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La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la préci-

sion des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les résultats, étapes importantes, . . .doivent être mis en valeurs.

Exercice � Calcul de l'intégrale de Gauss

Le but de l'exercice est de démontrer que l'intégrale

∫ +∞

−∞
e−

x2

2 dx, appelée l' l'intégrale

de Gauss, converge et vaut
√
2π.

Partie 1 � Une inégalité.

Le but de cette partie est de montrer :

∀x ∈ R, 0 ≤ ex − 1− x ≤ x2

2
e|x|.

1. Soit f : x 7−→ ex − 1− x, dérivable sur R comme somme de fonctions dérivables sur
R. On a :

∀x ∈ R, f ′(x) = ex − 1.

On en déduit le tableau de signe et de variation suivant :

x

f ′(x)

f

−∞ 0 +∞

− 0 +

00

Ainsi, f admet un minimum global en 0 :

∀x ∈ R, f(x) ≥ f(0) = 0.

De manière équivalente, pour tout x ∈ R, ex − 1− x ≥ 0.

2. Soit g la fonction dé�nie sur R+ par :

∀x ≥ 0, g(x) = ex − 1− x− x2

2
ex.

.
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(a) En tant que somme de fonctions de classe C2 sur R+, g est de classe C2 sur R+.
De plus, pour tout x ∈ R+ on a :

g′(x) = ex − 1− xex − x2

2
ex

et

g′′(x) = ex − ex − xex − xex − x2

2
ex = −x

(
2 +

x

2

)
ex.

(b) On en déduit en particulier :

x

g′′(x)

g′

0 +∞

0 −

00

En particulier, g′ est décroissante et g′(0) = 0 donc :

∀x ≥ 0, g′(x) ≤ 0.

(c) D'après la question précédente, on en déduit que g est décroissante sur R+

donc pour tout x ∈ R+ :
g(x) ≤ g(0) = 0.

Ainsi : ∀x ≥ 0, ex − 1− x ≤ x2

2
ex.

3. (a) Soit h : x 7−→ ex − e−x − 2x dé�nie et de classe C2 sur R+.

Pour tout x ∈ R+ on a :

h′(x) = ex + e−x − 2 ; h′′(x) = ex − e−x.

On en déduit par croissance de l'exponentielle que h′′ est positive sur R+ puis :

x

Signe de
h′′(x)

Variations
de h′

Signe
de h′(x)

Variations
de h

0 +∞

+

00

0 +

00

En particulier, pour tout x ≥ 0, h(x) ≥ 0.

Ainsi : ∀x ≥ 0, ex − e−x ≥ 2x.
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(b) Soit x ∈ R.
Si x ≥ 0 alors les deux membres de l'inégalité sont égaux.

Si x < 0 alors |x| = −x et l'inégalité précédente appliquée à |x| > 0 donne :

e|x| − e−|x| ≥ 2|x|.

On a donc
e|x| − |x| ≥ e−|x| + |x| = ex − x.

Finalement, pour tout réel x, ex − x ≤ e|x| − |x|.
4. L'inégalité de gauche a été prouvée à la question 1.

L'inégalité de droite a été montrée pour les réels positives à la question 2.(c).
Soit x un réel négatif. D'après la question précédente et la question 2.(c), on a :

ex − 1− x ≤ e|x| − 1− |x| ≤ |x|2

2
e|x| =

x2

2
e|x|.

Donc l'inégalité de droite est aussi valable pour les réels négatifs.

Ainsi pour tout x ∈ R :

0 ≤ ex − 1− x ≤ x2

2
e|x|.

Partie 2 � Étude d'une fonction dé�nie par une intégrale

Soit f la fonction dé�nie sur R+ par :

∀x ≥ 0, f(x) =

∫ 1

0

e−x(1+t2)

1 + t2
dt.

5. Pour tout x ∈ R+, la fonction t 7→ e−x(1+t2)

1 + t2
est continue sur [0, 1]. Ainsi l'intégrale∫ 1

0

e−x(1+t2)

1 + t2
dt est bien dé�nie.

6. Soit x ≥ 0. Pour tout t ∈ [0, 1], on a :

1 + t2 ≥ 1 ; e−x(1+t2) ≤ e−x

donc

0 ≤ e−x(1+t2)

1 + t2
≤ e−x.

