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A rendre le 08/10

La présentation, la lisibilité, 'orthographe, la qualité de la rédaction, la clarté et la préci-
ston des raisonnements entreront pour une part importante dans [’appréciation des copies.
Les résultats, étapes importantes, . ..doivent étre mis en valeurs.

Exercice — Calcul de I'intégrale de Gauss

+oo xg
Le but de l'exercice est de démontrer que 'intégrale / e~ 2 dx, appelée 1" [intégrale
—00

de Gauss, converge et vaut v 2.
Partie 1 — Une inégalité.

Le but de cette partie est de montrer :

22
Vr € R, ()Sez—l—xgge'””‘.

1. Soit f:x +—— e” — 1 —x, dérivable sur R comme somme de fonctions dérivables sur
R. On a:
Ve eR, fl(z)=¢e"—1.

On en déduit le tableau de signe et de variation suivant :

x —00 0 “+00
f'(z) — 0 +
/ \ 0 /

Ainsi, f admet un minimum global en 0 :
VreR, f(z)> f(0)=0.

De maniére équivalente, pour tout r € R, e* — 1 — 2z > 0.
2. Soit g la fonction définie sur RY par :

$2

Vo >0, g(x):ex—l—x—gex.
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(a)

(b)

(c)

3. (a)

En tant que somme de fonctions de classe C2 sur RT, g est de classe C? sur RY.
De plus, pour tout € R™ on a :

2

g(x)=¢€"—1—xe" — T en

2
et )
g"(x) =" —e¥ —we® — xe” — Rl — (2 + f) ev.
2 2
On en déduit en particulier :
x 0 +00
g'(x) | 0 -
0

En particulier, ¢ est décroissante et ¢’'(0) = 0 donc :
Ve >0, ¢(z)<0.

D’aprés la question précédente, on en déduit que g est décroissante sur R™
donc pour tout z € R™ :

g9(x) < g(0) = 0.
22
Ainsi : Vr > 0,e"* —1—2 < Eex.

Soit h : x — € — e~ % — 22 définie et de classe C? sur RY.
Pour tout z € R on a :

W(x)=e"+e =2 ; h(zx)=e"—e".

On en déduit par croissance de I’exponentielle que h” est positive sur R* puis :

T 0 +00

Signe de
h/l (x)

Variations
de h/ 0
Signe

de n'(x)

0

Variationd

de h 0

/
/

En particulier, pour tout = > 0, h(x) > 0.
Ainsi : Ve >0, e —e * > 2x.




Arnaud Stocker

(b) Soit z € R.
Siz > 0 alors les deux membres de I'inégalité sont égaux.
Si z < 0 alors || = —x et U'inégalité précédente appliquée a || > 0 donne :

el —e7lel > 2.

On a donc
el —|z| > el 4 || = e® — .

Finalement, pour tout réel z, e® — z < el*l — |z|.
4. L’inégalité de gauche a été prouvée a la question 1.
L’inégalité de droite a été montrée pour les réels positives a la question 2.(c).
Soit = un réel négatif. D’aprés la question précédente et la question 2.(c), on a :

i

2
T
ex—l—x§e|x‘—1—]x\§7€|x|:

Z el
26

x|

Donc 'inégalité de droite est aussi valable pour les réels négatifs.

Ainsi pour tout z € R :
2

Ogez—l—xg%em.

Partie 2 — Etude d’une fonction définie par une intégrale
Soit f la fonction définie sur Rt par :

—z(1+t2)

1
e

e—a:(1+t2)

5. Pour tout x € R", la fonction ¢ — est continue sur [0, 1]. Ainsi l'intégrale

+ 12
1 —a(1+2)
/ —————dt est bien définie.
0 141t
6. Soit z > 0. Pour tout t € [0,1], on a:

1 + t2 2 1 : e—z(1+t2) S 6—1’

done
6fx(l+t2)
0< — <e™,
- 14t =€

Par croissance de l'intégrale, on obtient donc :

1
0< f(x) < / e Tdt =e7".
0

Comme lim e *

= 0, on en déduit par le théoréme des gendarmes que :
T—>+00

lim f(z)=0.

r—r—+00
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7. Soit z et h deux réels.

1 ) 1 o= (z+h)(1+t?) 1 —a(1+t?) 1 ,
flx+h)— f(x)+ h/ e~ (1+%) gy — / I _/ e dt+ h/ o~ (1) gy
0 0 0 0

1+¢2 1+t
1 —z(142)
— [ L (eh) g 41 t2>dt
/O (e F (L4 2)

Or, pour tout ¢ € [0, 1], en appliquant I'inégalité de la partie 1 avec le réel —h(1-+t2),

on a .

