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Mathématiques � TD2

Intégrales généralisées

1 Applications directes du cours

Correction de l'exercice 1.

1. La fonction f : t 7→ 1√
t− 1

est dé�nie et continue sur [2,+∞[ donc l'intégrale est

impropre en +∞.
Soit A ∈ [2,+∞[. On a :∫ A

2

1√
t− 1

dt =
[
2
√
t− 1

]A
2
= 2

√
A− 1− 2.

Donc : lim
A→+∞

∫ A

2

1√
t− 1

dt = +∞.

Ainsi l'intégrale
∫ +∞

2

1√
t− 1

dt est divergente.

2. La fonction f : t 7→ t

(1 + t2)2
est continue sur ]−∞, 0] donc l'intégrale est impropre

en −∞.
Soit A ∈]−∞, 0]. Alors on a :∫ 0

A

t

(1 + t2)2
dt =

[
−1

2

1

1 + t2

]0
A

=
1

2

(
1

1 + A2
− 1

)
.

Donc : lim
A→−∞

∫ 0

A

t

(1 + t2)2
= −1

2
.

Ainsi l'intégrale
∫ 0

−∞

t

(1 + t2)2
dt est convergente et vaut −1

2
.

3. La fonction x 7→ xe−x2

est continue sur R donc l'intégrale est impropre en −∞ et
en +∞.

� Étude de l'intégrale
∫ 0

−∞
xe−x2

dx impropre en −∞.

Soit A ∈]−∞, 0]. On a :∫ 0

A

xe−x2

dx =

[
−1

2
e−x2

]0
A

= −1

2
(1− e−A2

).

Ainsi : lim
A→−∞

∫ 0

A

xe−x2

dx = −1

2
.

L'intégrale converge donc et vaut −1

2
.
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� Étude de l'intégrale
∫ +∞

0

xe−x2

dx impropre en +∞.

Soit A ∈ [0,+∞[. On a :∫ A

0

xe−x2

dx =

[
−1

2
e−x2

]A
0

= −1

2
(e−A2 − 1).

Ainsi : lim
A→+∞

∫ A

0

xe−x2

dx =
1

2
.

L'intégrale converge donc et vaut
1

2
.

� Conclusion : comme les intégrales
∫ 0

−∞
xe−x2

dx et
∫ +∞

0

xe−x2

dx convergent

alors
∫ +∞

−∞
xe−x2

dx converge et :

∫ +∞

−∞
xe−x2

dx =

∫ 0

−∞
xe−x2

dx+

∫ +∞

0

xe−x2

dx = 0.

4. La fonction t 7→ t√
2− t2

est continue sur [0,
√
2[ donc la l'intégrale est impropre en

√
2. Soit A ∈ [0,

√
2[. Pour tout t ∈ [0,

√
2[, on a

t√
2− t2

= −1

2

−2t√
2− t2

= − u′

2
√
u

où u : t 7→ 2− t2 est continue et positive sur [0, A]. Ainsi,∫ A

0

t√
2− t2

dt = −
[√

2− t2
]A
0
= −

√
2− A2 +

√
2.

Donc

lim
A→

√
2
−

∫ A

0

t√
2− t2

dt = lim
A→

√
2
−
−
√
2− A2 +

√
2 =

√
2.

Ainsi, l'intégrale
∫ √

2

0

t√
2− t2

dt converge et vaut
√
2.

Correction de l'exercice 2.

1. La fonction f : x 7→ xe−x2

est continue sur [0,+∞[ donc l'intégrale est impropre en
+∞.
Soit A ∈ [0,+∞[. Alors on a :∫ A

0

xe−x2

dx =

[
−1

2
e−x2

]A
0

=
1

2
(1− e−A2

).

Donc : lim
A→+∞

∫ A

0

xe−x2

dx =
1

2
.

Ainsi l'intégrale
∫ +∞

0

xe−x2

dx est convergente et vaut
1

2
.
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2. La fonction f : t 7→ 1

1 + et
est continue sur [0,+∞[ donc l'intégrale est impropre en

+∞.
Soit A ∈ [0,+∞[.

� Méthode 1 : la fonction u : t 7→ et est de classe C1 sur [0, A], en e�ectuant le
changement de variable u = et on obtient :∫ A

0

1

1 + et
dt =

∫ A

0

1

et(1 + et)
etdt =

∫ A

0

1

u(t)(1 + u(t))
u′(t)dt =

∫ eA

1

1

u(1 + u)
du.

Or, pour tout u ≥ 1 :
1

u(u+ 1)
=

1

u
− 1

u+ 1
. Donc :

∫ A

0

1

1 + et
dt =

∫ eA

1

1

u(1 + u)
du

=

∫ eA

1

(
1

u
− 1

u+ 1

)
du

= [ln (u)− ln (u+ 1)]e
A

1

= A− ln (1 + eA) + ln (2)

= ln (2)− ln (1 + e−A).

� Méthode 2 : on a : ∀t ≥ 0,
1

1 + et
=

e−t

1 + e−t
. Donc :

∫ A

0

1

1 + et
dt =

∫ A

0

e−t

1 + e−t
dt =

[
− ln (1 + e−t)

]A
0
= ln (2)− ln (1 + e−A).

� Conclusion : lim
A→+∞

∫ A

0

1

1 + et
dt = ln (2).

Ainsi l'intégrale
∫ +∞

0

1

1 + et
dt est convergente et vaut ln (2).

3. La fonction x 7→ 1

2(1 + |x|)2
est continue sur R donc l'intégrale est impropre en −∞

et en +∞.

� Étude de l'intégrale
∫ 0

−∞

1

2(1 + |x|)2
dx impropre en −∞.

Soit A ∈]−∞, 0]. On a :∫ 0

A

1

2(1 + |x|)2
dx =

∫ 0

A

1

2(1− x)2
=

1

2

[
1

1− x

]0
A

=
1

2
− 1

2(1− A)
.

Ainsi : lim
A→−∞

∫ 0

A

1

2(1 + |x|)2
dx =

1

2
.

L'intégrale converge donc et vaut
1

2
.
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� Étude de l'intégrale
∫ +∞

0

1

2(1 + |x|)2
dx impropre en +∞.