Par croissance de l'intégrale, on obtient donc :

0 ≤ f(x) ≤
∫ 1

0

e−xdt = e−x.

Comme lim
x→+∞

e−x = 0, on en déduit par le théorème des gendarmes que :

lim
x→+∞

f(x) = 0.
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7. Soit x et h deux réels.

f(x+ h)− f(x) + h

∫ 1

0

e−x(1+t2)dt =

∫ 1

0

e−(x+h)(1+t2)

1 + t2
dt−

∫ 1

0

e−x(1+t2)

1 + t2
dt+ h

∫ 1

0

e−x(1+t2)dt

=

∫ 1

0

e−x(1+t2)

1 + t2

(
e−h(1+t2) − 1 + h(1 + t2)

)
dt

Or, pour tout t ∈ [0, 1], en appliquant l'inégalité de la partie 1 avec le réel −h(1+t2),
on a :

0 ≤ e−h(1+t2) − 1 + h(1 + t2) ≤ h2(1 + t2)2

2
e|h(1+t2)|

d'où

0 ≤ e−x(1+t2)

1 + t2

(
e−h(1+t2) − 1 + h(1 + t2)

)
≤ h2(1 + t2)2

2(1 + t2)
e|h(1+t2)|e−x(1+t2).

En majorant 1 + t2 par 2 pour tout t ∈ [0, 1] on obtient �nalement :

0 ≤ e−x(1+t2)

1 + t2

(
e−h(1+t2) − 1 + h(1 + t2)

)
≤ 2h2e2|h|

e−x(1+t2)

1 + t2
.

En intégrant entre 0 et 1, on obtient par croissance de l'intégrale :

0 ≤ f(x+ h)− f(x) + h

∫ 1

0

e−x(1+t2)dt ≤ 2h2e2|h|f(x).

8. Soit x ≥ 0 et soit h ̸= 0. D'après la question précédente :

∣∣∣∣f(x+ h)− f(x)

h
+

∫ 1

0

e−x(1+t2)dt

∣∣∣∣ ≤ 2|h|e2|h|f(x)

−−→
h→0

0

Ainsi, par encadrement

lim
h→0

∣∣∣∣f(x+ h)− f(x)

h
+

∫ 1

0

e−x(1+t2)dt

∣∣∣∣ = 0

c'est-à-dire

lim
h→0

f(x+ h)− f(x)

h
= −

∫ 1

0

e−x(1+t2)dt.

Cela montre que f est dérivable en x et que :

f ′(x) = −
∫ 1

0

e−x(1+t2)dt = −e−x

∫ 1

0

e−xt2dt.

9. Soit g : x ∈ R 7−→ f(x2).

(a) La fonction carrée est dérivable sur R à valeur dans R+.

La fonction f est dérivable sur R+.

Par composition, g est dérivable sur R et pour tout x ∈ R :

g′(x) = 2xf ′(x2) = −2xe−x2

∫ 1

0

e−x2t2dt.
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(b) On va e�ectuer le changement de variable u : t 7→ xt.

Attention, ce changement de variable n'est pas strictement monotone si x = 0 !
Il faut donc traiter ce cas à part.

� Cas où x = 0 : par la question précédente g′(0) = 0 et l'égalité demandée
est bien véri�ée.

� Cas où x ̸= 0 : la fonction u : t 7→ xt est de classe C1 et strictement mono-
tone (u′ : t 7→ x donc u est strictement croissante si x > 0 et strictement
décroissante si x < 0). Donc par changement de variable :

g′(x) = −2xe−x2

∫ 1

0

e−x2t2dt = −2e−x2

∫ 1

0

e−x2t2xdt

= −2e−x2

∫ 1

0

e−u(t)2u′(t)dt

= −2e−x2

∫ x

0

e−u2

du.

10. Soit h : x ∈ R 7−→ g(x) +

(∫ x

0

e−u2

du

)2

.

(a) On a : h(0) = g(0) = f(0) =

∫ 1

0

1

1 + t2
dt = [arctan(t)]10 =

π

4
.