2 212
0< e—h(1+t2) — 14+ h(l + t2) < Me\h(l-ﬁ?ﬂ

2
d’ou
—x(1+t2) h2(1 2)2
e _ 2 +t) 2 _ 2
0<—< h(+2) 1 4 1y(1 4+ 42 ) < R TV) Ih(+2)] ~a(14+42).
=1 \© FhI+T)) S 50y ‘

En majorant 1 + #* par 2 pour tout ¢ € [0, 1] on obtient finalement :
—x(1+t2) —x(1+t2)
€ 2 €
0<—< —h(+5) 1 4 h(1 t2> < op?eM
T o142 ‘ Th1+8)) < ° 1+ ¢2

En intégrant entre 0 et 1, on obtient par croissance de l'intégrale :

0< flx+h)— f(z)+ h/1 e gt < 2n2e2M £ ().
0

8. Soit x > 0 et soit h # 0. D’aprés la question précédente :

V@+2—ﬂ@+AZﬁMﬁﬂgmmﬁW@>

—0
h—0

Ainsi, par encadrement

lim

h—0

[z + h})L — f(z) 4 /01 e—x(1+t2)dt’ -0

c’est-a-dire

lim flw+h) = fz) = — /1 e 1) gy,
0

h—0 h

Cela montre que f est dérivable en z et que :

1 1
ﬂ@z—/eﬁMﬁﬁ:%”/eﬂ%t
0 0

9. Soit g: 2z € R+—> f(z?).
(a) La fonction carrée est dérivable sur R a valeur dans R™.
La fonction f est dérivable sur R .
Par composition, g est dérivable sur R et pour tout x € R :

1
J () = 2xf'(2*) = —2xew2/ e dt.
0
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(b) On va effectuer le changement de variable u : t — zt.

Attention, ce changement de variable n’est pas strictement monotone si x = 0!
Il faut donc traiter ce cas a part.

— Cas ot z = 0 : par la question précédente ¢'(0) = 0 et 'égalité demandée
est bien vérifiée.

— Cas oit # # 0 : la fonction u : t — xt est de classe C' et strictement mono-
tone (u' : ¢ — x donc u est strictement croissante si x > 0 et strictement
décroissante si < 0). Donc par changement de variable :

@ 2
10. Soit h:x € R+— g(z) + (/ e‘“zdu> .
0

(a) On a: h(0) = g(0) = F(0) = /0 rltzdt = farctan(r)}y =

(b) La fonction ¢ ¢=" est continue sur R donc elle posséde une primitive sur R.
Soit F' sa primitives s’annulant en 0 :

Ve eR, F(x) :/ e du
0

. .., _p2
et F' est dérivable de dérivée z +— e *

On a alors :
Vz € R, h(z)=g(x)+ F(z).

Ainsi, h est dérivable en tant que somme de fonctions dérivables et pour tout
r€R,ona:

B (z) =g (x)+ 2F (x)F(z) = —26I2/ e du+ 2e " — / e du
0 0

On en déduit que h est constante sur R.

Partie 3 — Calcul de l’intégrale de Gauss
11. (a) Soit z > 1. Alors

22>z done —22< -2
et par croissance de la fonction exponentielle :

2 _
et <e”.
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+oo
(b) Montrons que / e "dx, généralisée en +o00, est convergente.
0

Soit A > 0.
A
/ e dr =[—e ]l =t —e A
1
A
Donc lim e %dr =e .
A——+oo 0

+0o0
Ainsi / e “dx converge.
1

T

. _ 2 . .
— Les fonctions z — e~ ® et x — e~ * sont continues et positives sur [1, 400,

— Ve e[l,+oof, e < e’xQ,

+o0
— / e “dx converge.
1

D’aprés le théoréme de comparaison pour les intégrales de fonctions continues

+00
. , . 2
positives, on en déduit que / e " dx converge.
1

1 +o0
—x2 . ’ ’ ’ s, —r2
Enfin, comme / e~ ¥ dx n’est pas une intégrale généralisée, par Chasles, / e “dx
0 0

converge aussi.
On note [ sa valeur.

12. Soit h la fonction définie a la partie précédente. On a pour tout z > 0 :

Or :

hz) = g(z) + (/0 6_“2du)2 = f(z®) + </0 e‘“Qdu)Q.

— d’aprés la question 6., lim f(z) = 0 donc par composition :

T—+00

lim f(z%) = 0;

T—+00

x
— d’aprés la question précédente x — / e~ du admet une limite finie en +oo
0

que 'on a notée 1.