Soit A ∈ [0,+∞[. On a :∫ A

0

1

2(1 + |x|)2
dx =

∫ A

0

1

2(1 + x)2
=

1

2

[
− 1

1 + x

]A
0

=
1

2
− 1

2(1 + A)
.

Ainsi : lim
A→+∞

∫ A

0

1

2(1 + |x|)2
dx =

1

2
.

L'intégrale converge donc et vaut
1

2
.

� Conclusion : comme les intégrales
∫ 0

−∞

1

2(1 + |x|)2
dx et

∫ +∞

0

1

2(1 + |x|)2
dx

convergent alors
∫ +∞

−∞

1

2(1 + |x|)2
dx converge et :∫ +∞

−∞

1

2(1 + |x|)2
dx =

∫ 0

−∞

1

2(1 + |x|)2
dx+

∫ +∞

0

1

2(1 + |x|)2
dx = 1.

4. La fonction f : t 7→ 1

t− 1
est continue sur ]1, 2] donc l'intégrale est impropre en 1.

Soit A ∈]1, 2]. Alors on a :∫ 2

A

1

t− 1
dt = [ln(t− 1)]2A = − ln(A− 1) −−−→

A→1
+∞.

Ainsi l'intégrale est divergente.

Correction de l'exercice 3. 1. La fonction u 7→ ue−u est continue sur [0,+∞[ donc
l'intégrale est impropre en +∞. Soit A ∈ [0,+∞[. Alors, comme les fonctions u 7→ u
et u 7→ −e−u sont de classe C1 sur [0, A], par intégration par parties on trouve :∫ A

0

ue−udu =
[
−ue−u

]A
0
−
∫ A

0

−e−udu = −Ae−A − e−A + 1.

Ainsi,

lim
A→+∞

∫ A

0

ue−udu = lim
A→+∞

−Ae−A − e−A + 1 = 1.

Par conséquent,
∫ +∞

0

ue−udu converge et sa valeur est 1.

2. La fonction x 7→ ln (x)

x2
est continue sur [1,+∞[ donc l'intégrale est impropre en

+∞. Soit A ∈ [1,+∞[.

Les fonctions x 7→ ln (x) et x 7→ −1

x
sont de classe C1 sur R∗

+ donc par intégration

par parties on a : ∫ A

1

ln (x)

x2
dx =

[
− ln (x)

x

]A
1

−
∫ A

1

−1

x
× 1

x
dx

= − ln (A)

A
+

[
−1

x

]A
1

= − ln (A)

A
+

−1

A
+ 1.

4



Arnaud Stocker

Ainsi : lim
A→+∞

∫ A

1

ln (x)

x2
dx = 1.

Donc l'intégrale converge et vaut 1.

3. La fonction t 7→ ln (t)

t2
est continue sur [1,+∞[ donc l'intégrale est impropre en +∞.

Soit A ∈ [1,+∞[. La fonction u : t 7→ ln (t) est de classe C1 et strictement croissante
sur [1, A] donc, en e�ectuant le changement de variable u = ln (t) et en utilisant la
question 1, on obtient :∫ A

1

ln (t)

t2
dt =

∫ A

1

u(t)

eu(t)
u′(t)dt =

∫ lnA

0

u

eu
du =

∫ lnA

0

ue−udu = − lnA

A
− 1

A
+ 1

en réutilisant la question précédente. Ainsi,

lim
A→+∞

∫ A

1

ln (t)

t2
dt = lim

A→+∞
− lnA

A
− 1

A
+ 1 = 1.

Donc
∫ +∞

1

ln (t)

t2
dt converge et vaut 1.

4. La fonction u 7→
√

1 + u

1− u
est continue sur [0, 1[ donc l'intégrale est impropre en 1.

La fonction u : t 7→ cos(t) est de classe C1 et strictement décroissante sur ]0,
π

2
]

donc, en e�ectuant le changement de variable u = cos(t), les intégrales∫ 1

0

√
1 + u

1− u
du et

∫ 0

π
2

√
1 + cos(t)

1− cos(t)
× (− sin(t))dt

sont de même nature. Or :

1 + cos(t) = 2 cos2
(
t

2

)
et 1− cos(t) = 2 sin2

(
t

2

)
.

L'étude revient à l'étude de l'intégrale :∫ 0

π
2

∣∣∣∣∣cos
(
t
2

)
sin

(
t
2

) ∣∣∣∣∣× (− sin(t))dt =

∫ π
2

0

2 cos2
(
t

2

)
dt

car sin(t) = 2 sin

(
t

2

)
cos

(
t

2

)
. En�n, cette dernière intégrale est une intégrale de

fonction continue sur un segment et :∫ π
2

0

2 cos2
(
t

2

)
dt =

∫ π
2

0

(cos(t) + 1)dt

= [sin(t) + t]
π
2
0

= 1 +
π

2
.

Donc
∫ 1

0

√
1 + u

1− u
du converge et vaut 1 +

π

2
.
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Correction de l'exercice 4.

1. A =

∫ +∞

1

x dx√
x3 + 1

.

(a) L'intégrande x 7→ x√
x3 + 1

est continue sur [1 +∞[. La question de la nature

de l'intégrale généralisée en question à un sens, elle a une singularité en +∞.
(b) On a :

x√
x3 + 1

∼
x→+∞

x · x− 3
2 = x− 1

2

et donc , par le théorème d'équivalence pour les intégrales généralisées à inté-

grande positive, A et
∫ +∞

1

x− 1
2 dx sont de même nature.

Or cette dernière diverge vers +∞ (une primitive est
√
x, qui a pour limite

+∞ en ∞).

Finalement
∫ +∞

1

x dx√
x3 + 1

est divergente.

2. B =

∫ +∞

0

t5.e−t2 dt.

(a) L'intégrande t 7→ t5.e−t2 est continue sur [0,+∞[. La question de la nature de
l'intégrale généralisée en question à un sens, elle a une singularité en +∞.

