CONTINUITÉ ET DÉRIVABILITÉ

Toutes les fonctions considérées sont à valeurs dans \mathbb{R} .

3.1 Continuité

3.1.1 Définition

Définition 3.1 (Continuité)

Soit f une fonction définie sur un intervalle I et soit $a \in I$.

1. On dit que f est continue en a si :

$$\lim_{x \to a} f(x) = f(a).$$

2. On dit que f est continue sur I si elle est continue en tout point de I.

Méthode 3.1 (Montrer qu'une fonction est continue)

- 1. En général, pour montrer qu'une fonction est continue sur un intervalle I on utilise :
 - les connaissances sur la continuité des fonctions usuelles;
 - le fait que la somme, le produit, le quotient (quand le dénominateur ne s'annule pas), la composée de fonctions continues sont continues.
- 2. Dans certains cas, on est obligé de revenir à la définition et d'étudier la limite de la fonction en certains points.

3.1.2 Résultats fondamentaux

Théorème 3.0 (Résultats fondamentaux)

1. **Prolongement par continuité :** si f est définie sur $I \setminus \{a\}$ et admet une limite finie ℓ en a alors la fonction g définie sur I par :

$$\forall x \in I, \quad g(x) = \begin{cases} f(x) & \text{si } x \neq a \\ \ell & \text{si } x = a \end{cases}$$

est continue en a.

- 2. **Théorème des bornes atteintes :** soit f un fonction continues sur un segment [a,b]. Alors f est bornée sur [a,b] et atteint ses bornes.
- 3. Théorème des valeurs intermédiaires : soit f une fonction continue sur un intervalle I et soit $(a,b) \in I^2$ avec $a \leq b$. Alors pour tout réel c compris entre f(a) et f(b) il existe un $x_0 \in [a,b]$ tel que $f(x_0) = c$.
- 4. **Théorème de la bijection :** soit f une fonction continue et strictement monotone sur un intervalle I. Alors f(I) est un intervalle, f réalise une bijection de I sur f(I) et sa bijection réciproque est continue et strictement monotone sur f(I), de même sens de monotonie que f.

3.2 Dérivabilité

3.2.1 Définition

Définition 3.2

Soit f une fonction définie sur un intervalle I et $a \in I$.

1. On dit que f est **dérivable en** a si la limite suivante existe et est finie : $\lim_{x\to a}\frac{f(x)-f(a)}{x-a}.$

Dans ce cas cette limite est appelé le nombre dérivé de f en a et noté f'(a).

- 2. La fonction f est dite **dérivable sur** I si elle est dérivable en tout point de I.
- 3. La fonction f est dite de classe C^k sur I si elle est k fois dérivable sur I et de dérivée k-ième continue.

Méthode 3.2 (Montrer qu'une fonction est dérivable/ \mathcal{C}^k)

- 1. En général, pour montrer qu'une fonction est dérivable $/\mathcal{C}^k$ sur un intervalle I on utilise :
 - les connaissances sur la dérivabilité des fonctions usuelles;
 - le fait que la somme, le produit, le quotient (quand le dénominateur ne s'annule pas), la composée de fonctions, la bijection réciproque de fonctions dérivables/ \mathcal{C}^k sont dérivables/ \mathcal{C}^k .
- 2. Dans certains cas, on est obligé de revenir à la définition et d'étudier la limite du taux d'accroissement.

3.2.2 Formulaire

Fonction	Dérivée	sur tout I tel que :
u+v	u' + v'	u et v dérivables sur I
$\lambda u, \lambda \in \mathbb{R}$	$\lambda u'$	u dérivable sur I
uv	u'v + v'u	u et v dérivables sur I
$\frac{u}{v}$	$\frac{u'v - v'u}{v^2}$	u et v dérivables sur I et v ne s'annule pas sur I
$\frac{1}{v}$	$-\frac{v'}{v^2}$	v dérivable et ne s'annule pas sur I
$u \circ v$	$v'\times (u'\circ v)$	v dérivable sur I et u dérivable sur $v(I)$
u^{-1}	$\frac{1}{u' \circ u^{-1}}$	u dérivable et sa dérivée ne s'annule pas sur $u^{-1}(I)$
$u^a, a \in \mathbb{R}$	$au'u^{a-1}$	u dérivable et strictement positive sur I

Table 3.1 – Formules de dérivation

Fonction	Dérivée	sur
e^x	e^x	\mathbb{R}
$\ln(x)$	$\frac{1}{x}$	$]0,+\infty[$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$]0,+\infty[$
$x^n, n \in \mathbb{N}$	nx^{n-1}	\mathbb{R}
$x^n, n \in \mathbb{N} \backslash \mathbb{Z}$	nx^{n-1}	\mathbb{R}^*
$x^a, a \in \mathbb{R} \backslash \mathbb{Z}$	ax^{a-1}	$]0,+\infty[$
$\sin(x)$	$\cos(x)$	${\mathbb R}$
$\cos(x)$	$-\sin(x)$	${\mathbb R}$
$\tan(x)$	$1 + \tan(x)^2 = \frac{1}{\cos(x)^2}$	
$\arctan(x)$	$\frac{1}{1+x^2}$	\mathbb{R}

Table 3.2 – Dérivées usuelles

3.2.3 Résultats fondamentaux

${\bf Th\'{e}or\`{e}me~3.0~(R\'{e}sultats~fondamentaux)}$

- 1. **Théorème de Rolle :** si f est définie et continue sur [a, b], dérivable sur]a, b[(avec a < b) et telle que f(a) = f(b) alors il existe $c \in]a, b[$ tel que f'(c) = 0.
- 2. Théorème des accroissements finis : si f est définie et continue sur [a,b], dérivable sur]a,b[(avec a < b) alors il existe $c \in]a,b[$ tel que $f'(c) = \frac{f(b)-f(a)}{b-a}$.