Ainsi, par opération sur les limites, h posséde une limite en 400 et :

lim A(z) =0+ 1% = I

r—r-+00

7
13. On a vu a la question 10 que h est constante sur R et que h(0) = T Donc

Vz€R, h(z)= %

D’aprés la question précédente on a donc :

D’ou : [:\/—_.

S

I?= lim h(z) = -.

T—+00

W

=
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t
14. On va effectuer le changement de variable x : ¢ = — qui est bien de classe C" et

V2

D’apres le théoréme de changement de variable, on sait donc que

/ e dr et / Teend g
e T e e —
0 0 V2

sont de méme nature et égales en cas de converge.

strictement croissant sur [0, +oo.

Comme la premiére converge d’aprés les questions précédentes, on en déduit donc

+0c0 1
que / e 12 _qt converge et vaut ﬁ
0 V2 2

En particulier :

/+Oo e t2q4 — \/ﬁﬁ — _“27T
2 2
0

+oo
— 2 . . —_ 2 N
Enfin, z — e /2 est une fonction paire et / e~ 2dx converge. D’apreés le cours,
0

“+oo
on en déduit que / e "2y converge et

—0o0

—+o0 —+o0
/ e 2dy = 2/ e 2dy = V2.
- 0

[e.o]
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Exercice 2 — Etude d’une fonction de deux variables

On considére la fonction f définie sur |0, +00[ par :

vt €]0, +o0],

1
) =t+ 7.

Partie 1 — Etude d’une fonction d’une variable

1. La fonction f est dérivable sur |0, 00| et pour tout ¢ > 0 :

1 -1
z 0 1 +00
Signe
de f/(.l') - 0 +
Variationg T +00
de f \ 9 /

2. Lafonction f est continue et strictement croissante sur [1, +oo[. D’aprés le théoréme
de la bijection, elle réalise donc une bijection de [1,+oo[ vers [f(1), lirll flz)|[=
T—>+00

2, +o0].

3. (a) D’aprés le théoréme de la bijection, g est strictement croissante sur [2, +oo] :

x 2 +o00
Variations +00

(b) Soit s € [2,+00[, comme f est de classe C' sur [1,+0o[, on sait que g est
dérivable en s si f'(g(s)) # 0 et dans ce cas :

Or d’aprés le tableau de signe de f’ :

f(g(s) =0<=g(s) =1<=s=2.

Ainsi la fonction g est dérivable sur |2, +oo] et

A IO}

En particulier, ¢’ est continue sur ]2, +o0o[ comme quotient et composée de
fonctions continues donc g est de classe O sur ]2, +o00]
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(c) Soit s € [2,+00] et t > 1.
1
f(t):s<:>t+zzs<:>t2—st+1:0
=St=—"—— ou t=

_ 2 _ 2 _ (g2 —
s s2—4 57— (s°—4) _ 4 _ 2 -1

2 C2s+ VP —4) 2s+VsE—4) s+/s2—4

Par conséquent, pour t > 1, on a :

s+s2—4

fit)=s<=t= 5

s+vs2—4

Ainsi g(s) = 5

Partie 2— Etude d’une fonction de deux variables

On considére la fonction h de classe C* sur le pavé ouvert U =0, +o0o[x]0, +-oc[ définie
par :

V(z,y) € U, h(x,y)= (é + 5) (14+2)(1+y).

4. Pour tout (z,y) € U on a :

oh 1 1 1 1 1
%(%y)—_P(ler)(ler)Jr(;JF;) (I+y)=(1+y) (5—?)
et
oh 1 1 1 1 1
5y &9 =~ o) +y)+<x+y)( o) =(1+a) (m y2>
5. Soit (z,y) € U.
( Oh
_<'T7y) = 0
(r,y) est un point critique de h <= gfl
5, (1Y) = 0
\
(
1 1
1 -———= ] =0
(1+y) e
(1+2) : 7 =0
\
( 1 1
-—— = 0 carl+y>0
— 1{ x
1
——— = 0 car 1+x>0
\ T Yy
S
<~ 9
r =Y
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6. En poursuivant la question précédente :
(x,y) est un point critique de h <= {
=1
=

Mais comme (0,0) ¢ U, le seul point critique est (1, 1).
7. (a) Soit (z,y) € U.

B fRe '

y =1
OU{I -1

1
Y it y+-+1+2 40
x Y y

+ f@) + fly) + 2+

(b) Comme f admet un minimum global valant 2 (d’aprés la question 1), on a :
V(z,y) €U, h(z,y)>2+2+2+2=8=h(1,1).

Ainsi h admet en (1,1) un minimum global sur U.

10