(b) On a, lorsque t → +∞, par croissance comparées,

t5.e−t2

e−t
→ 0

et donc, il existe T ≥ 1 tel que

∀x ≥ T, 0 ≤ t5.e−t2 ≤ e−t

Or
∫ +∞

T

e−t dt converge (vers e−T ) et donc, par le théorème de comparaison

pour les intégrales généralisées à intégrande positive,
∫ +∞

T

t5.e−t2 dt converge

et par Chasles, il en est de même pour
∫ +∞

0

t5.e−t2 dt.

3. C =

∫ 1

0

dx√
x(1− x)

.

(a) L'intégrande x 7→ 1√
x(1− x)

est continue sur ]0, 1[ (elle tend vers +∞ à cha-

cune des extrémités), il est légitime de considérer la question de la convergence
de l'intégralisée qui a deux singularités, l'une en 0, l'autre en +1. On traite la

nature de chacune des intégrales
∫ 1

2

0

et
∫ 1

1
2

séparémment.

(b) Convergence de
∫ 1

2

0

....
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Si 0 < x <
1

2
alors

√
1− x ≥ 1√

2
donc :

∀x ∈
]
0,

1

2

]
, 0 ≤ 1√

x(1− x)
≤

√
2

1√
x

Or l'intégrale généralisée
∫ 1

2

0

√
2

1√
x
dx est convergente (une primitive de l'in-

tégrande est Cst×
√
x, qui a une limite en 0+)et donc, par le théorème de com-

paraison pour les intégrales généralisées à intégrande positive,
∫ 1

2

0

dx√
x(1− x)

est convergente.

(c) Convergence de
∫ 1

1
2

.... Sur le même modèle, on a

∀x ∈
[
1

2
, 1

[
, 0 ≤ 1√

x(1− x)
≤

√
2

1√
1− x

Or l'intégrale généralisée
∫ 1

1
2

√
2

1√
1− x

dx est convergente (une primitive de

l'intégrande est Cst ×
√
1− x, qui a une limite en 1−)et donc, par le théo-

rème de comparaison pour les intégrales généralisées à intégrande positive,∫ 1

1
2

dx√
x(1− x)

est convergente.

(d) Convergence de C =

∫ 1

0

.... Comme
∫ 1

1
2

... et
∫ 1

2

0

... sont convergentes, par

dé�nition , l'intégrale généralisée a deux singularités,
∫ 1

0

... est convergente.

4. D =

∫ +∞

1

sin t.e−2t dt.

(a) L'intégrande t 7→ sin t.e−2t est continue sur [1,+∞[. La question de la nature
de l'intégrale généralisée en question à un sens, elle a une singularité en +∞.

(b) On a, du fait que | sin t| ≤ 1,

∀t ≥ 0, 0 ≤
∣∣sin t.e−2t

∣∣ ≤ e−2t

Or
∫ +∞

0

e−2t dt converge (vers
1

2
) et donc, par le théorème de comparaison

pour les intégrales généralisées à intégrande positive,
∫ +∞

0

sin t.e−2t dt est ab-

solument convergente et donc convergente.
Remarques :

� On a de plus, le nombre
∫ +∞

0

sin t.e−2t dt étant bien dé�ni par ce qui vient

d'être dit, que ∣∣∣∣∫ +∞

0

sin t.e−2t dt

∣∣∣∣ ≤ 1

2
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� On peut mener le calcul exact de cette intégrale (en passant en complexes
ou par deux ipp), ce n'est pas la question ici.

5. E =

∫ 1

0

sinx− x

1− cosx
dx.

(a) L'intégrande x 7→ sinx− x

1− cosx
est continue sur ]0, 1], car, sur cet intervalle 1−cosx

ne s'annule pas (annulation pour x = 0 puis x = 2.π > 1. La question de la
nature de l'intégrale généralisée en question à un sens, elle a a priori une
singularité en 0.

(b) Examinons le comportement de l'intégrande en 0. On a, lorsque x → 0,

sinx− x ∼ −1

6
x3, 1− cosx ∼ 1

2
x2

et donc
sinx− x

1− cosx
∼ −1

3
x → 0+

L'intégrande se prolonge par continuité en 0+. On a onc a�aire à une intégrale
faussement généralisée (elle est convergente, c'est une intégrale classique)

Correction de l'exercice 5. 1. La fonction t 7→ t

t+
√
t
est continue sur [1,+∞[

donc l'intégrale est impropre en +∞.
Soit t ≥ 1. Alors

√
t ≤ t donc

t+
√
t ≤ 2t

et par décroissance de la fonction inverse sur ]0,+∞[ on en déduit :

∀t ∈ [1,+∞[,
t

t+
√
t
≥ 1

2
.

Les fonctions t 7→ t

t+
√
t
et t 7→ 1

2
sont continues et positives sur [1,+∞[ donc,

d'après le théorème de comparaison pour les intégrales de fonctions continues posi-

tives, comme
∫ +∞

1

1

2
dt diverge, l'intégrale

∫ +∞

1

t

t+
√
t
dt diverge aussi.

2. La fonction t 7→ 1

et + e−t
est continue sur [1,+∞[ donc l'intégrale est impropre en

+∞. Or,

∀t ≥ 1,
1

et + e−t
≤ 1

et
= e−t.

Les fonctions t 7→ 1

et + e−t
et t 7→ e−t sont continues et positives sur [1,+∞[ donc,

d'après le théorème de comparaison pour les intégrales de fonctions continues posi-

tives, comme
∫ +∞

1

e−tdt converge (exemple de référence), l'intégrale
∫ +∞

1

dt

et + e−t

converge aussi.

3. La fonction t 7→ 1

1 + t+ tn
est continue sur [1,+∞[. L'intégrale est donc impropre

en +∞.

8
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� Si n ≥ 2. Pour tout t ∈ [1,+∞[ on a

1 + t+ tn ≥ tn donc
1

1 + t+ tn
≤ 1

tn
.

Les fonctions t 7→ 1

1 + t+ tn
et t 7→ 1

tn
sont continues, positives sur [1,+∞[

et
∫ +∞

1

1

tn
dt est une intégrale convergente car n > 1 (faire le calcul explicite).

D'après le critère de comparaison pour les intégrales de fonctions continues

positives, on en déduit que
∫ +∞

1

1

1 + t+ tn
dt converge aussi.