(b) La fonction t 7→ e−t2 est continue sur R donc elle possède une primitive sur R.
Soit F sa primitives s'annulant en 0 :

∀x ∈ R, F (x) =

∫ x

0

e−u2

du

et F est dérivable de dérivée x 7→ e−x2

.

On a alors :
∀x ∈ R, h(x) = g(x) + F (x)2.

Ainsi, h est dérivable en tant que somme de fonctions dérivables et pour tout
x ∈ R, on a :

h′(x) = g′(x) + 2F ′(x)F (x) = −2e−x2

∫ x

0

e−u2

du+ 2e−x2 −
∫ x

0

e−u2

du

= 0

On en déduit que h est constante sur R.

Partie 3 � Calcul de l'intégrale de Gauss

11. (a) Soit x ≥ 1. Alors

x2 ≥ x donc − x2 ≤ −x

et par croissance de la fonction exponentielle :

e−x2 ≤ e−x.
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(b) Montrons que

∫ +∞

0

e−xdx, généralisée en +∞, est convergente.

Soit A ≥ 0.

∫ A

1

e−xdx = [−e−x]A0 = e−1 − e−A.

Donc lim
A→+∞

∫ A

0

e−xdx = e−1.

Ainsi

∫ +∞

1

e−xdx converge.

� Les fonctions x 7→ e−x et x 7→ e−x2

sont continues et positives sur [1,+∞[,

� ∀x ∈ [1,+∞[, e−x ≤ e−x2

,

�

∫ +∞

1

e−xdx converge.

D'après le théorème de comparaison pour les intégrales de fonctions continues

positives, on en déduit que

∫ +∞

1

e−x2

dx converge.

En�n, comme

∫ 1

0

e−x2

dx n'est pas une intégrale généralisée, par Chasles,

∫ +∞

0

e−x2

dx

converge aussi.

On note I sa valeur.

12. Soit h la fonction dé�nie à la partie précédente. On a pour tout x ≥ 0 :

h(x) = g(x) +

(∫ x

0

e−u2

du

)2

= f(x2) +

(∫ x

0

e−u2

du

)2

.

Or :

� d'après la question 6., lim
x→+∞

f(x) = 0 donc par composition :

lim
x→+∞

f(x2) = 0;

� d'après la question précédente x 7→
∫ x

0

e−u2

du admet une limite �nie en +∞
que l'on a notée I.

Ainsi, par opération sur les limites, h possède une limite en +∞ et :

lim
x→+∞

h(x) = 0 + I2 = I2.

13. On a vu à la question 10 que h est constante sur R et que h(0) =
π

4
. Donc

∀x ∈ R, h(x) =
π

4
.

D'après la question précédente on a donc :

I2 = lim
x→+∞

h(x) =
π

4
.

D'où : I =

√
π

2
.
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14. On va e�ectuer le changement de variable x : t 7→ t√
2
qui est bien de classe C1 et

strictement croissant sur [0,+∞[.

D'après le théorème de changement de variable, on sait donc que∫ +∞

0

e−x2

dx et

∫ +∞

0

e−t2/2 1√
2
dt

sont de même nature et égales en cas de converge.

Comme la première converge d'après les questions précédentes, on en déduit donc

que

∫ +∞

0

e−t2/2 1√
2
dt converge et vaut

√
π

2
.

En particulier : ∫ +∞

0

e−t2/2dt =
√
2

√
π

2
=

√
2π

2
.

En�n, x 7→ e−x2/2 est une fonction paire et

∫ +∞

0

e−x2/2dx converge. D'après le cours,

on en déduit que

∫ +∞

−∞
e−x2/2dx converge et

∫ +∞

−∞
e−x2/2dx = 2

∫ +∞

0

e−x2/2dx =
√
2π.
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Exercice 2 � Étude d'une fonction de deux variables

On considère la fonction f dé�nie sur ]0,+∞[ par :

∀t ∈]0,+∞[, f(t) = t+
1

t
.

Partie 1 � Étude d'une fonction d'une variable

1. La fonction f est dérivable sur ]0,+∞[ et pour tout t > 0 :

f ′(t) = 1− 1

t2
=

t2 − 1

t2
.

x

Signe
de f ′(x)

Variations
de f

0 1 +∞

− 0 +

+∞+∞

22

+∞+∞

2. La fonction f est continue et strictement croissante sur [1,+∞[. D'après le théorème
de la bijection, elle réalise donc une bijection de [1,+∞[ vers [f(1), lim

x→+∞
f(x)[=

[2,+∞[.

