac{x}{x-y} - \frac{y}{x+y}}{\frac{y}{x-y} + \frac{x}{x+y}}$$

II. Puissances.

Rappel 2 Formules à connaître et savoir utiliser. Pour tous réels (complexes) a et b (non nuls), pour tout entier naturel p et q,

$$a^{0} = 1$$

$$a^{p} \times b^{p} = (ab)^{p} \quad \left(\frac{a}{b}\right)^{p} = \frac{a^{p}}{b^{p}} \quad \frac{1}{a^{p}} = a^{-p}$$

$$a^{p} \times a^{q} = a^{p+q} \quad \frac{a^{p}}{a^{q}} = a^{p-q}$$

$$(a^{p})^{q} = a^{p \times q} = a^{q \times p} = (a^{q})^{p}$$

Exercice 5 Écrire à l'aide des puissances de 2 et 3 les nombres 6^5 et 36^3 .

Exercice 6 Simplifier:

1.
$$8^3 \times \frac{1}{4^2}$$

$$2. \ \frac{(4\times3)^{10}+4^9}{8^4}$$

$$3. \ \frac{27^{-1} \times 4^2}{3^{-4} \times 2^4}$$

Exercice 7 Soient a et b deux réels non nuls. Simplifier les expressions suivantes:

1.
$$\frac{a^{-4} b^3 a^3}{(a b^2)^{-2}}$$

$$2. \left(\frac{a^2}{b^3}\right)^{-4} \times \left(\frac{b^2}{a^3}\right)^{-3}$$

III. Identités remarquables.

Exercice 8 Compléter:

1.
$$(x^2+1)^2 = \ldots + \ldots + \ldots$$

3.
$$(\ldots - 5)(\ldots + \ldots) = x^6 - \ldots$$

2.
$$x^2 - 6x + \ldots = (x - \ldots)^2$$

4.
$$(a+b)^2 (a^2 - b^2) = (a-b) \times ...$$

Exercice 9 Développer et réduire l'expression l'expression suivante :

$$A = (3 - 4x)^{2} + 7(2x + 5)^{2} - 2(6x - 1)(6x + 1)$$

Exercice 10 Factoriser les expressions suivantes:

1.
$$(2-x)^2 - (3+2x)^2$$

5.
$$x^3 - 2x^2 + 2(4 - x^2)$$

2.
$$x^4 - 18x^2 + 81$$

6.
$$x^4 - (x-1)^4$$

3.
$$-x^2 + 2x - 1$$

7.
$$(x-2)$$
 $\left(x+\frac{3}{2}\right)+(2x+3)\left(x^2-4x+4\right)$

4.
$$2x^2 + 2x + \frac{1}{2}$$

IV. Manipulation de la racine carrée.

Exercice 11 Calculer:

1.
$$\sqrt{(-5)^2}$$

3.
$$\sqrt{(\sqrt{3}-2)^2}$$

2.
$$\sqrt{(\sqrt{3}-1)^2}$$

4.
$$\sqrt{(\sqrt{3}-a)^2}$$
, $a \in \mathbb{R}$.

Exercice 12 Calculer:

1.
$$(2\sqrt{5})^2$$

2.
$$(2+\sqrt{5})^2$$

3.
$$\left(\sqrt{2\sqrt{3}}\right)^4$$

Exercice 13 Calculer:

1.
$$(3+\sqrt{7})^2-(3-\sqrt{7})^2$$

4.
$$\left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}\right) \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}\right)$$

2.
$$(\sqrt{2} + \sqrt{3})^2 + (\sqrt{2} - \sqrt{3})^2$$

5.
$$\frac{1}{\sqrt{3}+\sqrt{2}} \frac{1}{\sqrt{3}-\sqrt{2}}$$

$$3. \left(\frac{5-\sqrt{2}}{\sqrt{3}}\right)^2$$

6.
$$\left(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\right)^2$$

Exercice 14 Calculer:

1.
$$\frac{\sqrt{2}-1}{\sqrt{2}+1}$$

2.
$$\frac{\sqrt{5} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$

$$3. \left(\frac{5\sqrt{2}}{\sqrt{3}+1}\right)^2$$

Exercice 15 Calculer:

1.
$$\frac{\sqrt{20} - 3\sqrt{5}}{\sqrt{8}\sqrt{10} - 5}$$

2.
$$\left(\sqrt{2^3 \times 9}\right)^{-1} \times \sqrt{\frac{81 \times 2^5}{100}}$$

Exercice 16 Mettre sous la forme $x + y\sqrt{3}$:

$$2 + \frac{2}{1 + \sqrt{3}} \qquad 1 + \frac{1}{1 + \frac{1}{1 + \sqrt{3}}}$$

Exercice 17 Pour tout réel x > 0, simplifier:

$$\frac{x}{\sqrt{x}} \qquad \frac{\sqrt{x}}{x} \qquad \frac{x^2}{x\sqrt{x}} \qquad \frac{x^3\sqrt{x}}{x^5} \qquad \frac{\sqrt{2x}}{x+\sqrt{x}}$$

V. Recherche de signe.

Signe de ax + b $(a \neq 0)$

• Si a > 0:

$$\begin{array}{c|cccc} x & -\infty & -\frac{b}{a} & +\infty \\ \hline ax+b & - & 0 & + \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array}$$

• Si a < 0:

$$\begin{array}{c|cccc} x & -\infty & -\frac{b}{a} & +\infty \\ \hline ax+b & + & 0 & - \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

ATTENTION: un tableau de signes donne le signe d'un PRODUIT et non d'une SOMME!!! Il faut donc penser à FACTORISER AVANT de faire un tableau de signes.

Exercice 18 Donner le signe de:

1.
$$(x+2)(3x-1)$$

2.
$$(x^2 - 3x + 2)^2 - (x^2 + 5x - 2)^2$$
 3. $\frac{(3 - 2x)^2 (x - 5)}{(7x - 1)(x - 1)^5}$

3.
$$\frac{(3-2x)^2(x-5)}{(7x-1)(x-1)^5}$$

Exercice 19 Résoudre les inéquations suivantes :

1.
$$3x + 2 \ge -1$$

3.
$$(x+2)(3x-1) < 0$$

2.
$$x+1 \ge -3x+2$$

4.
$$(x^2-3x+2)^2-(x^2+5x-2)^2 \le 0$$

Exercice 20 Résoudre dans \mathbb{R} l'inéquation : $\frac{x}{1+\frac{1}{x}} < 3$.

VI. Encadrements.

Règles à respecter pour encadrer :

deux opérations algébriques (addition et multiplication) et pas d'autres ! Monotonie d'une fonction.

- 1. ADDITION : rien à vérifier. On peut toujours additionner des encadrements.
- 2. PRODUIT: attention au signe!!
- 3. MONOTONIE d'une fonction : monotonie INTERVALLE antécédents DEDANS

Soient deux réels a et b tels que : 1 < a < 2 et -5 < b < -3.

Exercice 21 Encadrer:

1.
$$a + b$$

4.
$$3b - 2a$$

2.
$$3a + 2b$$

3.
$$a - b$$

6.
$$a(1-a)$$

Exercice 22 Encadrer:

1.
$$a^2$$

4.
$$\frac{1}{a}$$

6.
$$b^2$$

$$2. \sqrt{a}$$

3.
$$\sqrt{a-1}$$

5.
$$\sqrt{\frac{1}{a}}$$