� Si n = 1. Pour tout t ∈ [1,+∞[ on a

1 + t+ tn = 1 + 2t ≤ 3t donc
1

1 + t+ tn
≥ 1

3t
.

Les fonctions t 7→ 1

1 + t+ tn
et t 7→ 1

3t
sont continues, positives sur [1,+∞[

et
∫ +∞

1

1

3t
dt est une intégrale divergente (faire le calcul explicite). D'après le

critère de comparaison pour les intégrales de fonctions continues positives, on

en déduit que
∫ +∞

1

1

1 + t+ tn
dt diverge aussi.

� Si n = 0. Pour tout t ∈ [1,+∞[ on a

1 + t+ tn = 2 + t ≤ 3t donc
1

1 + t+ tn
≥ 1

3t
.

Et on conclut comme précédemment que l'intégrale
∫ +∞

1

1

1 + t+ tn
dt diverge.

4. La fonction t 7→ ln (t)√
t

est continue sur [1,+∞[. L'intégrale est donc impropre en

+∞.
De plus, pour tout t ≥ e on a

ln (t)√
t

≥ 1√
t
.

Les fonctions t 7→ ln (t)√
t

et t 7→ 1√
t
sont continues, positives sur [1,+∞[ et

∫ +∞

1

1√
t
dt

est une intégrale divergente (faire le calcul explicite). D'après le critère de com-
paraison pour les intégrales de fonctions continues positives, on en déduit que∫ +∞

1

ln (t)√
t
dt diverge.

5. La fonction t 7→ 1

t3 ln (t)
est continue sur [2,+∞[. L'intégrale est donc impropre en

+∞.
De plus, pour tout t ≥ 2 on a

1

t3 ln (t)
≤ 1

ln (2)t3
.
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Les fonctions t 7→ 1

t3 ln (t)
et t 7→ 1

t3 ln (2)
sont continues, positives sur [2,+∞[ et∫ +∞

2

1

t3 ln (2)
dt est une intégrale convergente (faire le calcul explicite). D'après le

critère de comparaison pour les intégrales de fonctions continues positives, on en

déduit que
∫ +∞

2

1

t3 ln (t)
dt converge aussi.

Correction de l'exercice 6.

1. La fonction t 7→ 1√
t2 + t

est continue sur ]0, 1]. L'intégrale est impropre en 0.

�

√
t2 + t ∼

t→0+

√
t donc

1√
t2 + t

∼
t→0+

1√
t
;

� les fonctions t 7→ 1√
t2 + t

et t 7→ 1√
t
sont continues et positives sur ]0, 1]

D'après le critère d'équivalence pour les intégrales de fonctions continues positives,

on en déduit que
∫ 1

0

1√
t2 + t

dt et
∫ 1

0

1√
t
dt sont de même nature. Comme

∫ 1

0

1√
t
dt

converge (faire le calcul explicite), l'intégrale
∫ 1

0

1√
t2 + t

dt converge aussi.

2. La fonction t 7→
√
t

et − 1− t
est continue sur ]0, 1]. L'intégrale est impropre en 0.

� par DL usuels, on sait que

et − 1− t =
t2

2
+ o

n→+∞
0(t2).

En particulier, et−1− t ∼
t→0

t2

2
et par compatibilité de la relation d'équivalence

avec le passage au quotient, on déduit l'équivalent suivant
√
t

et − 1− t
∼

t→0+

2

t
3
2

.

� les fonctions t 7→
√
t

et − 1− t
et t 7→ 2

t
3
2

sont continues et positives sur ]0, 1].

D'après le critère d'équivalence pour les intégrales de fonctions continues positives,

on en déduit que
∫ 1

0

2

t
3
2

dt et
∫ 1

0

√
t

et − 1− t
dt sont de même nature. Comme

∫ 1

0

2

t
3
2

dt

diverge (faire le calcul explicite), l'intégrale
∫ 1

0

√
t

et − 1− t
dt diverge aussi.

3. La fonction t 7→ 1

t2 + 1
est continue sur [0,+∞[. L'intégrale est donc impropre en

+∞.

� t2 + 1 ∼
t→+∞

t2 donc
1

t2 + 1
∼

t→+∞

1

t2
;

� les fonctions t 7→ 1

t2 + 1
et t 7→ 1

t2
sont continues et positives sur [1,+∞[.

10
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D'après le critère d'équivalence pour les intégrales de fonctions continues posi-

tives, on en déduit que
∫ +∞

1

1

t2 + 1
dt et

∫ +∞

1

1

t2
dt sont de même nature. Comme∫ +∞

1

1

t2
dt converge (faire le calcul explicite), l'intégrale

∫ +∞

1

1

t2 + 1
dt converge

aussi.

En�n, comme t 7→ 1

t2 + 1
est continue sur [0, 1], l'intégrale

∫ 1

0

1

t2 + 1
dt est bien

dé�nie et par la relation de Chasles on déduit que
∫ +∞

0

1

t2 + 1
dt converge.

Attention : on ne peut pas appliquer directement le critère sur [0,+∞[ car la fonction

t 7→ 1

t2
n'est pas continue sur [0,+∞[ (elle n'est pas dé�nie en 0 !) et l'intégrale

impropre
∫ +∞

0

1

t2
dt diverge.

Correction de l'exercice 7.

1. La fonction t 7→ t2 + 2t

t4 + 1
est continue sur [0,+∞[. L'intégrale est donc impropre en

+∞. De plus, par équivalent usuel et compatibilité des équivalents avec le quotient
on a :

t2 + 2t

t4 + 1
∼

t→+∞

1

t2
.

Les fonctions t 7→ t2 + 2t

t4 + 1
et t 7→ 1

t2
sont continues, positives sur [1,+∞[. D'après

le critère d'équivalence pour les intégrales de fonctions continues positives, on en

déduit que et
∫ +∞

1

1

t2
dt et

∫ +∞

1

t2 + 2t

t4 + 1
dt sont de même nature. Comme

∫ +∞

1

1

t2
dt

est une intégrale convergente,
∫ +∞

1

t2 + 2t

t4 + 1
dt converge aussi.

Comme de plus, t 7→ t2 + 2t

t4 + 1
est continue sur [0, 1] l'intégrale

∫ 1

0

t2 + 2t

t4 + 1
dt existe.

