Lycée Pierre-Gilles de Gennes

2024-2025

BCPST2 - Mathématiques

$\mathrm{DM}\ 2-\mathrm{\grave{A}}$ rendre le 04/11

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies. Les résultats, étapes importantes, ...doivent être mis en valeurs.

Exercice

On considère l'équation différentielle :

$$(E) \qquad x^2y'' + axy' + by = 0$$

où a et b sont des constantes réelles.

- 1. Étude des solutions sur $]0, +\infty[$.
 - (a) Soit y une solution de (E) sur $]0, +\infty[$. Et posons $z: t \mapsto y(e^t)$. La fonction exponentielle est deux fois dérivable sur \mathbb{R} à valeurs dans $]0, +\infty[$ et y est deux fois dérivable sur $]0, +\infty[$ donc par composée, z est deux fois dérivable sur \mathbb{R} .

Pour tout $t \in \mathbb{R}$ on a :

$$z'(t) = e^t y'(e^t)$$
 ; $z''(t) = e^{2t} y''(e^t) + e^t y'(e^t)$.

Comme y est solution de (E) sur $]0, +\infty[$ on a pour tout $t \in \mathbb{R}$:

$$e^{2t}y''(e^t) + ae^ty'(e^t) + by(e^t) = 0$$

c'est-à-dire

$$e^{2t}y''(e^t) + e^ty'(e^t) + (a-1)e^ty'(e^t) + by(e^t) = 0$$

ce qui s'écrit aussi :

$$z''(t) + (a-1)z'(t) + bz(t) = 0.$$

Ainsi z est solution de

$$(E') z'' + (a-1)z' + bz = 0.$$

(b) Réciproquement, soit z est une solution de (E') et posons $y:t\mapsto z(\ln(t))$. Montrons que y est solution de (E) sur $]0,+\infty[$.

Par composition, y est deux fois dérivable sur $]0, +\infty[$ et pour tout t > 0 on a :

$$y'(t) = \frac{1}{t}z'(\ln(t))$$
 ; $y''(t) = \frac{1}{t^2}z''(\ln(t)) - \frac{1}{t^2}z'(\ln(t))$.

Comme z est solution de (E') on a donc pour tout t > 0:

$$z''(\ln(t)) + (a-1)z'(\ln(t)) + bz(\ln(t)) = 0$$

c'est-à-dire :

$$z''(\ln(t)) - z'(\ln(t)) + az'(\ln(t)) + bz(\ln(t)) = 0$$

se qui s'écrit aussi :

$$t^2y''(t) + aty'(t) + by(t) = 0.$$

Ainsi y est bien solution de (E) sur $]0, +\infty[$.

Bilan des deux dernières questions : y est solution de (E) sur $]0, +\infty[$ si et seulement si $t \mapsto y(e^t)$ est solution de (E'). On peut formuler ça en disant que :

$$S_{(E)} \longrightarrow S_{(E')}$$

 $y \longmapsto (t \mapsto y(e^t))$

est une bijection dont la bijection réciproque est :

$$S_{(E')} \longrightarrow S_{(E)}$$

 $z \longmapsto (x \mapsto z(\ln x))$

où $\mathcal{S}_{(E)}$ et $\mathcal{S}_{(E')}$ désigne l'ensemble des solution de (E) sur $]0, +\infty[$ et de (E') sur \mathbb{R} respectivement.

(c) Déterminons les solutions de z'' + (a-1)z' + bz = 0 c'est-à-dire z'' + 2z' + z = 0. L'équation caractéristique est $x^2 + 2x + 1 = 0$ qui a comme racine double -1. Les solutions sont donc les fonctions de la forme :

$$z: t \mapsto Ce^{-t} + tDe^{-t}$$

où C, D sont des réels. Les solutions de (E) sont les fonctions de la forme :

$$y: x \in]0, +\infty[\mapsto Ce^{-\ln x} + \ln xDe^{-\ln x}] = \frac{C}{x} + D\frac{\ln x}{x}$$

où C, D sont des réels.

(d) Déterminons les solutions de z'' + (a-1)z' + bz = 0 c'est-à-dire z'' + 4z = 0. L'équation caractéristique est $x^2 + 4 = 0$ qui a comme racines complexes 2i et -2i. Les solutions sont donc les fonctions de la forme :

$$z: t \mapsto C\cos(2t) + D\sin(2t)$$

où C,D sont des réels. Les solutions de (E) sont les fonctions de la forme :

$$y: x \in]0, +\infty[\mapsto C\cos(2\ln x) + D\sin(2\ln x)$$

où C, D sont des réels.

