GÉNÉRALITÉS, FONCTIONS USUELLES

Toutes les fonctions considérées sont à valeurs dans \mathbb{R} .

1.1 Généralités sur les fonctions

Définition 1.1

Soit f une fonction définie sur un intervalle I non vide et non réduit à un point.

- 1. Si I est symétrique par rapport à 0, on dit que :
 - f est paire si : $\forall x \in I, f(-x) = f(x)$;
 - f est impaire si : $\forall x \in I, f(-x) = -f(x)$.
- 2. On dit que f est T-périodique si
 - f est définie sur un domaine D tel que : $\forall x \in \mathbb{R}, x \in D \Rightarrow x + T \in D$,
 - $\forall x \in D, \ f(x+T) = f(x).$
- 3. On dit que f est **croissante** (resp. **strictement croissante**) sur l'**intervalle** I si :

$$\forall (x,y) \in I^2, \quad x \leq y \Rightarrow f(x) \leq f(y) \quad (\text{resp. } x < y \Rightarrow f(x) < f(y).$$

4. On dit que f est **décroissante** (resp. **strictement décroissante**) sur l'intervalle I si :

$$\forall (x,y) \in I^2, \quad x \leq y \Rightarrow f(x) \geq f(y) \quad (\text{resp. } x < y \Rightarrow f(x) > f(y).$$

5. On dit que f est **majorée** par M sur I si :

$$\forall x \in I, \quad f(x) \leq M.$$

6. On dit que f est **minorée** par m sur I si :

$$\forall x \in I, \quad m \le f(x).$$

7. On dit que f est **bornée** sur I si elle est majorée et minorée sur I.

1.2 Fonctions usuelles

1.2.1 Fonction $x \mapsto x^n$, $n \ge 2$

- $\mathcal{D}_f = \mathbb{R}$.
- Parité : de la parité de n.
- Continue et dérivable sur \mathbb{R} : $\forall x \in \mathbb{R}$, $f'(x) = nx^{n-1}$.
- Variations :

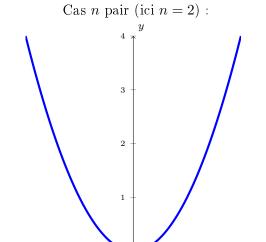
Cas n pair				
x	$-\infty$ 0 $+\infty$			
Signe de $f'(x)$	- 0 +			
$\begin{array}{c} \text{Variations} \\ \text{de } f \end{array}$	$+\infty$ $+\infty$ 0			

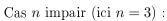
$\operatorname{Cas} n \text{ impair}$				
x	$-\infty$ 0 $+\infty$			
Signe de $f'(x)$	+ 0 +			
$\begin{array}{c} \text{Variations} \\ \text{de } f \end{array}$	+∞			

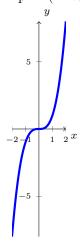
• Graphe:

-2

-1







1.2.2 Fonction $x \mapsto x^{-n}, \ n \ge 1$

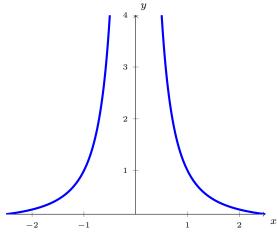
- $\mathcal{D}_f = \mathbb{R}^*$.
- Continue et dérivable sur \mathbb{R}^* : $\forall x \in \mathbb{R}, \ f'(x) = -\frac{n}{x^{n+1}}$.
- Variations :

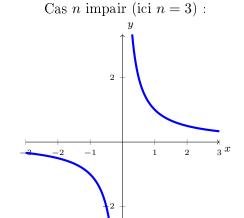
$\operatorname{Cas} n \operatorname{pair}$				
x	$-\infty$	$0 + \infty$		
Signe de $f'(x)$	+	_		
$\begin{array}{c} \text{Variations} \\ \text{de } f \end{array}$	+∞ 0	$+\infty$ 0		

$\operatorname{Cas} n \operatorname{impair}$					
x	$-\infty$	$+\infty$			
Signe de $f'(x)$	_	_			
$\begin{array}{c} \text{Variations} \\ \text{de } f \end{array}$	0	$+\infty$ 0			

• Graphe:

Cas n pair (ici n=2):





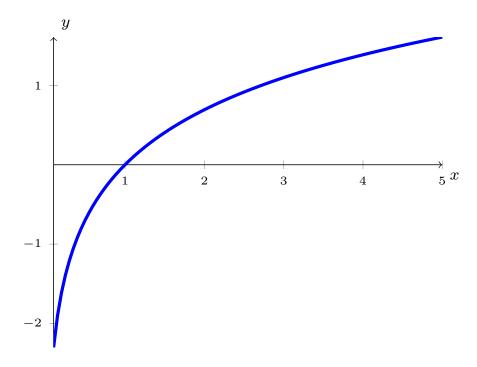
1.2.3 Fonction logarithme

- **Définition :** la primitive sur $]0, +\infty[$ de $x \mapsto \frac{1}{x}$ qui s'annule en 1.
- $\mathcal{D}_f =]0, +\infty[.$
- Continue et dérivable sur $]0, +\infty[$: $\forall x > 0$, $\ln'(x) = \frac{1}{x}$.
- **Propriété :** pour tout x, y > 0 :

$$\ln(xy) = \ln(x) + \ln(y)$$
$$\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y).$$

