Lycée Pierre-Gilles de Gennes

2024-2025

Mathématiques - TD11

VARIABLES À DENSITÉ

Exercice 1. Dans chaque cas, déterminer si la variable aléatoire X dont la fonction de répartition est donnée est à densité ou non. Déterminer une densité le cas échéant.

1.
$$\forall x \in \mathbb{R}$$
, $F_X(x) = \begin{cases} 0 & \text{si } x < 0 \\ x^3 & \text{si } x \in [0, 1] \\ 1 & \text{si } x > 1 \end{cases}$.

2.
$$\forall x \in \mathbb{R}$$
, $F_X(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 - (1 - x)^{\frac{4}{3}} & \text{si } x \in [0, 1] \\ 1 & \text{si } x > 1 \end{cases}$.

Exercice 2 (Loi de Laplace). Soit $c \in \mathbb{R}$, on considère la fonction f définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f(x) = ce^{-|x|}.$$

- 1. Déterminer les valeurs de c pour les quelles f est une densité d'une variable aléatoire X.
- 2. Pour ces valeurs, déterminer la fonction de répartition de X.
- 3. Montrer que X possède une espérance et la calculer.
- 4. Même question pour la variance.

Exercice 3. Soit c une constante réelle et f la fonction de variable réelle définie par

$$f = c. \left(\frac{1}{2}\mathbf{1}_{[0,\frac{1}{3}[} + \mathbf{1}_{[\frac{1}{3},\frac{2}{3}]} + 2\mathbf{1}_{]\frac{2}{3},1]}\right)$$

- 1. Déterminer c pour que f soit une densité de probabilité.
- 2. Calculer la fonction de répartition d'une variable aléatoire réelle X ayant pour densité f.
- 3. Le nombre X tiré au hasard a-t-il plus de chances d'être $> \frac{2}{3}$ ou d'être $\le \frac{2}{3}$?

Exercice 4. Soit f la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} 0 & \text{si } x < 0 \\ \frac{2}{(1+x)^3} & \text{si } x \ge 0 \end{cases}.$$

- 1. Montrer que f est une densité d'une variable aléatoire X dont on donnera la fonction de répartition.
- 2. La variable X possède-t-elle une espérance? une variance? si oui, calculer les.

Exercice 5 (Loi de Cauchy). Soit f la fonction définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \quad f(x) = \frac{1}{\pi(1+x^2)}.$$

- 1. Montrer que f est une densité de probabilité. Dans la suite, X désigne une variable aléatoire de densité f (on dit que X suit la loi de Cauchy).
- 2. Déterminer la fonction de répartition de X.
- 3. La variable X admet-elle une espérance? Une variance?
- 4. Soit U de loi uniforme sur]0,1[.
 - (a) Montrer que F_X est une bijection et déterminer F_X^{-1} .
 - (b) Déterminer la loi de $F_X^{-1}(U)$.
 - (c) En déduire une fonction Python simulant la variable aléatoire X.

Exercice 6. Déterminer si la fonction f suivante est une densité de probabilité sur \mathbb{R} . Si c'est le cas, calculer la fonction de répartition F_X d'une v.a.r. X ayant f pour densité et déterminer $\mathbb{E}(X)$ si celle-ci existe. Préciser un segment de valeurs prises par X avec probabilité 1.

$$\forall x \in \mathbb{R}, \quad f(x) = \cos(x).\mathbf{1}_{\left[0, \frac{\pi}{2}\right]}(x).$$

Exercice 7. Dans chaque cas, déterminer la fonction de répartition de Y, vérifier si Y est à densité ou non et déterminer une densité le cas échéant.

1. Soit X une variable aléatoire suivant une loi exponentielle de paramètre $\lambda > 0$.

(a)
$$Y = \sqrt{X}$$
. (b) $Y = X^3$. (c) $Y(\omega) = \begin{cases} \frac{1}{X(\omega)} & \text{si } X(\omega) \neq 0 \\ 0 & \text{sinon} \end{cases}$.

