Lycée Pierre-Gilles de Gennes

2024-2025

BCPST2 – Mathématiques

${ m DM}$ $2-{ m \hat{A}}$ rendre le 04/11

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies. Les résultats, étapes importantes, ...doivent être mis en valeurs.

Exercice

On considère l'équation différentielle :

$$(E) \qquad x^2y'' + axy' + by = 0$$

où a et b sont des constantes réelles.

- 1. Étude des solutions sur $]0, +\infty[$.
 - (a) Soit y une solution de (E) sur $]0,+\infty[$. Montrer que $t\mapsto y(e^t)$ est solution d'une équation différentielle linéaire d'ordre 2 à coefficients constants qu'on précisera.
 - (b) Réciproquement, montrer que si z est solution de l'équation différentielle linéaire d'ordre 2 à coefficients constants déterminée ci-dessus alors $y: x \mapsto z(\ln(x))$ est solution de (E) sur $]0, +\infty[$.
 - (c) Pour (a, b) = (3, 1), en déduire l'ensemble des solutions de (E) sur $]0, +\infty[$.
 - (d) Même question pour (a, b) = (1, 4).
 - (e) Même question pour (a, b) = (1, -4).
- 2. Étude des solutions sur $]-\infty,0[$.
 - (a) Montrer que y est solution de (E) si et seulement si $t \mapsto y(-e^t)$ est solution d'une équation différentielle linéaire d'ordre 2 à coefficients constants à déterminer.
 - (b) Pour (a,b)=(1,-4) en déduire l'ensemble des solutions de (E) sur $]-\infty,0[$.
- 3. Dans cette question on prend (a,b)=(1,-4) et on considère y une solution de (E) sur \mathbb{R} .
 - (a) Justifier que y(0) = 0.
 - (b) Montrer qu'il existe des réels α, β, c, d tels que :

$$\forall x \in \mathbb{R}, \quad y(x) = \begin{cases} \alpha x^2 + \frac{\beta}{x^2} & \text{si } x > 0 \\ 0 & \text{si } x = 0 \\ cx^2 + \frac{d}{x^2} & \text{si } x < 0 \end{cases}$$

- (c) Justifier que y est continue et en déduire que $\beta=d=0.$
- (d) Justifier que si y est de classe C^2 alors $\alpha = c$.
- (e) Déterminer les solutions de (E) de classe C^2 sur \mathbb{R} .

Problème – Les polynômes de Hermite

On définie par récurrence une suite de polynômes $(H_n)_{n\in\mathbb{N}}$ par :

$$H_0 = 1$$
 ; $\forall n \in \mathbb{N}, H_{n+1} = XH_n - H'_n$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, H_n est de degré n et que sont coefficient dominant vaut 1.
- **2.** Montrer que pour tout $n \in \mathbb{N}$, $H'_{n+1} = (n+1)H_n$.

Pour tout $P \in \mathbb{R}[X]$, on pose :

$$I(P) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} P(x)e^{-\frac{x^2}{2}} dx.$$

- **3.** Justifier que I(1) converge et donner sa valeur.
- **4.** Soit $k \in \mathbb{N}^*$.
 - (a) Dresser le tableau de variation de $x \mapsto x^{k+2}e^{-\frac{x^2}{2}}$ sur $[0, +\infty[$.
 - (b) En déduire l'existence d'un réel M tel que :

$$\forall x > 0, \quad x^k e^{-\frac{x^2}{2}} \le \frac{M}{r^2}.$$

- (c) Montrer que l'intégrale $I(X^k)$ converge.
- 5. Montrer que l'intégrale I(P) est convergence pour tout polynôme $P \in \mathbb{R}[X]$ et que,

si
$$P = \sum_{k=0}^{n} a_k X^k$$
 on a:

$$I(P) = \sum_{k=0}^{n} a_k I(X^k).$$

6. Plus généralement, montrer que pour tout polynômes P_1, \ldots, P_k et tout réels $\lambda_1, \ldots, \lambda_k$ on a :

$$I(\sum_{i=1}^{k} \lambda_i P_i) = \sum_{i=1}^{k} \lambda_i I(P_i).$$

- 7. (a) Montrer que pour tout $P \in \mathbb{R}[X]$ et pour tout $n \in \mathbb{N}$, $I(PH_n) = I(P^{(n)}H_0)$. Indication : on pourra faire des IPP.
 - (b) En déduire que pour tout $n, p \in \mathbb{N}$ tels que $n \neq p$ on a : $I(H_n H_p) = 0$.
 - (c) Déduire de (a) la valeur de $I(H_n^2)$ pour tout $n \in \mathbb{N}$.
- 8. (a) Montrer que pour tout $n \in \mathbb{N}$, la famille (H_0, \ldots, H_n) est libre.

 Indication: on pourra, pour tout $i \in [0, n]$, calculer $I(PH_i)$ pour un polynôme P bien choisi et utiliser les questions $\boldsymbol{6}$ et $\boldsymbol{7}$.
- 9. Soit $n \in \mathbb{N}$. Le but de cette question est d'étudier les racines de H_n . On note p le nombre de racines réelles distinctes de H_n dont la multiplicité est impaire et a_1, \ldots, a_p ces racines. On définit alors le polynôme S par :

$$S = 1$$
 si $p = 0$ et $S = \prod_{i=1}^{p} (X - a_i)$ sinon.

- (a) Montrer que si p < n alors $I(SH_n) = 0$.
- (b) On admet que pour tout $x \in \mathbb{R}$, $S(x)H_n(x) \ge 0$. En déduire que H_n possède n racines réelles distinctes (de multiplicité 1).