(e) Déterminons les solutions de z'' + (a-1)z' + bz = 0 c'est-à-dire z'' - 4z = 0. L'équation caractéristique est $x^2 - 4 = 0$ qui a comme racines 2 et -2. Les solutions sont donc les fonctions de la forme :

$$z: t \mapsto Ce^{2t} + De^{-2t}$$

où C, D sont des réels. Les solutions de (E) sont les fonctions de la forme :

$$y: x \in]0, +\infty[\mapsto Ce^{2\ln x} + De^{-2\ln x} = Cx^2 + \frac{D}{x^2}]$$

où C, D sont des réels.

2. Étude des solutions sur $]-\infty,0[$.

(a) Soit y une solution de (E) sur $]-\infty,0[$. Et posons $z:t\mapsto y(-e^t)$.

La fonction exponentielle est deux fois dérivable sur \mathbb{R} à valeurs dans $]0, +\infty[$ et y est deux fois dérivable sur $]-\infty, 0[$ donc par composée, z est deux fois dérivable sur \mathbb{R} .

Pour tout $t \in \mathbb{R}$ on a :

$$z'(t) = -e^t y'(-e^t)$$
 ; $z''(t) = e^{2t} y''(-e^t) - e^t y'(-e^t)$.

Comme y est solution de (E) sur $]-\infty,0[$ on a pour tout $t\in\mathbb{R}$ (en prenant $x=-e^t)$:

$$e^{2t}y''(-e^t) - ae^ty'(-e^t) + by(-e^t) = 0$$

c'est-à-dire

$$e^{2t}y''(-e^t) - e^ty'(-e^t) + (a-1)(-e^t)y'(-e^t) + by(-e^t) = 0$$

ce qui s'écrit aussi :

$$z''(t) + (a-1)z'(t) + bz(t) = 0.$$

Ainsi z est solution de

$$(E') z'' + (a-1)z' + bz = 0.$$

Réciproquement, soit z est une solution de (E') et posons $y: x \mapsto z(\ln(-x))$ est solution de (E) sur $]-\infty,0[$.

Par composition, y est deux fois dérivable sur $]-\infty,0[$ et pour tout x<0 on a :

$$y'(x) = \frac{1}{x}z'(\ln(-x))$$
 ; $y''(x) = \frac{1}{x^2}z''(\ln(-x)) - \frac{1}{x^2}z'(\ln(-x))$.

Comme z est solution de (E') on a donc pour tout x < 0:

$$z''(\ln(-x)) + (a-1)z'(\ln(-x)) + bz(\ln(-x)) = 0$$

c'est-à-dire:

$$z''(\ln(-x)) - z'(\ln(-x)) + az'(\ln(-x)) + bz(\ln(-x)) = 0$$

se qui s'écrit aussi :

$$x^{2}y''(x) + axy'(x) + by(x) = 0.$$

Ainsi y est bien solution de (E) sur $]-\infty,0[$.

(b) Déterminons les solutions de z'' + (a-1)z' + bz = 0 c'est-à-dire z'' - 4z = 0. L'équation caractéristique est $x^2 - 4 = 0$ qui a comme racines 2 et -2. Les solutions sont donc les fonctions de la forme :

$$z: t \mapsto Ae^{2t} + Be^{-2t}$$

où A,B sont des réels. Les solutions de (E) sur] $-\infty,0[$ sont les fonctions de la forme :

$$y: x \in]-\infty, 0[\mapsto Ae^{2\ln(-x)} + Be^{-2\ln(-x)} = Ax^2 + \frac{B}{x^2}$$

où A, B sont des réels.

- 3. Dans cette question on prend (a,b) = (1,-4) et on considère y une solution de (E) sur \mathbb{R} .
 - (a) Pour tout $x \in \mathbb{R}$ on a :

$$x^{2}y''(x) + axy'(x) + by(x) = 0$$

donc en prenant x = 0 on obtient : y(0) = 0.