Dans les cas (a) et (b), déterminer si l'espérance existe.

2. $Y = X^2$ et X suit la loi :

(a)
$$\mathcal{U}([0,1])$$
. (b) $\mathcal{N}(0,1)$.

Exercice 8.

1. Soit U une variable aléatoire à densité de loi uniforme sur [0,1]. On pose :

$$\forall \omega \in \Omega, \quad E(\omega) = \begin{cases} -\ln(U(\omega)) & \text{si } U(\omega) \neq 0 \\ 0 & \text{sinon} \end{cases}$$

Déterminer la loi de E.

- 2. Soit X une variable aléatoire de loi $\mathcal{N}(0,\sigma^2)$. Quelle est la loi de -X?
- 3. Soit X une variable aléatoire de loi exponentielle de paramètre $\lambda > 0$. Quelle est la fonction de répartition de -X? Sa loi?

Exercice 9. Pour tout nombre réel x, on note [x] la partie entière de x, c'est-à-dire l'unique nombre entier vérifiant : $[x] \le x < [x] + 1$.

Soit X la variable aléatoire suivant la loi exponentielle de paramètre λ ($\lambda > 0$).

On pose Y = [X]. La variable Y est donc la partie entière de X et on a :

$$\forall k \in \mathbb{Z} \quad [Y = k] = [k \leqslant X < k+1].$$

- 1. (a) Montrer que Y prend ses valeurs dans \mathbb{N} .
 - (b) Pour tout k de \mathbb{N}^* , calculer $\mathbb{P}(Y = k 1)$.
 - (c) En déduire que la variable aléatoire Y+1 suit une loi géométrique dont on donnera le paramètre.

- (d) Donner l'espérance et la variance de Y+1. En déduire l'espérance et la variance de Y.
- 2. On pose Z = X Y.
 - (a) Déterminer les valeurs prises par Z.
 - (b) En utilisant le système complet d'évènements $([Y = k])_{k \in \mathbb{N}}$, montrer que :

$$\forall x \in [0, 1[, \quad \mathbb{P}(Z \leqslant x) = \frac{1 - e^{-\lambda x}}{1 - e^{-\lambda}}.$$

- (c) En déduire une densité f de Z.
- (d) Déterminer l'espérance $\mathbb{E}(Z)$ de Z.

Exercice 10. Soit g la fonction définie sur \mathbb{R} par :

$$g(x) = \begin{cases} 0 & \text{si } x < 0, \\ xe^{-x} & \text{si } x \geqslant 0. \end{cases}$$

- 1. Montrer que g est dérivable sur $]-\infty,0[$ et sur $]0,+\infty[$. Est-elle continue en 0? Est-elle dérivable en 0?
- (a) Montrer que la fonction g est une densité de probabilité. On note Y une variable aléatoire dont une densité est la fonction g, et dont la fonction de répartition est notée G.
 - (b) Sans calcul, justifier que la fonction G est de classe C^1 sur \mathbb{R} .
 - (c) Montrer que pour tout réel x,

$$G(x) = \begin{cases} 0 & \text{si } x < 0, \\ 1 - e^{-x}(1+x) & \text{si } x \ge 0. \end{cases}$$

- (d) Montrer que la variable aléatoire Y admet une espérance, que l'on calculera.
- 3. On considère la variable aléatoire $Z = e^Y$.
 - (a) Déterminer la fonction de répartition notée H de la variable aléatoire Z.
 - (b) En déduire que Z est une variable aléatoire à densité et déterminer une densité de Z.
 - (c) La variable aléatoire Z admet-elle une espérance?