Finalement
∫ +∞

0

t2 + 2t

t4 + 1
converge.

Attention : on ne peut pas appliquer directement le critère sur [0,+∞[ car la

fonction t 7→ 1

t2
n'est pas continue sur [0,+∞[ (elle n'est pas dé�nie en 0 !).

2. La fonction x 7→ 1

x2 − x+ 1
est continue sur R car pour tout réel x, x2 − x+1 > 0.

L'intégrale est donc impropre en −∞ et en +∞.

� Étude de
∫ 0

−∞

1

x2 − x+ 1
dx.

Par équivalent usuel et compatibilité des équivalents avec le quotient on a :

1

x2 − x+ 1
∼

x→−∞

1

x2
.

Les fonctions x 7→ 1

x2 − x+ 1
et x 7→ 1

x2
sont continues, positives sur ] −

∞,−1]. D'après le critère d'équivalence pour les intégrales de fonctions conti-

11
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nues positives, on en déduit que
∫ −1

−∞

1

x2
dx et

∫ −1

−∞

1

x2 − x+ 1
dx sont de même

nature. Comme
∫ −1

−∞

1

x2
dx est une intégrale convergente,

∫ −1

−∞

1

x2 − x+ 1
dx

converge aussi.

Comme de plus, x 7→ 1

x2 − x+ 1
est continue sur [−1, 0] l'intégrale

∫ 0

−1

1

x2 − x+ 1
dx

existe.

Finalement
∫ 0

−∞

1

x2 − x+ 1
dx converge donc.

� On montre de la même façon que
∫ +∞

0

1

x2 − x+ 1
dx converge.

� Comme
∫ 0

−∞

1

x2 − x+ 1
dx et

∫ +∞

0

1

x2 − x+ 1
dx convergent alors

∫ +∞

−∞

1

x2 − x+ 1
dx

converge.

3. La fonction t 7→ 1

(1 + t2)
√
1− t2

est continue sur ]− 1, 1[. L'intégrale est impropre

en −1 et en 1.

� Étude de
∫ 0

−1

1

(1 + t2)
√
1− t2

dt.

On a :

1

(1 + t2)
√
1− t2

=
1

(1 + t2)
√
(1− t)(1 + t)

∼
t→−1+

1

2
√
2
√
t+ 1

.

Les fonctions t 7→ 1

(1 + t2)
√
1− t2

et t 7→ 1

2
√
2
√
t+ 1

sont continues et posi-

tives sur ]− 1, 0].
D'après le critère d'équivalence pour les intégrales de fonctions continues po-

sitives, on en déduit que
∫ 0

−1

1

(1 + t2)
√
1− t2

dt et
∫ 0

−1

1

2
√
2
√
1 + t

dt sont de

même nature.
Soit A ∈]− 1, 0]. On a∫ 0

A

1

2
√
2
√
1 + t

dt =
1√
2

[√
1 + t

]0
A
=

1√
2
−

√
1 + A√
2

.

Ainsi lim
A→−1+

∫ 0

A

1

2
√
2
√
1 + t

dt =
1√
2
. En particulier,

∫ 0

−1

1

2
√
2
√
1 + t

dt converge

et donc
∫ 0

−1

1

(1 + t2)
√
1− t2

dt converge aussi.

� On montre de même que
∫ 1

0

1

(1 + t2)
√
1− t2

dt converge.

� Comme
∫ 0

−1

1

(1 + t2)
√
1− t2

dt et
∫ 1

0

1

(1 + t2)
√
1− t2

dt convergent,
∫ 1

−1

1

(1 + t2)
√
1− t2

dt

converge.

4. La fonction t 7→
1
t

e
1
t − 1

est continue sur [1,+∞[. L'intégrale est donc impropre en

+∞.

12
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On sait par équivalent usuel :

e
1
t − 1 ∼

t→+∞

1

t
.

D'où :
1
t

e
1
t − 1

∼
t→+∞

1.

Les fonctions t 7→
1
t

e
1
t − 1

et t 7→ 1 sont continues, positives sur [1,+∞[. D'après

le critère d'équivalence pour les intégrales de fonctions continues positives, on en

déduit que
∫ +∞

1

e
1
t dt et

∫ +∞

1

1dt sont de même nature. Comme cette dernière est

une intégrale divergente,
∫ +∞

1

1
t

e
1
t − 1

dt diverge aussi.

5. La fonction t 7→
√

t

2t2 + 1
est continue sur [0,+∞[. L'intégrale est donc impropre

en +∞. De plus, on véri�e à l'aide de la caractérisation que l'on a :√
t

2t2 + 1
∼

t→+∞

1√
2t
.

Les fonctions t 7→
√

t

2t2 + 1
et t 7→ 1√

2t
sont continues, positives sur [c,+∞[ pour

tout c > 0. D'après le critère d'équivalence pour les intégrales de fonctions continues

positives, on en déduit que et
∫ +∞

c

√
t

2t2 + 1
dt et

∫ +∞

c

1√
2t
dt sont de même nature.

Comme cette dernière est une intégrale divergente,
∫ +∞

c

√
t

2t2 + 1
dt diverge aussi

pour tout c > 0. Donc
∫ +∞

0

√
t

2t2 + 1
dt diverge.

6. La fonction t 7→ ln

(
1 +

1

t2

)
est continue sur [1,+∞[. L'intégrale est donc impropre

en +∞. De plus par équivalent usuel, on a :

ln

(
1 +

1

t2

)
∼

t→+∞

1

t2
.

Les fonctions t 7→ ln

(
1 +

1

t2

)
et t 7→ 1

t2
sont continues, positives sur [1,+∞[.

D'après le critère d'équivalence pour les intégrales de fonctions continues positives,

on en déduit que et
∫ +∞

1

ln

(
1 +

1

t2

)
dt et

∫ +∞

1

1

t2
dt sont de même nature. Comme

cette dernière est une intégrale convergente,
∫ +∞

1

ln

(
1 +

1

t2

)
dt converge aussi.

Correction de l'exercice 8. Soit a > 0.
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1. Intégrales de Riemann.