3. (a) D'après le théorème de la bijection, g est strictement croissante sur [2,+∞[ :

x

Variations
de f

2 +∞

11

+∞+∞

(b) Soit s ∈ [2,+∞[, comme f est de classe C1 sur [1,+∞[, on sait que g est
dérivable en s si f ′(g(s)) ̸= 0 et dans ce cas :

g′(s) =
1

f ′(g(s))
.

Or d'après le tableau de signe de f ′ :

f ′(g(s)) = 0 ⇐⇒ g(s) = 1 ⇐⇒ s = 2.

Ainsi la fonction g est dérivable sur ]2,+∞[ et

∀s > 2, g′(s) =
1

f ′(g(s))
.

En particulier, g′ est continue sur ]2,+∞[ comme quotient et composée de
fonctions continues donc g est de classe C1 sur ]2,+∞[
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(c) Soit s ∈ [2,+∞[ et t ≥ 1.

f(t) = s ⇐⇒ t+
1

t
= s ⇐⇒ t2 − st+ 1 = 0

⇐⇒ t =
s−

√
s2 − 4

2
ou t =

s+
√
s2 − 4

2

Or, on a :

s−
√
s2 − 4

2
=

s2 − (s2 − 4)

2(s+
√
s2 − 4)

=
4

2(s+
√
s2 − 4)

=
2

s+
√
s2 − 4

≤ 1.

Par conséquent, pour t ≥ 1, on a :

f(t) = s ⇐⇒ t =
s+

√
s2 − 4

2
.

Ainsi g(s) =
s+

√
s2 − 4

2
.

Partie 2� Étude d'une fonction de deux variables

On considère la fonction h de classe C2 sur le pavé ouvert U =]0,+∞[×]0,+∞[ dé�nie
par :

∀(x, y) ∈ U, h(x, y) =

(
1

x
+

1

y

)
(1 + x)(1 + y).

4. Pour tout (x, y) ∈ U on a :

∂h

∂x
(x, y) = − 1

x2
(1 + x)(1 + y) +

(
1

x
+

1

y

)
(1 + y) = (1 + y)

(
1

y
− 1

x2

)
et

∂h

∂y
(x, y) = − 1

y2
(1 + x)(1 + y) +

(
1

x
+

1

y

)
(1 + x) = (1 + x)

(
1

x
− 1

y2

)
.

5. Soit (x, y) ∈ U .

(x, y) est un point critique de h ⇐⇒


∂h

∂x
(x, y) = 0

∂h

∂y
(x, y) = 0

⇐⇒


(1 + y)

(
1

y
− 1

x2

)
= 0

(1 + x)

(
1

x
− 1

y2

)
= 0

⇐⇒


1

y
− 1

x2
= 0 car 1+y>0

1

x
− 1

y2
= 0 car 1+x>0

⇐⇒
{

y = x2

x = y2
.
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6. En poursuivant la question précédente :

(x, y) est un point critique de h ⇐⇒
{

y = x2

x = y2

⇐⇒
{

y = x2

x = x4

⇐⇒
{

y = 0
x = 0

ou

{
y = 1
x = 1

Mais comme (0, 0) /∈ U , le seul point critique est (1, 1).

7. (a) Soit (x, y) ∈ U .

h(x, y) =

(
1

x
+

1

y

)
(1 + x)(1 + y) =

1

x
(1 + x)(1 + y) +

1

y
(1 + x)(1 + y)

=

(
1

x
+ 1

)
(1 + y) + (1 + x)

(
1

y
+ 1

)
=

1

x
+

y

x
+ 1 + y +

1

y
+ 1 +

x

y
+ x

= 2 + f(x) + f(y) +
y

x
+

x

y

= 2 + f(x) + f(y) + f

(
x

y

)

(b) Comme f admet un minimum global valant 2 (d'après la question 1), on a :

∀(x, y) ∈ U, h(x, y) ≥ 2 + 2 + 2 + 2 = 8 = h(1, 1).

Ainsi h admet en (1, 1) un minimum global sur U .
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