Sommes et Produits

I. Sommes

I.a. Entraînement

Exercice 1 Calculer les sommes suivantes $(n \in \mathbb{N})$:

1.
$$\sum_{n=1}^{n+2} n$$

2.
$$\forall n \ge 1, \sum_{k=1}^{n} (3k+n-1).$$
 3. $\sum_{k=2}^{n+2} 7k$

3.
$$\sum_{k=2}^{n+2} 7k$$

4.
$$\forall n \geqslant 3, \sum_{k=2}^{n-1} \frac{k-4}{3}.$$

Exercice 2 Calculer les sommes suivantes $(n \in \mathbb{N})$:

1.
$$\forall n \ge 1, \sum_{k=1}^{n} k(k+1).$$
 2. $\sum_{k=0}^{n} 4k(k^2+2)$

2.
$$\sum_{k=0}^{n} 4k(k^2+2)$$

3.
$$\forall n \geqslant 3, \sum_{k=2}^{n-1} 3^k$$
.

4.
$$\sum_{k=0}^{n} 2^k 5^{n-k}$$
.

I.b. Changement d'indice

Exercice 3 Montrer que : $\forall n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} (k+1)\sqrt{n-k} = \sum_{i=0}^{n-1} (n-i+1)\sqrt{i}$$

Exercice 4 Calculer le sommes suivantes $(n \in \mathbb{N}^*)$ en utilisant le changement d'indice indiqué :

1.
$$\sum_{k=1}^{n} k 2^k$$
, $j = k - 1$

2.
$$\sum_{k=2}^{n+2} (k-2)^3$$
, $j=k-2$

I.c. Télescopage

Exercice 5 En remarquant que $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$, calculer $\sum_{k=1}^{13} \frac{1}{k(k+1)}$.

Exercice 6:

1. En remarquant que
$$\frac{2}{k(k+1)(k+2)} = \frac{1}{k} - \frac{2}{k+1} + \frac{1}{k+2}$$
, calculer $\sum_{k=1}^{n} \frac{2}{k(k+1)(k+2)}$.

2. Trouver trois réels a, b, c tels que: $\frac{k-5}{k(k^2-1)} = \frac{a}{k} + \frac{b}{k-1} + \frac{c}{k+1}, \forall k \geqslant 2.$

En déduire la valeur de la somme: $\sum_{k=0}^{n} \frac{k-5}{k(k^2-1)}$, pour tout entier $n \ge 2$.

Exercice 7 Montrer par récurrence que : pour tout entier naturel $n, \sum_{i=1}^{n} k k! = (n+1)! - 1$

Exercice 8 Soit un réel a, soit $n \in \mathbb{N}^*$. On pose $S_n = \sum ka^k$.

- 1. Calculer S_n lorsque a=1.
- 2. Lorsque $a \neq 1$, calculer $a S_n S_n$; en déduire la valeur de S_n .

II. Produits

Exercice 9 Calculer le produit : $\prod_{k=1}^{n} 5\sqrt{k} k$

II.a. Manipulation de factorielles

Exercice 10 Simplifier les expressions $(n \in \mathbb{N})$:

1.
$$\frac{1}{n!} - \frac{n}{(n+1)!}$$

2.
$$\frac{(n+1)!}{2^{2(n+1)}} - \frac{n!}{2^{2n}}$$

3.
$$\frac{1}{n!} + \frac{1}{2n(n+1)!} + \frac{1}{2(n+2)!}$$

II.b. Télescopage

Exercice 11 Pour tout entier naturel $n \ge 2$, calculer : $\prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right)$

Exercice 12:

1. Soit $n \in \mathbb{N}^*$, exprimer très simplement en fonction de n le produit:

$$P_n = \prod_{k=1}^n \left(1 + \frac{1}{k}\right) .$$

2. En déduire la somme $S_n = \sum_{k=1}^n \ln \left(1 + \frac{1}{k}\right)$.

Exercice 13 Soit $n \ge 2$. On pose: $P_n = \prod_{k=2}^{n} \frac{k^3 - 1}{k^3 + 1}$.

1. Montrer que $k^3 - 1 = (k-1)(k^2 + k + 1)$ et $k^3 + 1 = (k+1)(k^2 - k + 1)$. En déduire: $P_n = \frac{2}{n(n+1)} \prod_{k=2}^n \frac{k^2 + k + 1}{k^2 - k + 1}$.

2. En remarquant que $k^2 + k + 1 = (k+1)^2 - (k+1) + 1$, en déduire une simplification de P_n .