LIMITE D'UNE FONCTION

Toutes les fonctions considérées sont à valeurs dans \mathbb{R} .

2.1 Limites

2.1.1 Limites finies

Définition 2.1

Soit f une fonction définie sur un intervalle I de \mathbb{R} et a un élément ou une borne de I. Soit $\ell \in \mathbb{R}$.

On dit que f a pour limite ℓ en a lorsque :

• si $a \in \mathbb{R}$:

$$\forall \varepsilon > 0 \ \exists \alpha > 0 \ \forall x \in I, \quad |x - a| \le \alpha \Rightarrow |f(x) - \ell| \le \varepsilon,$$

• $\operatorname{si} a = +\infty$:

$$\forall \varepsilon > 0 \ \exists A > 0 \ \forall x \in I, \quad x \ge A \Rightarrow |f(x) - \ell| \le \varepsilon,$$

• $\operatorname{si} a = -\infty$:

$$\forall \varepsilon > 0 \ \exists A < 0 \ \forall x \in I, \quad x \le A \Rightarrow |f(x) - \ell| \le \varepsilon.$$

On note:

$$\lim_{x \to a} f(x) = \ell \quad \text{ou} \quad \lim_a f = \ell \quad \text{ou} \quad f(x) \xrightarrow[x \to a]{} \ell$$

2.1.2 Limites infinies

Définition 2.2

Soit f une fonction définie sur un intervalle I de \mathbb{R} et a un élément ou une borne de I.

- 1. On dit que f a pour limite $+\infty$ en a lorsque :
 - si $a \in \mathbb{R}$:

$$\forall A > 0 \ \exists \alpha > 0 \ \forall x \in I, \quad |x - a| \le \alpha \Rightarrow f(x) \ge A,$$

• $\operatorname{si} a = +\infty$:

$$\forall A > 0 \ \exists B > 0 \ \forall x \in I, \quad x \ge B \Rightarrow f(x) \ge A,$$

• $\operatorname{si} a = -\infty$:

$$\forall A > 0 \ \exists B < 0 \ \forall x \in I, \quad x \le B \Rightarrow f(x) \ge A.$$

- 2. On dit que f a pour limite $-\infty$ en a lorsque :
 - si $a \in \mathbb{R}$:

$$\forall A < 0 \ \exists \alpha > 0 \ \forall x \in I, \quad |x - a| \le \alpha \Rightarrow f(x) \le A,$$

• $\operatorname{si} a = +\infty$:

$$\forall A < 0 \ \exists B > 0 \ \forall x \in I, \quad x \ge B \Rightarrow f(x) \le A,$$

• $\operatorname{si} a = -\infty$:

$$\forall A < 0 \ \exists B < 0 \ \forall x \in I, \quad x \le B \Rightarrow f(x) \le A.$$

On note:

$$\lim_{x \to a} f(x) = \pm \infty \quad \text{ou} \quad \lim_{a} f = \pm \infty \quad \text{ou} \quad f(x) \xrightarrow[x \to a]{} \pm \infty$$

2.2 Propriétés de la limite

2.2.1 Unicité

Proposition 2.1

Soit f une fonction définie sur un intervalle I de $\mathbb R$ et a un élément ou une borne de I. Si f admet une limite (finie ou infinie) en a alors cette limite est unique.

2.2.2 Opérations sur les limites, limites usuelles

$\lim_{a} f$	exp	ln	$x \mapsto x^n \ , \ n \in \mathbb{N}^*$	$\arctan(x)$
$-\infty$	0		$\pm \infty$ selon la parité de n	$-\frac{\pi}{2}$
0	1	$-\infty \text{ (en } 0^+)$	0	0
$+\infty$	$+\infty$	$+\infty$	$+\infty$	$\frac{\pi}{2}$

Table 2.1 – Limites usuelles

$\lim_{a} f$	$\lim_a g$	$\lim_{a} (f+g)$	$\lim_{a} f \times g$	$\lim_{a} \frac{f}{g}$
ℓ	$\ell' \neq 0$	$\ell + \ell'$	$\ell\ell'$	$\frac{\ell}{\ell'}$
$\ell \neq 0$	0	ℓ	0	±∞ (*)
0	0	0	0	F.I
$\ell \neq 0$	$\pm \infty$	$\pm \infty$	±∞ (*)	0
0	$\pm \infty$	$\pm \infty$	F.I	0
$\pm \infty$	$\ell' \neq 0$	$\pm \infty$	±∞ (*)	±∞ (*)
$\pm \infty$	0	$\pm \infty$	F.I	±∞ (*)
$+\infty$	$-\infty$	F.I	$-\infty$	F.I
$+\infty$	$+\infty$	$+\infty$	$+\infty$	F.I

Table 2.2 – Opérations sur les limites

- Le symbole (*) signifie que le signe est à étudier selon la règle des signes.
- F.I désigne les formes indéterminées qu'il faut étudier au cas par cas.

Proposition 2.2 (Croissances comparées)

Soient a, b et c trois réels strictement positifs.

$$\lim_{x\to +\infty}\frac{e^{bx^c}}{x^a}=+\infty\quad ;\quad \lim_{x\to +\infty}\frac{(\ln(x))^b}{x^a}=0;$$

$$\lim_{x \to 0} x^{a} (\ln(x))^{b} = 0 \quad ; \quad \lim_{x \to -\infty} x^{a} e^{bx} = 0.$$

2.2.3 Résultats fondamentaux

Théorème 2.0 (Résultats fondamentaux)

1. Passage à la limite dans les inégalités larges : si $f(x) \leq g(x)$ au voisinage de a alors (sous réserve d'existence) :

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x).$$

- 2. Théorème de la limite monotone : soit f une fonction croissante sur I =]a, b[. Alors f admet une limite à droite en a (finie si f est minorée et égale à $-\infty$ sinon) et une limite à gauche en b (finie si f est majorée et égale à $+\infty$ sinon). Le résultat s'adapte aux fonctions décroissantes.
- 3. **Théorème des gendarmes :** soient f, g et h trois fonctions définies sur un intervalle I et a un élément ou une borne de I.

Si f et h admettent une même limite $\ell \in \mathbb{R} \cup \{\pm \infty\}$ en a et qu'au voisinage de a on a : $f \leq g \leq h$. Alors :

$$\lim_{x \to a} g(x) = \ell.$$

4. Lien avec les suites : soit f une fonction admettant pour limite b en a et soit (u_n) une suite de limite a. Alors

$$\lim_{n \to +\infty} f(u_n) = b.$$