• Variations :

x	0	1	$+\infty$
Signe de $\frac{1}{x}$		+	
Variations de ln	$-\infty$	_0^	+∞



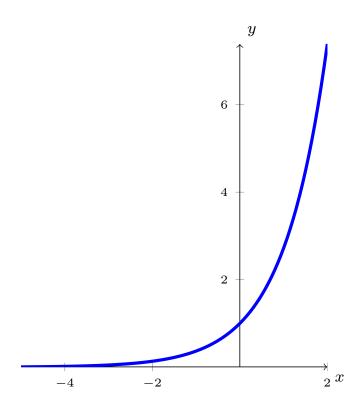
1.2.4 Fonction exponentielle

- **Définition :** bijection réciproque de ln.
- $\mathcal{D}_f = \mathbb{R}$.
- Continue et dérivable sur $]\mathbb{R}: \forall x > 0, \ \exp'(x) = \exp(x) = e^x.$
- **Propriété** : pour tout x, y > 0 :

$$e^{x+y)} = e^x e^y$$
$$e^{x-y} = \frac{e^x}{e^y}.$$

• Variations :

x	$-\infty$	0	$+\infty$
Signe de e^x		+	
Variations de exp	$-\infty$	_1_	, +∞



1.2.5 Fonction $x \mapsto x^a$, $a \in \mathbb{R} \setminus \mathbb{Z}$

• **Définition**: $x^a = e^{a \ln(x)}$ pour x > 0.

• Continue et dérivable sur $]0, +\infty[$: $\forall x > 0, f'(x) = ax^{a-1}$.

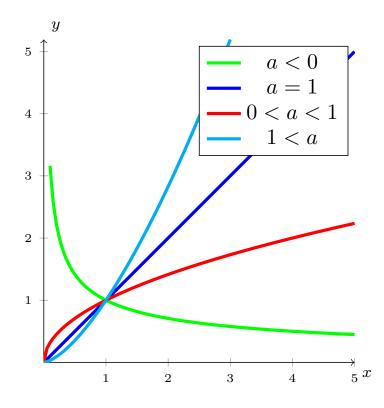
• Variations :

Si a < 0:

x	()	1	$+\infty$
Signe de $f'(x)$			_	
$\begin{array}{c} \text{Variations} \\ \text{de } f \end{array}$		$+\infty$	`1_	0

Si a > 0:

x	($0 1 +\infty$	C
Signe de $f'(x)$		+	
$\begin{array}{c} \text{Variations} \\ \text{de } f \end{array}$		1 + ×	0



1.2.6 Fonction $x \mapsto a^x$, a > 0

• **Définition** : $a^x = e^{x \ln(a)}$ pour $x \in \mathbb{R}$.

• Continue et dérivable sur \mathbb{R} : $\forall x \in \mathbb{R}$, $f'(x) = \ln(a)a^x$.

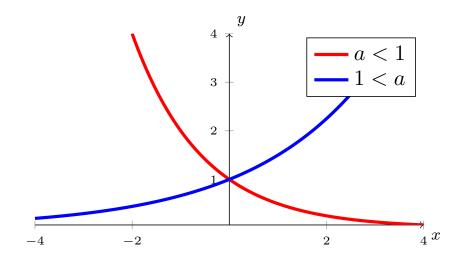
• Variations :

Si a < 1

x	$-\infty$	0	$+\infty$
Signe de $f'(x)$		_	
$\begin{array}{c} \text{Variations} \\ \text{de } f \end{array}$	$+\infty$	1_	0

Si a > 1:

x	$-\infty$	0	$+\infty$
Signe de $f'(x)$		+	
$\begin{array}{c} \text{Variations} \\ \text{de } f \end{array}$	0	_1_	+∞



1.2.7 Fonction cosinus

• Domaine de définition : \mathbb{R} .

• Parité, périodicité : paire, 2π -périodique.

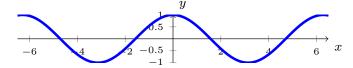
 \bullet Continue et dérivable sur $\mathbb R$:

$$\cos' = -\sin$$
.

• Variations :

x	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π
$\cos'(x)$	0	+	0	_	0
cos	-1	_0_	, 1	_0_	-1

• Graphe:



1.2.8 Fonction sinus

• Domaine de définition : \mathbb{R} .

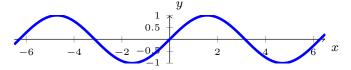
• Parité, périodicité : impaire, 2π -périodique.

• Continue et dérivable sur $\mathbb R$:

$$\sin' = \cos$$
.

• Variations :

x	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$		π
$\sin'(x)$	_	0	+	0	_	
sin	0	-1	_0_	, 1		0



1.2.9 Fonction tangente

• Domaine de définition :

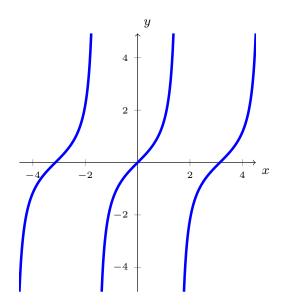
$$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \; ; \; k \in \mathbb{Z} \right\}.$$

- Continue et dérivable sur $\mathbb R$:

$$\tan' = 1 + \tan^2 = \frac{1}{\cos^2}.$$

• Variations :

x	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$
tan	$-\infty$	_0_	$+\infty$



1.2.10 Fonction arctangente

• **Définition :** bijection réciproque de tan sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$.

• Domaine de définition : \mathbb{R} .

• Parité: impaire.

• Continue et dérivable sur $\mathbb R$:

$$\arctan'(x) = \frac{1}{1+x^2}.$$

• Variations :

x	$-\infty$	0	$+\infty$
arctan	$-\frac{\pi}{2}$	0	$\rightarrow \frac{\pi}{2}$