Au niveau du contexte général, l'intégrande t 7→ 1

ta
est continue sur ]0,+∞[, consi-

dérer la nature (et la valeur éventuelle) des intégrales généralisées
∫ 1

0

dt

ta
,
∫ +∞

1

dt

ta

et
∫ +∞

0

dt

ta
a donc un sens.

(a) Concernant
∫ 1

0

dt

ta
qui a une singularité en 0, soit ϵ > 0 un nombre réel destiné

à tendre vers 0+.

� Si a ̸= 1, on a∫ 1

ϵ

dt

ta
=

[
1

1− a
t−a+1

]1
ϵ

=
1

1− a

(
ϵ1−a − 1

)
Deux cas se distinguent alors

� Si a > 1 alors 1− a < 0 et∫ 1

ϵ

dt

ta
−−−→
ϵ→0+

+∞

L'intégrale généralisée est divergente vers +∞.
� Si a < 1 alors 1− a > 0 et∫ 1

ϵ

dt

ta
−−−→
ϵ→0+

1

1− a

L'intégrale généralisée est convergente vers
1

1− a
.

� Si a = 1, on a ∫ 1

ϵ

dt

t
= [ln t]1ϵ = − ln ϵ

−−−→
ϵ→0+

+∞

L'intégrale généralisée est divergente vers +∞.

(b) Concernant
∫ +∞

1

dt

ta
qui a une singularité en +∞, soit T > 0 un nombre réel

destiné à tendre vers +∞.

� Si a ̸= 1, on a∫ T

1

dt

ta
=

[
1

1− a
t−a+1

]T
1

=
1

1− a

(
T 1−a − 1

)
Deux cas se distinguent alors

� Si a > 1 alors 1− a < 0 et∫ T

1

dt

ta
−−−−→
T→+∞

1

a− 1

L'intégrale généralisée est convergente vers
1

a− 1
.
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� Si a < 1 alors 1− a > 0 et∫ T

1

dt

ta
−−−−→
T→+∞

+∞

L'intégrale généralisée est divergente vers +∞.
� Si a = 1, on a ∫ T

1

dt

t
= [ln t]T1 = lnT

−−−−→
T→+∞

+∞

L'intégrale généralisée est divergente vers +∞.

Concernant
∫ +∞

0

dt

ta
, la synthèse des cas précédents montre qu'elle divergente

dans tous les cas. On peut faire cette synthèse sous forme de tableau

a 0 1 +∞∫ 1

0

dt

ta
|| 1

1− a
DV DV∫ +∞

1

dt

ta
|| DV DV

1

a− 1∫ +∞

0

dt

ta
|| DV DV DV

2. Intégrales de Bertrand.

Pour a > 0, b > 0 �xés, la fonction t 7→ 1

ta| ln t|b
est continue sur chacun des inter-

valles

]
0,

1

2

]
, [2,+∞[, ]1, 2], ]1,+∞[, les intégrales généralisées dont il est question

dans la suite ont toutes un sens avec des singularités précisées dans chacun des cas.
Remarquons aussi que cette intégrande est positive.

(a) Cette intégrale généralisée a une singularité en 0. En e�ectuant le changement

de variable généralisé u = − ln t, du = −1

t
dt, C1 strictement décroissant de]

0,
1

2

]
sur [ln 2,+∞[, l'intégrale

∫ 1
2

0

dt

t| ln t|a
en question est de même nature

que ∫ +∞

ln 2

1

ua
du

et, d'après la question sur les intégrales de Riemann, on a

� Si a ≤ 1 : Divergence

� Si a > 1 : Convergence et vaut
1

a− 1
(ln 2)1−a.

(b) De façon analogue au cas précédent, cette intégrale généralisée a une singularité

en +∞. En e�ectuant le changement de variable généralisé u = ln t, du =
1

t
dt,
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C1 strictement croissant de [2,+∞[ sur [ln 2,+∞[, l'intégrale
∫ +∞

2

dt

t| ln t|a
en

question est de même nature que∫ +∞

ln 2

1

ua
du

et, d'après la question sur les intégrales de Riemann, on a

� Si a ≤ 1 : Divergence

� Si a > 1 : Convergence et vaut
1

a− 1
(ln 2)1−a.

(c) Cette intégrale généralisée a une singularité en 1. Par le changement de variable
a�ne t = 1+u, elle est de même nature (détailler ?) que l'intégrale généralisée∫ 1

0

1

(1 + u) ln(1 + u)a
du

qui a une singularité en 0.
Comme ln(1 + u) ∼0 u, 1 + u ∼0 1,

1

(1 + u) ln(1 + u)a
∼0 u

−a

et, en rédigeant l'argument de l'équivalent proprement on montre alors, tou-
jours en se basant sur le critère de convergence des intégrales de Riemann,
que

� Si a < 1 : Convergence
� Si a ≥ 1 : Divergence

(d) L'intégrale généralisée ∫ +∞

1

dt

t| ln t|a

a deux singularités, l'une en 0, l'autre en+∞. Les question précédentes montrent
que quelques soit la valeur de a > 0, l'une des deux intégrales généralisées∫ 2

1

dt

t| ln t|a
ou

∫ +∞

2

dt

t| ln t|a
diverge. Donc

∫ +∞

1

dt

t| ln t|a
est divergente, quelque

soit la valeur de a > 0.

(e) � Pour le cas de
∫ 1

2

0

dt

ta| ln t|b
qui a une singularité en 0.

� Si a > 1, prenons 1 < a′ < a. On a

1

ta| ln t|b
.ta

′
=

ta
′−a

| ln t|b
−−−→
t→0+

+∞.

Il existe donc un nombre réel
1

2
> δ > 0 tel que

∀t ∈]0, δ], 1

ta| ln t|b
.ta

′ ≥ 1

et donc

∀t ∈]0, δ], 1

ta| ln t|b
≥ t−a′ > 0
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Comme
∫ δ

0

t−a′ dt diverge (question 1 car a′ > 1) alors, par le théo-

rème de comparaison,
∫ δ

0

1

ta| ln t|b
diverge et, par Chasles,

∫ 1
2

0

1

ta| ln t|b
diverge.

