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Lycée Pierre-Gilles de Gennes 2024-2025
Mathématiques — TD2

INTEGRALES GENERALISEES

1 Applications directes du cours

Correction de ’exercice 1.

1
Vvit—1
impropre en +o0.

Soit A € [2,+00[. On a:

1. La fonction f : t — est définie et continue sur [2,4o00[ donc l'intégrale est

A 1 A
/2 et = [2i= 1], = 2VA-1-2

Donc : lim dt = +o0.

1
A—too [o £/t —1

+o0o 1
9 Vit—1

2. La fonction f : ¢t —

Ainsi I'intégrale dt est divergente.

t
m est continue sur | — oo, 0] donc l'intégrale est impropre
en —oo.

Soit A €] — 00,0]. Alors on a :

/0 o [ 11 1
A (L2227 | 21+¢2], 2

. Ot 1
Donc : lim —_— = ——,

Ainsi 'inté 1 /0 dt est te et t L
1nS1 l'integrale — est convergente et vaut ——.
B |t ) 8 2

. —x2 . . , .
3. La fonction x — ze™™ est continue sur R donc I'intégrale est impropre en —oo et
en +oo.

1
—1]).
<1+A2 )

0
e Etude de I'intégrale / ze ™ dx impropre en —o0.
Soit A €] — 00, 0]. On a:

0 0
1 1

/ ze " dx = {——e‘wz} = —Z(1—e™).
.\ ¢ ], T 2

0
. ) 2 1
Ainsi : lim ze Cdr = —=.

1
L’intégrale converge donc et vaut —5
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+oo
e Etude de I'intégrale ze " d impropre en +00.

0
Soit A € [0, +00[. On a :

Ao 1
Ainsi : lim rxe Vdr = —.
A—+o0 0 2
e 1
L’intégrale converge donc et vaut 3

0
e Conclusion : comme les intégrales /

— 00

+oo
_ 2 2
xe " dx et / xe ¥ dxr convergent
0

+o00 5
alors / xe ¥ dx converge et :

o
o0 2 0 2 Foo 2
/ ze ¥dr = / xze ¥ dx +/ ze T dr = 0.
—00 —00 0

4. La fonction t — est continue sur [0, \/5[ donc la I'intégrale est impropre en

t
V2 —t?
V2. Soit A € [0, v/2[. Pour tout ¢ € [0,v2[, on a

t 1 =2t '

V22 28— 2u

oil u:t+— 2 —t? est continue et positive sur [0, A]. Ainsi,

4t 24 _ 2
/0 mdtz—[\M—t]o = —V2- A2+ V2,

Donc

A
t
lim / dt = lim —v2— A2 ++2=+2.
Asva Jo V2 —t? A3~

V2
Ainsi, 'intégrale / dt converge et vaut v/2.
0

t
V2 —t2
Correction de ’exercice 2.

T

1. La fonction [ : x + ze™ * est continue sur [0, +00[ donc I'intégrale est impropre en

+00.
Soit A € [0, +o0[. Alors on a :

4 121" 1 .
/ re ¥ dr = {——e‘” } =—(1—e).
0 20 |, 2
A

. _ 2
Donc : lim ze Cdr = —.
A—+oo 0 2

+00 1
Ainsi l'intégrale / ze " dx est convergente et vaut 3
0
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2. La fonction f : t +—

+00.
Soit A € [0, +o0].

oo est continue sur [0, +oo[ donc I'intégrale est impropre en
e

e Méthode 1 : la fonction u : t +— €' est de classe C' sur [0, 4], en effectuant le
changement de variable u = e’ on obtient :

4 A 1 T |
L rvat= ] awrat = smasa 0= gt

1 1 1
Or, pourtout u >1: — = — — . Donc :

uwu+1) u u+l

A

| ¢ 1
/0 1—|—etdt:/1 u(1+u)du
“* 71 1
:/1 (5_u+1>d”
= [In(u) —In (u+ 1)
=A—In(1+e*)+1n(2)
=In(2)—In(1+e ).

1 _t
e Méthode 2 : ona:Vt>0, - °

1+et  14et

Donc :

A 1 A 6715 A A
01+éﬁ:0 Hﬁ4m:}mu+eﬂ0:m®—mu+e)

4
e Conclusion : lim
A—+o0 0 1+ et

+oo
Ainsi 'intégrale /
0

dt =1n (2).

T -dt est convergente et vaut In (2).
e

3. La fonction z — m est continue sur R donc 'intégrale est impropre en —oo
x

et en +00.
) 0 1
e Etude de l'intégrale ————dx impropre en —o0.
8 /m2<1+|x\>2 prop
Soit A €] — 00,0]. On a :

/0 1 /0 1 1
—dI f— —_— = =
A 21+ |x])? 4 2(1—2)2 2

0 1 1

1 1% 1 1
l—z|, 2 2(1-A4)
Ainsi : Agl’floo B mdl’

L’intégrale converge donc et vaut

1
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; +oo 1
e BEtude de I'intégrale / o dx impropre en +0oo.
0

1+ [z])?
Soit A € [0, +00[. On a :

/OA%TW“:/OAM—

A
1
Ainsi : i —_dr =
wste I 2 e

N = T
)
no
I
N | —
|
—_
—+ | =
8
| I
= b
|
NN
|
g
—_
4+
=

L’intégrale converge donc et vaut 3

0 +o00
1 1
e Conclusion : comme les intégrales / —————dx et / ——dx
oo 2(1+ [x])? o 2(1+|x])?
o0 1
convergent alors —————dx converge et :
i /oo 201+ [a])? "

Foo 1 0 1 +oo 1
— dz=] ——d +/ — = dr=1.
/oo 21+ a2 ™" /oo 20+ 122 T )y 20+ 2™

1
4. La fonction f :t — ;

N est continue sur ]1,2] donc I'intégrale est impropre en 1.