(b) y est solution sur \mathbb{R} donc en particulier sur $]0, +\infty[$. D'après la question 1.d, il existe donc α, β réels tels que :

$$\forall x > 0, \quad y(x) = \alpha x^2 + \frac{\beta}{x^2}.$$

y est solution sur $\mathbb R$ donc en particulier sur] $-\infty,0$ [. D'après la question 2.b, il existe donc c,d réels tels que :

$$\forall x < 0, \quad y(x) = cx^2 + \frac{d}{x^2}.$$

Ainsi:

$$\forall x \in \mathbb{R}, \quad y(x) = \begin{cases} \alpha x^2 + \frac{\beta}{x^2} & \text{si } x > 0 \\ 0 & \text{si } x = 0 \\ cx^2 + \frac{d}{x^2} & \text{si } x < 0 \end{cases}$$

(c) En tant que solution de (E) sur \mathbb{R} , y est dérivable deux fois sur \mathbb{R} donc en particulier continue.

Elle est en particulier continue en 0 donc on doit avoir :

$$\lim_{x \to 0^{-}} y(x) = \lim_{x \to 0^{+}} y(x) = y(0) = 0.$$

Cela oblige à ce que $\beta=d=0$ car sinon $\lim_{x\to 0^-}y(x)$ et $\lim_{x\to 0^+}y(x)$ serait infinie.

(d) On a donc:

$$\forall x \in \mathbb{R}, \quad y(x) = \begin{cases} \alpha x^2 & \text{si } x > 0 \\ 0 & \text{si } x = 0 \\ cx^2 & \text{si } x < 0 \end{cases}.$$

Donc pour tout $x \in \mathbb{R}^*$:

$$y''(x) = \begin{cases} 2\alpha & \text{si } x > 0 \\ 2c & \text{si } x < 0 \end{cases}.$$

Comme y" est continue en 0 on doit avoir $\alpha = c$ et finalement :

$$\forall x \in \mathbb{R}, \quad y(x) = \alpha x.$$

Remarque: pour tout $x \neq 0$ on a

$$y'(x) = \begin{cases} 2\alpha x & \text{si } x > 0 \\ 2cx & \text{si } x < 0 \end{cases}.$$

donc, comme y' est continue car dérivable nécessairement y'(0) = 0. En particulier :

$$\lim_{x \to 0^+} \frac{y'(x) - y'(0)}{x} = 2\alpha \quad \text{et} \quad \lim_{x \to 0^-} \frac{y'(x) - y'(0)}{x} = 2c$$

et comme y doit être deux fois dérivable sur $\mathbb R$ donc en particulier en 0 on doit avoir :

$$\alpha = c$$
.

Ainsi l'hypothèse C^2 n'est pas nécessaire!

(e) On vérifie réciproquement que les solutions de (E) de classe C^2 sur \mathbb{R} sont les fonctions de la forme $y \mapsto \alpha x^2$.

Problème – Les polynômes de Hermite

On définie par récurrence une suite de polynômes $(H_n)_{n\in\mathbb{N}}$ par :

$$H_0 = 1$$
 ; $\forall n \in \mathbb{N}, H_{n+1} = XH_n - H'_n$.

- 1. On procède par récurrence : pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n)$: « H_n est de degré n et que sont coefficient dominant vaut 1 »
 - Initialisation : $H_0 = 1$ donc $\mathcal{P}(0)$ est vraie.
 - **Hérédité**: soit $n \in \mathbb{N}$ et supposons $\mathcal{P}(n)$ vraie. Montrons que $\mathcal{P}(n+1)$ est vraie, c'est-à-dire que H_{n+1} est de degré n+1 et de coefficient dominant égale à 1.

On sait que:

$$H_{n+1} = XH_n - H_n'.$$

Or
$$\deg(XH_n) = \deg(X) + \deg(H_n) = n+1$$
 et $\deg(H'_n) = n-1$ donc :

$$H_{n+1} = X(X^n + \text{termes de degr\'e} \le n-1) + (\text{termes de degr\'e} \le n-1)$$

= $X^{n+1} + \text{termes de degr\'e} \le n$.

Donc H_{n+1} est de degré n+1 et de coefficient dominant égal à 1.

- Conclusion : par principe de récurrence, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.
- **2.** On procède par récurrence : pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n)$: « $H'_{n+1} = (n+1)H_n$ »
 - Initialisation : $H_1 = X$ et $H_0 = 1$ donc $\mathcal{P}(0)$ est vraie.