� Si a < 1, prenons 1 > a′ > a. On a

1

ta| ln t|b
.ta

′
=

ta
′−a

| ln t|b
−−−→
t→0+

0

Il existe donc un nombre réel
1

2
> δ > 0 tel que

∀t ∈]0, δ], 0 <
1

ta| ln t|b
.ta

′ ≤ 1

et donc

∀t ∈]0, δ], 0 <
1

ta| ln t|b
≤ t−a′ > 0

Comme
∫ δ

0

t−a′ dt converge (question 1, car a′ < 1) alors, par le théo-

rème de comparaison,
∫ δ

0

1

ta| ln t|b
converge et, par Chasles,

∫ 1
2

0

1

ta| ln t|b
converge.

� Concernant l'intégrale généralisée
∫ +∞

2

dt

ta| ln t|b
, les mêmes méthodes (com-

paraison asymptotique lorsque t → +∞ conduisent à la conclusion

� Si a > 1, l'intégrale converge.
� Si a < 1, l'intégrale diverge.

� On peut remarquer que dans chaque cas, la discussion ne porte pas sur la
valeur de b

2 Autre

Correction de l'exercice 9. On considère la fonction f dé�nie par :

f (x) =

∫ +∞

0

1− cos (tx)

t2
dt.

1. Pour montrer que la fonction f est dé�nie sur R, il s'agit de montrer que, pour x ∈ R
quelconque, l'intégrale généralisée dans la formule dé�nissant f(x) est convergente.
Soit x ∈ R �xé.

� Si x = 0, l'intégrande vaut 0, f(0) = 0.

� On suppose x ̸= 0. L'intégrande t 7→ 1− cos (tx)

t2
, est clairement continue sur

]0,+∞[, le problème de la nature de l'intégrale généralisée a donc un sens, elle
a deux singularités, l'une en 0 et l'autre en +∞.
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� En 0, on a, lorsque t → 0+ :

1− cos (tx)

t2
∼ 1

2
(xt)2

1

t2
=

1

2
x2.

L'intégrande se prolonge par continuité en 0 et l'intégrale
∫ 1

0

.. est une

intégrale faussement généralisée.
� En +∞, on a

∀t ≥ 1, 0 ≤
∣∣∣∣1− cos (tx)

t2

∣∣∣∣ ≤ 2

t2

Or
∫ +∞

1

2

t2
dt est convergente (refaire le calcul), donc, par comparaison,∫ +∞

1

∣∣∣∣1− cos (tx)

t2

∣∣∣∣ dt converge et donc, l'intégrale
∫ +∞

1

1− cos (tx)

t2
dt

est absolument convergente et donc convergente.

� Les deux intégrales
∫ 1

0

... et
∫ +∞

1

... sont convergente et par dé�nition,

l'intégrale
∫ +∞

0

... est convergente.

2. Il est claire que R est symétrique par rapport à 0. Soit x ∈ R, comme, par parité de
cos,

∀t > 0,
1− cos (t(−x))

t2
=

1− cos (tx)

t2

il vient, après intégration, f(x) = f(−x).
La fonction f est donc paire.

3. Supposons que x > 0, en e�ectuant le changement de variable a�ne u = t.x,
monotone de ]0,+∞[ sur ]0,+∞[, (du = x.dt), on a∫ +∞

0

1− cos (tx)

t2
dt =

∫ +∞

0

1− cos (u)

(u/x)2
1

x
.dt = x.

∫ +∞

0

1− cos (u)

u2
du = x.f(1)

Comme f est paire et f(0) = 0, on obtient que

∀x ∈ R, f(x) = f(1).|x|

NB : Montrer que f(1) = π/2 demande beaucoup de travail.

Correction de l'exercice 10.

1. L'intégrale généralisée est impropre en +∞. Soit A ∈ [0,+∞[.∫ A

0

dt

1 + t2
= [arctan(t)]A0 −−−−→

A→+∞

π

2
.

Donc
∫ +∞

0

dt

1 + t2
est convergente et vaut

π

2
.

2. On a pour tout t ∈ [0,+∞[ :

0 ≤ 1

(1 + t2)n
≤ 1

1 + t2
.

Par comparaison pour les intégrales de fonctions continues positives, on déduit de

la question précédente que
∫ +∞

0

dt

(1 + t2)n
converge aussi.
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3. On pose, pour n ∈ N∗, In =

∫ +∞

0

dt

(1 + t2)n
et Jn =

∫ +∞

0

t2 dt

(1 + t2)n+1
.

(a) Soit n ∈ N∗. On a :

Jn + In+1 =

∫ +∞

0

(
t2

(1 + t2)n+1
+

1

(1 + t2)n+1

)
dt

=

∫ +∞

0

t2 + 1

(1 + t2)n+1
)dt

= In.

(b) Soit n ∈ N∗ et soit A ∈ [0,+∞[. Les fonctions u : t 7→ t et v : t 7→ 1

2

−1

n(1 + t2)n

sont de classe C1 sur [0, A] donc par IPP :∫ A

0

t2

(1 + t2)n+1
=

∫ A

0

u(t)v′(t)dt

= [u(t)v(t)]A0 −
∫ A

0

u′(t)v(t)dt

=
−A

2n(1 + A2)n
−
∫ A

0

−1

2n(1 + t2)n
dt

=
−A

2n(1 + A2)n
+

1

2n

∫ A

0

1

(1 + t2)n
dt.

En faisant tendre A vers +∞ on obtient :

Jn =
1

2n
In.

(c) D'après les deux questions précédentes :

∀n ∈ N∗,
1

2n
In + In+1 = In

i.e.

∀n ∈ N∗, In+1 =
2n− 1

2n
In.

Par récurrence, on obtient alors, pour tout n ∈ N∗ :

In =
(2(n− 1)− 1)(2(n− 2)− 1) · · · 1

(2n− 2)(2n− 4) · · · 2
I1 =

(2n− 3)(2n− 5) · · · 1
2n−1(n− 1)!

π

2

=
(2n− 2)(2n− 3)(2n− 4)(2n− 5) · · · 1

(2n−1(n− 1)!)2
π

2

=
(2n− 2)!

(2n−1(n− 1)!)2
π

2
.

Correction de l'exercice 11.