Soit A €]1,2]. Alors on a :
2 1 )
Ainsi I'intégrale est divergente.

Correction de l’exercice 3. 1. La fonction u — ue™" est continue sur [0, +oo[ donc
I'intégrale est impropre en +o00. Soit A € [0, +oc[. Alors, comme les fonctions u — u
et u — —e % sont de classe C! sur [0, A], par intégration par parties on trouve :

A A
/ ue “du = [—ue_“]g — / —e Udu = —Ae  —e A+ 1.
0 0

Alinsi,
A

lim we 'du= lim —Ae d —e 4 +1=1.
A—+oo 0 A—+o00

+00
Par conséquent, / ue” “du converge et sa valeur est 1.
0

n(x)

1
2. La fonction x — ——= est continue sur [1,400[ donc lintégrale est impropre en

T
+00. Soit A € [1, +o0].

1
Les fonctions = — In (z) et z — —— sont de classe C'' sur R donc par intégration
x

/A In(z) ) [_lnmr_//*—_l « L
| _ In(4) ;HlA

par parties on a :

A

T 14
In(A) -1
— — + 1.
4 At
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A—+o0 2
Donc l'intégrale converge et vaut 1.

n (1)
t2
Soit A € [1, +oo[. La fonction u : ¢t — In (¢) est de classe C' et strictement croissante
sur [1, A] donc, en effectuant le changement de variable v = In () et en utilisant la

question 1, on obtient :

In (%) Ault) Ay A InA 1
— —_— frnd —_— — u = —_—— 1
/1 ” —2dt = /1 ok (t)dt /0 o du /0 ue “du T 1 +

en réutilisant la question précédente. Ainsi,

A
Ainsi: lim / ln(x)dle.
1

. La fonction ¢t —

est continue sur [1, 00| donc 'intégrale est impropre en +o0.

A
. In (t) ) InA 1
Ao e s o gt

+o0 1
Donc / nt( )dt converge et vaut 1.
1

u
est continue sur [0, 1] donc I'intégrale est impropre en 1.
—u

. La fonction u —

m
La fonction u : ¢ > cos(t) est de classe C' et strictement décroissante sur ]0, 5]

donc, en effectuant le changement de variable u = cos(t), les intégrales

U M+ 1+cost
du (—sin(t))dt
0 1—u 1—cost

sont de méme nature. Or :

i t
1 + cos(t) = 2 cos® <§) et 1— cos(t) = 2sin? (5) )

L’étude revient a I’étude de I'intégrale :

X (= sin(t))dt = /0 ? g cos? @) dt

t t
car sin(t) = 2sin <§> cos (§> Enfin, cette derniére intégrale est une intégrale de

fonction continue sur un segment et :

/0; 2 cos® (%) dt = /Og(cos(t) +1)dt

= [sin(t) + ]2

m
=1+=.
3

1
1
Donc / i % du converge et vaut 1+ T
0 1—u 2
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Correction de ’exercice 4.

1. A=

()

(b)

2. B =
(a)
(b)

3. C =

()

(b)

T g dr

1 Vi1

L’intégrande = — est continue sur [1 4+ oo[. La question de la nature

x
vad+1
de l'intégrale généralisée en question a un sens, elle a une singularité en 4o0.

On a:
x

=X

(SIS
D=

e ~ -
$3_|_ 1 z—+o0

et donc , par le théoréme d’équivalence pour les intégrales généralisées a inté-

—+o00
.. 1 .
grande positive, A et / x~ 2 dx sont de méme nature.
1

Or cette derniére diverge vers +oo (une primitive est \/z, qui a pour limite
+00 en 00).

T dx

1 \/1’3—1—1

—+o00 )
/ t°.e7t dt.
0

. 4 2 . .
L’intégrande ¢ + t°>.e™" est continue sur [0, +o0o[. La question de la nature de
I'intégrale généralisée en question a un sens, elle a une singularité en +oc.

Finalement est divergente.

