Méthode d'Euler

Objectif de la méthode

Principe de la

Méthode d'Euler

18 octobre 2025

Principe de la méthode

On s'intéresse au problème de Cauchy

$$\begin{cases} y' = F(y) \\ y(t_0) = y_0 \end{cases}$$

où $F:I \to \mathbb{R}$ continue, $(t_0,y_0) \in \mathbb{R} \times I$.

But : trouver une solution approchée d'une solution au problème avec Python.

Données: F, y_0 et t_0 .

Remarque importante

Si y est une solution du problème de Cauchy sur un intervalle J alors pour tout $t \in J$ et $t+h \in J$ on a :

$$y(t+h) = y(t) + y'(t)h + o_{h\to 0}(h)$$

= $y(t) + F(y(t))h + o_{h\to 0}(h)$.

Donc pour $h \ll petit \gg :$

$$y(t + h) \approx y(t) + F(y(t))h$$
.

Principe de la méthode

Sur l'exemple :
$$y' = y \ln(y)$$
 et $y(0) = e$ avec $h = 0.3$.

Connu
 t_0, y_0, F

Inconnu
 y



Figure – Initialisation de la méthode

Objectif de la méthode

Principe de la méthode Connu Inconnu t_0, y_0, F y(0+h)

Mais:

$$y(0+h) \approx y(0) + y'(0)h = y_0 + F(y_0)h.$$

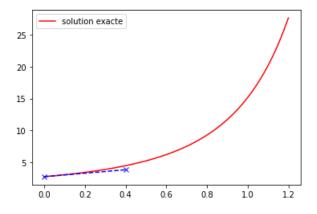


Figure – Après une étape

Principe de la méthode

Or:

$$y(h+h) \approx y(h) + y'(h)h$$

$$\approx y(h) + F(y(h))h$$

$$\approx y_1 + F(y_1)h$$

Objectif de la méthode

Principe de la méthode

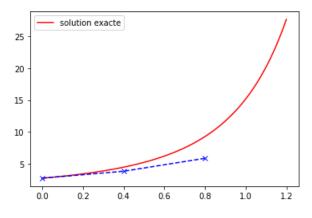


Figure - Après deux étapes

Principe de la méthode

Connu

$$y_1 = y_0 + F(y_0)h$$

 $y_2 = y_1 + F(y_1)$
 $y_3 = ?$
Inconnu
 $y(0 + h)$
 $y(h + h)$
 $y(2h + h)$.

Or:

$$y(2h + h) \approx y(2h) + y'(2h)h$$

$$\approx y(2h) + F(y(2h))h$$

$$\approx y_2 + F(y_2)h$$

Objectif de la méthode

Principe de la méthode

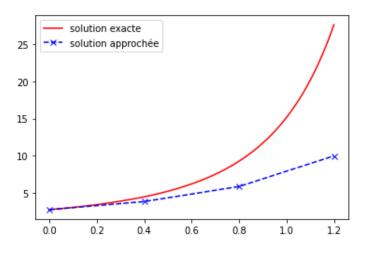


Figure – Après trois étapes

Objectif de la

Principe de la méthode Si on diminue la taille du pas h, on obtient des solutions approchées plus précises :

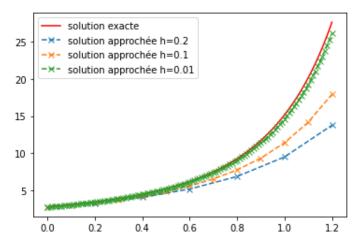


Figure – Comportement quand $h \rightarrow 0$