— **Hérédité**: soit $n \in \mathbb{N}$ et supposons $\mathcal{P}(n)$ vraie. Montrons que $\mathcal{P}(n+1)$ est vraie, c'est-à-dire que $H'_{n+2} = (n+2)H_{n+1}$. On sait, par hypothèse de récurrence, que :

$$H_{n+2} = XH_{n+1} - H'_{n+1} = XH_{n+1} - (n+1)H_n.$$

Donc en dérivant :

$$\begin{split} H'_{n+2} &= X H'_{n+1} + H_{n+1} - (n+1) H'_n \\ &= (n+1) X H_n + H_{n+1} - (n+1) H'_n \quad \text{par hypothèse de récurrence} \\ &= (n+1) (X H_n - H'_n) + H_{n+1} \\ &= (n+1) H_{n+1} + H_{n+1} \\ &= (n+2) H_{n+1}. \end{split}$$

Donc $\mathcal{P}(n+1)$ est vraie.

— Conclusion: par principe de récurrence, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.

Pour tout $P \in \mathbb{R}[X]$, on pose :

$$I(P) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} P(x)e^{-\frac{x^2}{2}} dx.$$

- **3.** D'après le cours, on sait I(1) converge et : $\int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}.$ Donc I(1) = 1.
- **4.** Soit $k \in \mathbb{N}^*$.
 - (a) Notons f la fonction définie sur $[0, +\infty[$ par :

$$\forall x \ge 0, \quad f(x) = x^{k+2} e^{-\frac{x^2}{2}}.$$

Il s'agit d'une fonction dérivable sur $[0, +\infty[$ par produit et composition de fonctions dérivables. De plus, pour tout $x \ge 0$ on a :

$$f'(x) = (k+2)x^{k+1}e^{-\frac{x^2}{2}} - x \times x^{k+2}e^{-\frac{x^2}{2}} = x^{k+1}e^{-\frac{x^2}{2}} \left(k+2-x^2\right).$$

On a donc pour tout $x \geq 0$:

$$f'(x) > 0 \Longleftrightarrow 0 < x < \sqrt{k+2}$$

et

$$f'(x) = 0 \iff x = 0$$
 ou $x = \sqrt{k+2}$.

On en déduit le tableau de variation suivant :

x	0		$\sqrt{k+2}$	-	$+\infty$
Signe de $f'(x)$	0	+	0	_	
$\begin{array}{c} \text{Variations} \\ \text{de } f \end{array}$	/				/

(b) D'après le tableau de variation, on a, en posant $M = f(\sqrt{k+2})$:

$$\forall x > 0, \quad x^{k+2} e^{-\frac{x^2}{2}} < M.$$

D'où, en divisant membre à membre par x^2 (pour x > 0) :

$$\forall x > 0, \quad x^k e^{-\frac{x^2}{2}} \le \frac{M}{x^2}.$$

- (c) L'intégrale $I(X^k)$ est généralisée en $-\infty$ et $+\infty$.
 - Étude de $\int_0^{+\infty} x^k e^{-\frac{x^2}{2}} dx$. La fonction $x \mapsto x^k e^{-\frac{x^2}{2}}$ est continue et positive sur $[0, +\infty[$. D'après la question précédente :

$$\forall x \in]0, +\infty[, \quad x^k e^{-\frac{x^2}{2}} \le \frac{M}{x^2}.$$

Comme l'intégrale $\int_0^{+\infty} \frac{M}{x^2} dx$ est doublement généralisée (et divergente !), on ne va pas travailler directement sur $[0, +\infty[$ mais sur $[1, +\infty[$.