On a, lorsque t — 400, par croissance comparées,

2
. et

et

— 0

et donc, il existe T' > 1 tel que

Ve >T,0<t0.e <et

+o00
Or / e~' dt converge (vers e”7) et donc, par le théoréme de comparaison
T

+00
3 ’ ’ ’ . N , g 2
pour les intégrales généralisées a intégrande positive, / t°.e™" dt converge
T

+00
et par Chasles, il en est de méme pour / 5.t dt.
0

L’intégrande z — est continue sur |0, 1] (elle tend vers +o00 & cha-

1
Va(l —z)
cune des extrémités), il est légitime de considérer la question de la convergence
de l'intégralisée qui a deux singularités, 'une en 0, 'autre en +1. On traite la

1
1 1
2
nature de chacune des intégrales / et / séparémment.
0 1
2

fun

3
Convergence de/
0
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1 1
Si0<z< = alors v1 -2 > — donc :
2 V2

1 1 1
Ve e |0, = ,OS—S\/i—
' 1 2} z(1—x) VT

1

2 1

Or l'intégrale généralisée / \/57 dx est convergente (une primitive de 'in-
0 x

tégrande est C'st X /z, qui a une limite en 0% )et donc, par le théoréme de com-

1
. ) ) .y .. 2 dx
paraison pour les intégrales généralisées a intégrande positive, / _
0

Vol —z)

est convergente.

(c) Convergence de ... Sur le méme modéle, on a

MH\
>,

1 1 1
Vo € bl{,(}gmgﬁﬂ—__x

1
Vv1—=x

I'intégrande est C'st X v/1 —x, qui a une limite en 17 )et done, par le théo-
réeme de comparaison pour les intégrales généralisées & intégrande positive,

1 1 1
(d) Convergence de C' = / ... Comme / . et / ... sont convergentes, par
0 1 0

1
Or l'intégrale généralisée / V2 dx est convergente (une primitive de
1
3

est convergente.

1
définition , l'intégrale généralisée a deux singularités, / ... est convergente.
0

+00
4. D :/ sint.e?t dt.
1

(a) L’intégrande t — sint.e " est continue sur [1, +oo[. La question de la nature
de l'intégrale généralisée en question a un sens, elle a une singularité en 4o0.

(b) On a, du fait que |sint| <1,

VE>0,0< [sint.e ™| <e ™

400 1
Or / e dt converge (vers 5) et donc, par le théoréme de comparaison
0

“+o0o
pour les intégrales généralisées a intégrande positive, / sint.e”? dt est ab-
0

solument convergente et donc convergente.

Remarques :

+oo
— On a de plus, le nombre / sint.e”?' dt étant bien défini par ce qui vient
0

400
/ sint.e”% dt) <
0

d’étre dit, que

1
-2
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— On peut mener le calcul exact de cette intégrale (en passant en complexes
ou par deux ipp), ce n’est pas la question ici.

sop= [Ty,
o 1 —cosx

sinz — x

(a) L’intégrande z — est continue sur |0, 1], car, sur cet intervalle 1—cos =

1 —cosx
ne s’annule pas (annulation pour x = 0 puis x = 2.7 > 1. La question de la
nature de l'intégrale généralisée en question a un sens, elle a a priori une
singularité en 0.

(b) Examinons le comportement de I'intégrande en 0. On a, lorsque z — 0,
: L 4 L,
simnx —x~—=z",1 —cosx ~ =x
6 2

et donc

L’intégrande se prolonge par continuité en 07. On a onc affaire a une intégrale
faussement généralisée (elle est convergente, ¢’est une intégrale classique)

Correction de I’exercice 5. 1. La fonction ¢ — est continue sur [1,4o00|

t
+ Vi
donc l'intégrale est impropre en +00.
Soit ¢ > 1. Alors vt < t donc

LVt <2t

et par décroissance de la fonction inverse sur |0, +o0o[ on en déduit :

t
t+

N =

Vit € [1,+o0], >

<

1
Les fonctions ¢ et t — 5 sont continues et positives sur [1,+oo[ donc,

/
t+/1t

d’aprés le théoréme de comparaison pour les intégrales de fonctions continues posi-

+00 1 +00 t
tives, comme / —dt diverge, l'intégrale /
1 2 1 t+ /1t

1
2. La fonction t — P est continue sur [1, +00[ donc l'intégrale est impropre en
et + e~
~+o00. Or,

dt diverge aussi.

1 1
VE>1, ——— < — =t
— 7 et4et T et

1

Les fonctions ¢t — P et t — e’ sont continues et positives sur [1,4+oo[ donc,
el + e~

d’aprés le théoréme de comparaison pour les intégrales de fonctions continues posi-

oo dt

“+o0o
tives, comme / e~ 'dt converge (exemple de référence), I'intégrale / P
1 ;. el+te

converge aussi.

3. La fonction ¢t — 7o est continue sur [1, +oo[. L'intégrale est donc impropre
en +oo.
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e Sin > 2. Pour tout t € [1,4+00[ on a

1+t+t">t" d ! < L
onc — < —.
- 1+ttt = 7

1
Les fonctions ¢t — ——— et t — — sont continues, positives sur [1, +00|
N 1+t+1tn tn
oo

et t—ndt est une intégrale convergente car n > 1 (faire le calcul explicite).