Exercice 11. Soit $n \in \mathbb{N}^*$, on considère la fonction $f_n : \mathbb{R} \to \mathbb{R}$ définie par

$$f_n(x) = \begin{cases} c_n \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0, n[\\ 0 & \text{sinon} \end{cases}$$

- 1. Déterminer c_n pour que f_n soit une densité de probabilité.
- 2. Soit X_n une variable aléatoire ayant pour densité f_n . Montrer que pour tout $k \in \mathbb{N}$,

$$\mathbb{E}(X_n^k) = \frac{n^k}{\binom{n+k+1}{k}}$$

3. Trouver F_n la fonction de répartition de X_n .

- 4. Déterminer F(x), la limite, si elle existe, de $F_n(x)$ lorsque $n \to +\infty$ et $x \in \mathbb{R}$ est fixé.
- 5. Montrer que F ainsi définie est une fonction de répartition d'une variable aléatoire réelle à densité.

Exercice 12.

- 1. Déterminer la loi du maximum de 2 variables aléatoires indépendantes X_1 et X_2 suivant la loi uniforme sur [0,1].
- 2. Soient $X_1, ..., X_n$ avec $n \geq 2$ des variables aléatoires mutuellement indépendantes de loi $\mathcal{E}(\lambda)$ avec $\lambda > 0$. Déterminer la loi de $\min(X_1, ..., X_n)$.

Exercice 13. Soit X, Y deux variables aléatoires indépendantes définies sur le même espace probabilisé et suivant une loi exponentielle de paramètre λ . Donner une densité de X+Y.

Exercice 14 (Loi de Cauchy). Soit $f: \mathbb{R} \to \mathbb{R}$ définie par

$$\forall x \in \mathbb{R}, \ f(x) = \frac{1}{\pi} \frac{1}{1+x^2}.$$

D'après exercice précédent, on sait que f est une densité de probabilité.

On considère X et Y deux variables aléatoires indépendantes de densité f. O

On pose
$$Z = \frac{1}{2}(X + Y)$$
.

Démontrer, en utilisant la formule de convolution, que Z suit la même loi que X. Indication: on écrira, pour $x, s \in \mathbb{R}$, $s \neq 0$,

$$\frac{1}{1+x^2} \frac{1}{1+(s-x)^2} = \frac{1}{s \cdot (s^2+4)} \left(\frac{2x+s}{1+x^2} + \frac{2(s-x)+s}{1+(s-x)^2} \right).$$

Exercice 15. Montrer (par récurrence) que si $X_1,...,X_n$ sont indépendantes de même loi $\mathcal{E}(1)$, alors $S_n = X_1 + \cdots + X_n$ est à densité, une densité étant donnée par :

$$\forall s \in \mathbb{R}, \quad f_n(s) = \frac{1}{(n-1)!} s^{n-1} e^{-s} \mathbf{1}_{\mathbb{R}_+}(s).$$

Quelle est l'espérance de S_n , sa variance?

Exercice 16. Soient X et Y deux variables aléatoires réelles indépendantes et S = X + Y, leur somme.

En appliquant la formule du produit de convolution, que l'on rappellera, donner la loi de S dans les cas

- 1. $X, Y \hookrightarrow \mathcal{U}([-1,1])$;
- 2. $X, -Y \hookrightarrow \mathcal{E}(\lambda)$:
- 3. X et Y ont pour densités respectives

$$f_X: x \mapsto \frac{1}{(p-1)!} x^{p-1} e^{-x} \mathbf{1}_{\mathbb{R}_+} \quad \text{et} \quad f_Y: y \mapsto \frac{1}{(q-1)!} y^{q-1} e^{-y} \mathbf{1}_{\mathbb{R}_+}(y),$$

où $p, q \in \mathbb{N}^*$.

Exercice 17. Soit X une variable aléatoire positive à densité de densité f. On suppose que f est continue.

1. Soit A > 0. Montrer:

$$\int_0^A t f(t) dt = \int_0^A P(X > t) dt + A(F_X(A) - 1).$$

2. En déduire que X possède une espérance si et seulement si $\int_0^{+\infty} P(X>t)dt$ converge auquel cas :

$$\mathbb{E}(X) = \int_0^{+\infty} P(X > t) dt.$$