L'intégrale $\int_1^{+\infty} \frac{M}{x^2} dx$ est convergente et l'intégrande est continue positif sur $[1, +\infty[$. Donc, par comparaison pour les intégrales de fonctions continues positives, on peut conclure que

$$\int_{1}^{+\infty} x^{k} e^{-\frac{x^{2}}{2}} dx \qquad \text{converge.}$$

Par ailleurs, $\int_0^1 x^k e^{-\frac{x^2}{2}} dx$ n'est pas généralisée donc par Chasles, on en déduit que

$$\int_0^{+\infty} x^k e^{-\frac{x^2}{2}} dx \qquad \text{converge.}$$

- Étude de $\int_{-\infty}^{0} x^k e^{-\frac{x^2}{2}} dx$.
 - $M\acute{e}thode\ 1$: l'intégrande est pair ou impair selon que k est pair ou impair. Une propriété de cours permet de conclure que, comme $\int_0^{+\infty} x^k e^{-\frac{x^2}{2}} dx$ converge alors $\int_{-\infty}^0 x^k e^{-\frac{x^2}{2}} dx$ converge aussi.
 - Méthode 2 : pour tout x < 0 on a :

$$|x^k e^{-\frac{x^2}{2}}| = |x|^k e^{-\frac{|x|^2}{2}} \le \frac{M}{|x|^2} = \frac{M}{x^2}.$$

On montre alors, exactement de la même façon que pour $\int_0^{+\infty} x^k e^{-\frac{x^2}{2}} dx$, que $\int_{-\infty}^0 |x^k e^{-\frac{x^2}{2}}| dx$ est convergente.

La convergence absolue impliquant la convergence, on en déduit que $\int_{-\infty}^0 x^k e^{-\frac{x^2}{2}} dx$ est convergente.

- Conclusion : les intégrales $\int_{-\infty}^{0} x^k e^{-\frac{x^2}{2}} dx$ et $\int_{0}^{+\infty} x^k e^{-\frac{x^2}{2}} dx$ sont convergentes donc $I(X^k)$ l'est.
- 5. Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{R}[X]$. Comme pour tout $k \in \mathbb{N}$, $I(X^k)$ converge alors par linéarité de l'intégrale $I(\sum_{k=0}^{n} a_k X^k)$ converge et on a :

$$I(P) = \sum_{k=0}^{n} a_k I(X^k).$$

6. Soient P_1, \ldots, P_k des polynômes et $\lambda_1, \ldots, \lambda_k$ des réels. Comme toutes les intégrales en question convergent d'après la question précédente, on a par linéarité :

$$I(\sum_{i=1}^{k} \lambda_i P_i) = \sum_{i=1}^{k} \lambda_i I(P_i).$$

- 7. (a) On procède par récurrence : pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n)$: « pour tout $P \in \mathbb{R}[X]$, $I(PH_n) = I(P^{(n)}H_0)$ ».
 - Initialisation : $H_0 = 1$ donc $\mathcal{P}(0)$ est vraie.
 - **Hérédité** : soit $n \in \mathbb{N}$ et supposons $\mathcal{P}(n)$ vraie. Soit $P \in \mathbb{R}[X]$ et montrons que :

$$I(PH_{n+1}) = I(P^{(n+1)}H_0)$$

On a:

$$I(PH_{n+1}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} P(x)H_{n+1}e^{-\frac{x^2}{2}}dx$$

On remarque que:

$$\frac{d(H_n(x)e^{-\frac{x^2}{2}})}{dx} = (H'_n(x) - xH_n(x))e^{-\frac{x^2}{2}} = -H_{n+1}(x)e^{-\frac{x^2}{2}}.$$

Ainsi $x \mapsto -H_n(x)e^{-\frac{x^2}{2}}$ est une primitive de $x \mapsto H_{n+1}(x)e^{-\frac{x^2}{2}}$.

Par intégration par parties : comme toutes les intégrales en jeu convergent, que $\lim_{x\to\pm\infty}P(x)H_n(x)e^{-\frac{x^2}{2}}=0$ et que P et $x\mapsto -H_n(x)e^{-\frac{x^2}{2}}$ sont de classe C^1 sur \mathbb{R} , on a :

$$I(PH_{n+1}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} P(x)H_{n+1}(x)e^{-\frac{x^2}{2}}dx = -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} P'(x) \times (-H_n(x)e^{-\frac{x^2}{2}})dx$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} P'(x)H_n(x)e^{-\frac{x^2}{2}}dx.$$

En appliquant l'hypothèse de récurrence avec le polynôme P' on obtient alors :

$$I(PH_{n+1}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} P'(x)H_n(x)e^{-\frac{x^2}{2}}dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (P')^{(n)}(x)H_0(x)e^{-\frac{x^2}{2}}dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (P)^{(n+1)}(x)H_0(x)e^{-\frac{x^2}{2}}dx$$

Donc $\mathcal{P}(n+1)$ est vraie.