D’aprés le critére de comparaison pour les intégrales de fonctions continues
1

1+t -+t
e Sin =1. Pour tout ¢ € [1,400] on a

+00
positives, on en déduit que / dt converge aussi.
1

1 1
1+t+t"=1+2t<3t d _— >
+t+ + 2t < onc i = 3
) 1 1 ) ..
Les fonctions ¢ — ————— et ¢ — — sont continues, positives sur [1, 00|
14+t4+tn 3t

“+oo
et / —dt est une intégrale divergente (faire le calcul explicite). D’aprés le
1

critére de comparaison pour les intégrales de fonctions continues positives, on
400 1

en déduit que / _
p o Lt4tm

e Sin =0. Pour tout t € [1,400[ on a

dt diverge aussi.

1 1
1+t+t"=24+t<3t donc — > —.
e s YT e T Bt
400 1
Et on conclut comme précédemment que 'intégrale / ——dt diverge.
S

|
4. La fonction t — n (1)

Vi
+o0.

De plus, pour tout ¢t > e on a

est continue sur [1,+oo|. L'intégrale est donc impropre en

. In (t) 1 . .. T
Les fonctions t — —== et t — —= sont continues, positives sur [1, +00[ et —dt

Vi Vi Ve

est une intégrale divergente (faire le calcul explicite). D’aprés le critére de com-
paraison pour les intégrales de fonctions continues positives, on en déduit que

o0 1
/ n(t) dt diverge.
Ve

1
5. La fonction ¢ — m est continue sur [2, +00|. L'intégrale est donc impropre en
n
+00.

De plus, pour tout t > 2 on a

Pl = mQ)f
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1 1
Les fonctions t +— m et t — m sont continues, positives sur [2, +oo[ et

+o0
/ mdt est une intégrale convergente (faire le calcul explicite). D’aprés le
2 n

critére de comparaison pour les intégrales de fonctions continues positives, on en

+0o0 1
déduit que ———dt converge aussi.
d /2 310 (1) Ve

Correction de ’exercice 6.

1
V2 +t

1 1
VE2+it ~ td —_ ~ —
* + t—0+ \/— one V2 +t t—ot \/E’

1 1
e les fonctions t — ——— et t — —= sont continues et positives sur |0, 1
0 i p 10,1]

D’aprés le critére d’équivalence pour les intégrales de fonctions continues positives,

1 1 1
1 1 1
on en déduit que / ———dt et / —dt sont de méme nature. Comme / —dt
0o ViZ4t 0 Vit 0o Vit

1
1
converge (faire le calcul explicite), 'intégrale / dt converge aussi.
ge ) grale | = g

est continue sur ]0, 1]. L’intégrale est impropre en 0.

1. La fonction ¢t —

t
2. La fonction ¢ — ———— T3 est continue sur ]0, 1]. L’intégrale est impropre en 0.
et — 1 —

e par DL usuels, on sait que

t2
1 2
e —1—1t 2+n_>c3r000(t ).
2

En particulier, e — 1 —¢ oty et par compatibilité de la relation d’équivalence
_>
avec le passage au quotient, on déduit I’équivalent suivant

iz

—_— ~Y 3 -
et — 1 —t -0+ ¢3

Vit

2
e les fonctions ¢ +— pr—— et t — — sont continues et positives sur |0, 1].
e’ —1— t2

D’aprés le critére d’équivalence pour les intégrales de fonctions continues positives,

1 1
2 t
on en déduit que / —dt et L
o t2

1
2
- dt sont de méme nature. Comme / —dt
o et—1—1 0 t2

1
t
diverge (faire le calcul explicite), I'intégrale Ldt diverge aussi.

et—1—1
. 1 . L .
3. La fonction ¢ — o est continue sur [0, +oo[. L’intégrale est donc impropre en
+00.
e’ +1 ~ t*donc —— ~ L.
t——+o00 t2 4+ 1 t—+oo t2 ’

1
e les fonctions ¢ — et t — — sont continues et positives sur [1, +oo].

t2+1

10
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D’aprés le critére d’équivalence pour les intégrales de fonctions continues posi-

+oo
tives, on en déduit que /
1

+o00
dt et / —dt sont de méme nature. Comime
2 +1 2
—+oco

+o0 1
/1 t_th converge (faire le calcul explicite), I'intégrale /1 dt converge

241
aussi.

1
Enfin, comme t — est continue sur [0, 1], l'intégrale / dt est bien
0

1 1
t2+1 12+ 1

+oo
définie et par la relation de Chasles on déduit que / dt converge.
0

241
Attention : on ne peut pas appliquer directement le critére sur [0, +oo] car la fonction

1
t— 2 n’est pas continue sur [0,+oo[ (elle n’est pas définie en 0!) et U'intégrale

+o0 1
impropre / t_th diverge.
0

Correction de ’exercice 7.

1. La fonction t —

2

tt+1
+o00. De plus, par équivalent usuel et compatibilité des équivalents avec le quotient
on a:

est continue sur [0, +oo[. L’intégrale est donc impropre en

2+ 2t 1
4+ 1 totoo t2
, 2+ 2t 1 . L N
Les fonctions t +— m et t — o) sont continues, positives sur [1, +oo[. D’aprés

le critére d’équivalence pour les intégrales de fonctions continues positives, on en

) +oo +oo t2 + ot +oo 1
déduit que et / —dt et / ———dt sont de méme nature. Comme / —dt
T TN N

+oo 42
.y =+ 2t .
est une intégrale convergente, mdt converge aussi.
1

2 142

t
Comme de plus, t — est continue sur [0, 1] 'intégrale / dt existe.
0

441 tt+1

—+00 t2

Finalement /
o tr+1

Attention : on ne peut pas appliquer directement le critére sur [0, +oo[ car la

converge.