1. La fonction t 7→ sin(t)

t
est prolongeable par continuité en 0 par 1 donc il s'agit d'une

fausse impropreté.
Donc l'intégrale converge.
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2. Soit n ∈ N∗. La fonction Hn est une somme (�nie) de fonctions de classe C∞ sur R
donc elle est C∞ sur R.
Par ailleurs :

Hn(0) =
n∑

k=1

sin(0)

k
= 0.

3. Le code :

import numpy as np

import matplotlib.pyplot as plt

def H(n,x):

s =0

for k in range(1,n+1):

s = s + np.sin(k*x)/k

return s

X=np.linspace (0 ,10 ,100)

for n in [2 ,10 ,15 ,20]:

plt.plot(X,H(n,X))

plt.show()

4. Soit n ∈ N∗. En notant f la fonction t 7→ sin(t)

t
prolongée en 0, continue sur [0, 1],

on a :

Hn

(
1

n

)
=

n∑
k=1

sin
(
k
n

)
k

=
1

n

n∑
k=1

sin
(
k
n

)
k
n

=
1

n

n∑
k=1

f

(
k

n

)
.

On reconnaît une somme de Riemann dont on sait qu'elle tend vers
∫ 1

0

sin(t)

t
dt.

Cette limite est strictement positive car l'intégrande est strictement positif.

Correction de l'exercice 12.

1. Soit x > 0. la fonction t 7→ e−t

t
est continue sur [x,+∞[ donc l'intégrale est impropre

en +∞. Par croissance comparée, on sait que :

lim
t→+∞

t2 × e−t

t
= lim

t→+∞
te−t = 0.

Ainsi :
e−t

t
= o

t→+∞

(
1

t2

)
.

De plus, les fonctions x 7→ 1

t2
et t 7→ e−t

t
sont continues et positives sur [x,+∞[.

D'après le théorème de comparaison pour les intégrales de fonctions continues posi-

tives, comme l'intégrale de Riemann
∫ +∞

x

1

t2
dt converge alors J(x) converge aussi.

2. (a) Soit A ∈ [x,+∞[. On a :

∀t ∈ [x,+∞[,
e−t

t2
≤ e−t × 1

x2
.
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Donc : ∫ A

x

e−t

t2
dt ≤ 1

x2

∫ A

x

e−tdt

≤ 1

x2
(e−x − e−A)

≤ 1

x2
e−x.

En particulier, la fonction A 7→
∫ A

x

e−t

t2
dt est croissante et majorée donc pos-

sède une limite en +∞. On en déduit donc que l'intégrale
∫ +∞

x

e−t

t2
dt converge

et véri�e : ∫ +∞

x

e−t

t2
dt ≤ 1

x2
e−x.

On en déduit l'encadrement :

0 ≤
∫ +∞
x

e−t

t2
dt

e−x

x

≤ 1

x
.

Ainsi :

lim
x→+∞

∫ +∞
x

e−t

t2
dt

e−x

x

= 0.

Cela signi�e :
∫ +∞

x

e−t

t2
dt = o

x→+∞

(
e−x

x

)
.

(b) Soient x > 0 et A > x. Les fonctions u : t 7→ 1

t
et v : t 7→ −e−t sont de classe

C1 sur [x,A]. Par intégration par parties, on a donc :∫ A

x

e−t

t
dt =

∫ A

x

u(t)v′(t)dt

= [u(t)v(t)]Ax −
∫ A

x

u′(t)v(t)dt

= −e−A

A
+

e−x

x
−
∫ A

x

e−t

t2
dt.

En faisant tendre A vers +∞ et avec la question précédente on obtient donc :

J(x) =
e−x

x
−
∫ +∞

x

e−t

t2
dt =

e−x

x
+ o

x→+∞

(
e−x

x

)
.

D'après la caractérisation de la relation d'équivalence, on a bien :

J(x) ∼
x→+∞

e−x

x
.

Correction de l'exercice 13. Soit In =

∫ (n+1)π

nπ

sinx.e−x dx.
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On se ramène à l'intervalle [0, π] par � translation � en posant t = x − nπ (changement
de variables a�ne), pour obtenir

In =

∫ π

0

sin(t+ nπ)e−(t+nπ) dt = (−1)ne−nπ

∫ π

0

sin(t)e−t dt = (−1)ne−n.piI0

La suite (In) est donc une suite géométrique de raison −e−π.

Concernant la convergence de l'intégrale généralisée
∫ +∞

0

sinx.e−x dx :

� Son intégrande x 7→ sinx.e−x est continue sur [0,+∞[

� ∀x ≥ 0, 0 ≤ | sin(x)e−x| ≤ e−x,

� Comme
∫ +∞

0

e−x dx = 1 (calcul explicite), on en déduit par le théorème de compa-

raison que
∫ +∞

0

sin(x)e−x dx est absolument convergente et donc convergente.

Si N est un entier (tendant vers +∞), on a, par Chasles,

N∑
n=0

In =

∫ (N+1)π

0

sin(x)e−x dx −−−−→
N→+∞

∫ +∞

0

sin(x)e−x dx.

Or pour N ∈ N,

N∑
n=0

In = I0.
1− (−e−π)n

1 + e−π
(somme géométrique)

et donc
N∑

n=0

In −−−−→
N→+∞

I0.
1

1 + e−π
.

Par unicité de la limite, on a donc∫ +∞

0

sin(x)e−x dx = I0.
1

1 + e−π

Cette formule donne le lien entre les deux parties de l'exercice.
Concernant la valeur cette intégrale, on peut primitiver x 7→ sin(x)e−x en constatant qu'il

s'agit de la partie imaginaire de x 7→ e(−1+i)x dont une primitive est x 7→ 1

−1 + i
e(−1+i)x =

−1

2
(1 + i)e(−1+i)x. Comme

Im

(
−1

2
(1 + i)e(−1+i)x

)
= −1

2
(e−x cos(x) + e−x sin(x)),

on a alors

I0

∫ +∞

0

sin(x)e−x dx = lim
x→+∞

(
−1

2
(e−x cos(x) + e−x sin(x)

)
+

1

2
=

1

2
.

On peut aussi (calcul classique, sans utiliser les nombres complexes) e�ectuer deux inté-
grations par parties successives
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