- Conclusion : par principe de récurrence, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.
- (b) Soit $n, p \in \mathbb{N}$ tels que $n \neq p$.
 - si n < p, alors d'après la question précédente (au rang p et avec $P = H_n$) on a :

$$I(H_nH_p) = I(H_n^{(p)}H_0).$$

Or $\deg(H_n) = n < p$ donc $H_n^{(p)} = 0$ et par conséquent :

$$I(H_n H_p) = I(H_n^{(p)} H_0) = I(0) = 0.$$

— si n > p on utilise la question précédente (au rang n et avec $P = H_p$) on a :

$$I(H_pH_n) = I(H_p^{(n)}H_0) = 0$$
 car $H_p^{(n)} = 0$.

(c) Soit $n \in \mathbb{N}$. D'après la question (a) on a :

$$I(H_n^2) = I(H_n^{(n)}H_0).$$

Or d'après la question 1, on sait que :

$$H_n = X^n + (\text{termes de degré } < n).$$

Donc:

$$H'_n = nX^{n-1} + (\text{termes de degré} < n-1)$$

et en dérivant successivement :

$$H_n^{(n)} = n! + 0 = n!.$$

Donc finalement avec les questions 3 et 6 :

$$I(H_n^2) = n!I(1) = n!.$$

8. (a) Soit $\lambda_0, \ldots, \lambda_n$ des scalaires tels que :

$$(*) \qquad \sum_{k=0}^{n} \lambda_i H_i = 0.$$

Montrons que ces scalaires sont tous nuls.

En multipliant par H_n on obtient :

$$\sum_{k=0}^{n} \lambda_i H_i H_n = 0$$

puis avec les questions 6 et 7:

$$0 = I(0) = I(\sum_{k=0}^{n} \lambda_i H_i H_n) = \sum_{k=0}^{n} \lambda_i I(H_i H_n)$$
$$= \lambda_n n!$$

car d'après la question 7, $I(H_iH_n) = 0$ pour tout $i \in [0, n-1]$. Ainsi $\lambda_n = 0$.

La relation (*) devient alors :

$$\sum_{k=0}^{n-1} \lambda_i H_i = 0.$$

En multipliant cette fois par H_{n-1} et en appliquant I on obtient de même :

$$\lambda_{n-1}(n-1)! = 0$$
 donc $\lambda_{n-1} = 0$.

En répétant successivement pour $n-2,\ldots,0$ on obtient alors :

$$\lambda_n = \lambda_{n-1} = \dots = \lambda_0 = 0.$$

Donc la famille (H_0, \ldots, H_n) est libre.

9. Soit $n \in \mathbb{N}$. Le but de cette question est d'étudier les racines de H_n .

On note p le nombre de racines réelles distinctes de H_n dont la multiplicité est **impaire** et a_1, \ldots, a_p ces racines. On définit alors le polynôme S par :

$$S = 1$$
 si $p = 0$ et $S = \prod_{i=1}^{p} (X - a_i)$ sinon.

(a) Supposons que p < n. Alors le degré de S (qui est p) est inférieur strictement à n donc $S^{(n)} = 0$ et la question 7 donne alors :

$$I(SH_n) = I(S^{(n)}H_0) = I(0) = 0.$$

(b) On admet que pour tout $x \in \mathbb{R}$, $S(x)H_n(x) \geq 0$.

Supposons que p < n. Alors d'après la question précédente et le résultat admis on a :

- pour tout
$$x \in \mathbb{R}$$
, $S(x)H_n(x)e^{-\frac{x^2}{2}} \ge 0$,
- $\int_{-\infty}^{+\infty} S(x)H_n(x)e^{-\frac{x^2}{2}}dx = 0$.

Donc la fonction continue $x \mapsto S(x)H_n(x)e^{-\frac{x^2}{2}}$ est positive d'intégrale nulle. Ainsi :

$$\forall x \in \mathbb{R}, \quad S(x)H_n(x)e^{-\frac{x^2}{2}} = 0$$

donc

$$\forall x \in \mathbb{R}, \quad S(x)H_n(x) = 0.$$

Cela est une contradiction car SH_n n'est pas le polynôme nul.

Ainsi p = n. Le polynôme H_n possède donc n racines réelles de multiplicité impaire. Comme il est de degré n, il ne peut en voir d'autre.