1
fonction ¢ — 2 n’est pas continue sur [0, +o0o] (elle n’est pas définie en 0!).

. La fonction z — o R—— est continue sur R car pour tout réel z, > —z +1 > 0.
x?—x
L’intégrale est donc impropre en —oo et en +00.
0
. 1
e Etude de / ———du.
o TE—x+1

Par équivalent usuel et compatibilité des équivalents avec le quotient on a :
1 1

- o =
22—z +1 a>—o00 x2

: 1 : .
Les fonctions = +— I et v — - sont continues, positives sur | —
¢ —z+1 T

00, —1]. D’aprés le critére d’équivalence pour les intégrales de fonctions conti-

11
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~1 ~1
1
nues positives, on en déduit que / —dx et / —————dx sont de méme
o0 T o TP —x+1

-1 o —1 1
nature. Comme —dx est une intégrale convergente, —dx
oo X2 o rr—r+1
converge aussi.
1 . o ° 1
Comme de plus, x — —————— est continue sur [—1, 0] I'intégrale —dx
»?—x+1 a2 —z+1
existe.
0 1
Finalement / dx converge donc.
o=z +1
400 1
e On montre de la méme fagon que / 5 dx converge.
o x*—xz+1
0 1 +o0 1 +o00 1
e Comme / ——dxet / ———dx convergent alors / ———dx
2= +1 0o r2—x+1 e 2=z +1
converge.
3. La fonction t — est continue sur | — 1, 1[. L’intégrale est impropre
(14+2)v1 —¢t2
en —1 et en 1.
; 0 1
e Etude de / dt
S (1+82)v1—1¢2
On a :
1 B 1 1
(L+)VI—12  (1+82) /(1 —t)(1+1t) to-1+ 22yt + 1
1
Les fonctions ¢ — et t — ——=——— sont continues et posi-
(1+12)y/1 — ¢ 22Vt + 1 P
tives sur | — 1,0].

4. La fonction t —
+o0.

D’aprés le critére d’équivalence pour les intégrales de fonctions continues po-

0 1 1
dt et | ———r
/_1 (1+2)y/1 -2 /_1 22T +1

dt sont de

sitives, on en déduit que

méme nature.

Soit A €] —1,0]. On a

0 1 1 0 1 Vi+A
/Azmm f[”_“] -5

0 0
1 1
Ainsi  lim En particulier, / _—
As—1+ [, 2\/_\/1—1— \/_ P B NONVIEN

1
et donc
/_1 (14 t2)V/1 —¢t?

1
On montre de méme que /
o (1+1¢2

dt converge

dt converge aussi.

1
WI- 12

dt converge.

0 1 1
1 1 1
Comme / dt et / dt convergent, / dt
LGreyize ) irei-e R BT,
converge.
1

! est continue sur [1, +oo[. L'intégrale est donc impropre en
et —

12
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. La fonction t —

On sait par équivalent usuel :

D’ou :

~+ =

et — 1 t=+oo

1
Les fonctions ¢ — —%— et t — 1 sont continues, positives sur [1,+oo[. D’aprés
et —1
le critére d’équivalence pour les intégrales de fonctions continues positives, on en

+00 +00
déduit que / etdt et / 1dt sont de méme nature. Comme cette derniére est
1 1

1

+o0
une intégrale divergente, / —L—dt diverge aussi.
1

et —1

t . . .
1 est continue sur [0, +00[. L’intégrale est donc impropre
en +o0o. De plus, on vérifie & I'aide de la caractérisation que l'on a :

t 1
V 2t2 + 1 13400 N

t 1
Les fonctions t — {/ ——— et t — —— sont continues, positives sur |c, +00| pour
Va1 o , D [ [p
tout ¢ > 0. D’aprés le critére d’équivalence pour les intégrales de fonctions continues

“+oo “+oo
- 1 t 1 .
positives, on en déduit que et ———dtet ——dt sont de méme nature.
. 22 + 1 e V2t

+00
. . . [ 1 . .
Comme cette derniére est une intégrale divergente, / %Z—Hdt diverge aussi
Cc

+o0o t
pour tout ¢ > 0. Donc /0 \/mdt diverge.
1

. La fonction ¢ — In (1 + t_2) est continue sur [1, +oo[. L’intégrale est donc impropre

en +oo. De plus par équivalent usuel, on a :
In(1+ ! !
. 12 ) t—+oo t2°

1 1
Les fonctions ¢ +— In | 1+ 2 et t — 2 sont continues, positives sur [1, +o0l.
D’aprés le critére d’équivalence pour les intégrales de fonctions continues positives,

400 1 +00 1
on en déduit que et / In <1 + t_2) dt et / t—th sont de méme nature. Comme
1 1

400 1
cette derniére est une intégrale convergente, / In <1 + t_z) dt converge aussi.
1

Correction de I’exercice 8. Soit a > 0.
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1. Intégrales de Riemann.

1
Au niveau du contexte général, 'intégrande ¢ — m est continue sur |0, +oo[, consi-
1

) ) .y s dt [T dt
dérer la nature (et la valeur éventuelle) des intégrales généralisées —, m
. 0 1

t
et / — a donc un sens.
o 1
bt : . . .
(a) Concernant 7o Quiaune singularité en 0, soit € > 0 un nombre réel destiné
0
a tendre vers 07.
— Sia#1,0na

1 1
% — |:1 i ata+1:| — 1 (Elfa o 1)

€
Deux cas se distinguent alors
— Sia>1lalorsl—a<O0et

o

— —— 400
€ t% e—0+
L’intégrale généralisée est divergente vers +oo.

— Sia<lalorsl—a>0et

Lt 1
¢ w0+t 1—a

€

L’intégrale généralisée est convergente vers

_a'
— Sia=1,0na
Lt

" =  [nt]! = —Ine

€
— 400
e—0t

L’intégrale généralisée est divergente vers +oo.

+oo
(b) Concernant / m qui a une singularité en 400, soit 7' > 0 un nombre réel

1
destiné a tendre vers +oo.
— Sia#1,0na

T
/T ﬁ — Lt—a-‘rl — L (Tl—a . 1)
, te 1—a ;. l—a

Deux cas se distinguent alors

— Sia>1lalors1—a<0et

/T dt 1
- —
1 t(l T—4+00 a4 — 1

L’intégrale généralisée est convergente vers

14
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— Sia<lalorsl—a>0et

/T dt
— —— +00
1 ¢ T—o+oo

L’intégrale généralisée est divergente vers +o0.
— Sia=1,0na

T
dt
/— =  [Int]] =T
Lt

—— 400
T—+oco

L’intégrale généralisée est divergente vers +o0.
+oo
Concernant o) la synthése des cas précédents montre qu’elle divergente

dans tous les cas. On peut faire cette synthése sous forme de tableau

a 0 1 +00
Ut 1
/t_ I ] DV DV
gt —a
oo dt 1
/ 0 pv by
1+ ta a/_l
< dt
/ m | DV DV DV
0

2. Intégrales de Bertrand.

Pour a > 0, b > 0 fixés, la fonction t — est continue sur chacun des inter-

te| Int|b
1
valles |0, Sk (2, +00], ]1,2], ]1,400], les intégrales généralisées dont il est question

dans la suite ont toutes un sens avec des singularités précisées dans chacun des cas.
Remarquons aussi que cette intégrande est positive.

(a) Cette intégrale généralisée a une singularité en 0. En effectuant le changement

1
de variable généralisé ©v = —Int, du = —7 dt, C' strictement décroissant de

e en question est de méme nature
n

+o0o 1
/ — du
In2 u®

et, d’aprés la question sur les intégrales de Riemann, on a

1

1 3
}0, 5] sur [In 2, +oo[, I'intégrale /
que 0

— Sia < 1: Divergence

— Sia>1: Convergence et vaut (In2)',

a—1
(b) De fagon analogue au cas précédent, cette intégrale généralisée a une singularité

1
en +00. En effectuant le changement de variable généralisé v = Int, du = n dt,

15
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dt

+oo
C' strictement croissant de [2, +oo[ sur [In2, +ool, I'intégrale / Hin i en
2 nij®

question est de méme nature que

+oo 1
/ - du
ln2 U

et, d’aprés la question sur les intégrales de Riemann, on a

— Sia < 1: Divergence

1
— Sia > 1: Convergence et vaut 1 (In2)'~.

a JR—
(c) Cette intégrale généralisée a une singularité en 1. Par le changement de variable
affine t = 14 u, elle est de méme nature (détailler 7) que U'intégrale généralisée

! 1
/ du
o (I+u)ln(l+wu)e
qui a une singularité en 0.
Comme In(1 4 u) ~g u, 1 +u ~q 1,

1
(14 u)In(1 + u)®

Nou

et, en rédigeant 'argument de 1’équivalent proprement on montre alors, tou-
jours en se basant sur le critére de convergence des intégrales de Riemann,
que

— Sia < 1: Convergence

— Sia>1: Divergence

(d) L’intégrale généralisée

/+oo dt
L tlInt|e

a deux singularités, 'une en 0, 'autre en +00. Les question précédentes montrent
que quelques soit la valeur de a > 0, 'une des deux intégrales généralisées

2 dt +o0 +o0
/ ou / diverge. Donc /
p ¢t 2 1

est divergente, quelque

t| Int| t| Int|
soit la valeur de a > 0.
1
2 dt
(e) — Pour le cas de / ——— qui a une singularité en 0.
o t¢Int|

— Sia>1, prenons 1 <a <a. Ona

T, te

—_— = —— :
F i i mor C

1
Il existe donc un nombre réel 3 >0 > 0 tel que

/

Vi E]O,(S], Ifa“—ntlb'ta > 1

et donc

1 /
Vit G}O, 5], W >t >0
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5
Comme / t~ dt diverge (question 1 car a’ > 1) alors, par le théo-
0

5 1
1 2 1
réme de comparaison, / ——— diverge et, par Chasles, / —_—
o ¢ Int]b o toInt
diverge.

— Sia<1, prenons 1 >a >a.On a

1 ;e
e N
te| Int|® |Int|> t—o+

1
Il existe donc un nombre réel — > 6 > 0 tel que

1 /
vVt €]0,0], 0 < ————.t°

2 <1
taIn t]Y

et donc

1 /
Vt €]0,6],0 < —— <t >0
ta In ¢[b

5
Comme / t~ dt converge (question 1, car a’ < 1) alors, par le théo-
0

, 5 I
réme de comparaison, / ———— converge et, par Chasles, / —_—

o 19 Int| o t?Int|
converge.

T dt

— Concernant l'intégrale généralisée / m, les mémes méthodes (com-
9 n

paraison asymptotique lorsque ¢ — +o0o conduisent a la conclusion

— Sia > 1, I'intégrale converge.
— Si a < 1, I'intégrale diverge.

— On peut remarquer que dans chaque cas, la discussion ne porte pas sur la
valeur de b

2 Autre

Correction de ’exercice 9. On considére la fonction f définie par :

/+°O 1 — cos (tz) @t
0

t2

f(x)

1. Pour montrer que la fonction f est définie sur R, il s’agit de montrer que, pour € R
quelconque, l'intégrale généralisée dans la formule définissant f(z) est convergente.
Soit z € R fixé.

— Si x = 0, l'intégrande vaut 0, f(0) = 0.

1 — cos (tx
— On suppose x # 0. L’intégrande ¢ — %, est clairement continue sur
10, 400], le probléme de la nature de l'intégrale généralisée a donc un sens, elle
a deux singularités, I’'une en 0 et ’autre en +o00.

17
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— En 0, on a, lorsque t — 07 :

l—cos(te) 1, ,1 1,

1
L’intégrande se prolonge par continuité en 0 et l'intégrale / .. est une
0

intégrale faussement généralisée.
— En +o0, on a

+oo
Or / 2 dt est convergente (refaire le calcul), donc, par comparaison,
1
1 — cos (tz)

+o0 ool — t
/ " dt converge et donc, l'intégrale / M
1

2
1 t
est absolument convergente et donc convergente.

dt

1 +o0
— Les deux intégrales / .. et / ... sont convergente et par définition,
0 1

+oo
I'intégrale / ... est convergente.
0

2. Il est claire que R est symétrique par rapport a 0. Soit x € R, comme, par parité de

Cos,
Wt >0, 1 — cos (t(—x)) _ 1 —cos (tx)
12 12
il vient, aprés intégration, f(z) = f(—z).
La fonction f est donc paire.

3. Supposons que x > 0, en effectuant le changement de variable affine u = t.x,
monotone de ]0, +oo[ sur |0, +oo], (du = z.dt), on a

Tl — t 1 — cos 1 Tl —
/ wdt:/ 1~ cosu) L= Lmeostu) gy 4 1)
0 t 0 (u/z) X 0 u
Comme f est paire et f(0) = 0, on obtient que
Vo € R, f(z) = f(1).Jo
NB : Montrer que f(1) = 7/2 demande beaucoup de travail.

Correction de I’exercice 10.
1. L’intégrale généralisée est impropre en +oo. Soit A € [0, +00].

A

dt A T

= |arctan(?)|; — —.

/0 el W 752 2
o0 T
Donc est convergente et vaut —.
1+t 2

0
2. On a pour tout ¢ € [0, 00| :
1

0< < .
S 1t

Par comparaison pour les intégrales de fonctions continues positives, on déduit de

la question précédente que ——— converge aussi.
q p q /0 iTo)r g
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) oo gt teo g2 dt
3. On pose, pour n € N*, I, = /0 m et J, = /0 (1+ )il

(a) Soit n € N*. On a :

1
I+ oy = /0 ( 1+ t2 n+1 + (1 + t2)n+1) dt

/ 2 n-‘rl)dt
o (1+8)

In.

1 —1
(b) Soit n € N* et soit A € [0,4o00[. Les fonctions u : t — t et v : t — e
sont de classe C' sur [0, A] donc par IPP :

/oA (1;5% = /OA u(t)v'(t)dt

= [u(t)o(t)]f — / o (D)o (t)dt
—A A -1
~ on(1+ A2)n _/0 2n(1 +t2)”dt

—A 1 /A 1
= 4+ — —dt.
2n(1+ A% 2n J, (1+t3)»
En faisant tendre A vers +o0o on obtient :

I, = —1,.
2n

(c) D’apres les deux questions précédentes :

1
Vn € N*, %[n + [n+1 = [n
i.e.
2n —1
2n
Par récurrence, on obtient alors, pour tout n € N* :
2n—-1)—-1)2n—-2)—1)---1 (2n—-3)2n—5)---17

(2n—2)(2n —4)---2 h=""==n-n 2

Vn € N*, ]n_;’_l == _[n

I, =

_ (2n—=2)(2n—3)(2n—4)(2n—5) -

17

(2=t (n —1)!)?
o (@2n=2) 7
@2 (n—1)1)22°

Correction de ’exercice 11.
sin(t)
t

fausse impropreté.

1. La fonction t — est prolongeable par continuité en 0 par 1 donc il s’agit d’'une

Donc 'intégrale converge.

19
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2. Soit n € N*. La fonction H,, est une somme (finie) de fonctions de classe C* sur R
donc elle est C* sur R.

Par ailleurs :

H,(0) sin©) _
k
k=1
3. Le code :
import numpy as np
import matplotlib.pyplot as plt
def H(n,x):
s =0
for k in range(l,n+1):
s = s + np.sin(k*x)/k

return s

X=np.linspace(0,10,100)
for n in [2,10,15,20]:

plt.plot(X,H(n,X))
plt.show ()

sin(¢)

4. Soit n € N*. En notant f la fonction ¢ — — prolongée en 0, continue sur [0, 1],
on a: (k) (k)
1 “ sin (£ 1~ sin (£ 1 « k
Hy <g) =) =) =) (g)
k=1 k=1 n k=1

1 .
sin(?) it

On reconnait une somme de Riemann dont on sait qu’elle tend vers /
0
Cette limite est strictement positive car I'intégrande est strictement positif.

Correction de ’exercice 12.
—t
e
1. Soit z > 0. la fonction ¢ — e est continue sur [z, +00[ donc I'intégrale est impropre

en +oo. Par croissance comparée, on sait que :
—t

e
lim 2 x — = lim te ! =0.
t— 400 t t——4o00

Ainsi : € _ 0 <—>
t t——+oo0 \ 12
—t

. 1 e ) ...
De plus, les fonctions x = et t — - sont continues et positives sur [z, +o0l.
D’aprés le théoréme de comparaison pour les intégrales de fonctions continues posi-

+oo
tives, comme l'intégrale de Riemann / t_th converge alors J(z) converge aussi.
xT

2. (a) Soit A € [z, +00]. On a:

Vit € [z, +o00], et_ <e'x —.

20
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Donc :

At
e
En particulier, la fonction A — / t—th est croissante et majorée donc pos-
x

+oo —t
séde une limite en +00. On en déduit donc que 'intégrale / t_zdt converge

x
+oo —t
e 1
/ —2dt S —26_1.
= t x

On en déduit ’encadrement :

et vérifie :

+00 ¢t
< e =7
X
Ainsi : ot
o
g Je U _
z—+00 e~” '

+o00 e—t e
Cela signifie :/ —dt= o ( )
t2 T—+00 €T

1
(b) Soient z > 0 et A > z. Les fonctions u : ¢ — n et vt —e ' sont de classe

C" sur [z, A]. Par intégration par parties, on a donc :

/x ! %tdt _ / ® by ()t

— lu(o @)~ [ et

B e—A N e T /A e—tdt
A T . 2

En faisant tendre A vers 400 et avec la question précédente on obtient donc :

—x +oo —t —x —T
e e e e
= — —dt = .
J(x) €T /x t2 T + a:—gi-oo ( X )

D’aprés la caractérisation de la relation d’équivalence, on a bien :

(n+1)m
Correction de ’exercice 13. Soit [,, = / sinx.e " dx.

nm
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On se raméne a Uintervalle [0, 7] par « translation » en posant t = x — n7 (changement
de variables affine), pour obtenir

I, = / sin(t + TL?T)e—(t+n7r) dt = (—1)n€—n7r/ sin(t)e_t dt — (—1)n6_n'pi]0
’ 0

La suite (I,) est donc une suite géométrique de raison —e ™.

+00
Concernant la convergence de 'intégrale généralisée / sinz.e”" dx :
0

— Son intégrande x — sinz.e” est continue sur [0, +0o0]
— V& >0,0 < [sin(z)e™| <e”,

+o0
— Comme / e dr =1 (calcul explicite), on en déduit par le théoréme de compa-
0

+0o0
raison que / sin(x)e™" dz est absolument convergente et donc convergente.
0

Si NV est un entier (tendant vers +00), on a, par Chasles,

N (N+1)7m +o00
Z I, = / sin(x)e™® de —— sin(x)e™" dz.
— 0 N—4o00 0
Or pour N € N,
N
1= (—e ™"
Z I, = Io.ﬂ (somme géométrique)
o 1+em
et donc

N

1
E [n > [0. .
t N—+oo 1+e ™

Par unicité de la limite, on a donc

1
1+4+e ™

“+oo
/ sin(x)e™® dx = .
0

Cette formule donne le lien entre les deux parties de I'exercice.
Concernant la valeur cette intégrale, on peut primitiver x +— sin(x)e* en constatant qu’il
(—1+4i)z —1+i)z

dont une primitive est z — ——— el

s’agit de la partie imaginaire de x — e o3
-1+

1 )
—5(1 +1)el =1 Comme

1 ‘ 1
I'm (‘5“ + i)e”“””) = —5 (€7 cos(x) + ¢ sin(x)),

on a alors

oo 1 1
]0/ sin(z)e™ dr = lim (—é(e_x cos(xz) + e * sin(x)) + 5= 3
0

T—+00

On peut aussi (calcul classique, sans utiliser les nombres complexes) effectuer deux inté-
grations par parties successives
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