Lycée Pierre-Gilles de Gennes

2024-2025

TP Python – 2

MÉTHODES NUMÉRIQUES POUR LE CALCUL INTÉGRAL

1 Méthode des rectangles

- 1.2 Méthode des rectangles
 - 1. Code pour la méthode des rectangles à gauche :

```
def Rectangle_g(f,a,b,n):
1
2
3
        Arguments : fct f, intervalle [a,b] , nb de
4
        subdivision n
5
        Sortie : valeur approchée de intégrale de f sur [a,b]
6
        par la méthode des rectangles à gauche avec n
7
        rectangles
        \mathbf{H}_{-}\mathbf{H}_{-}\mathbf{H}_{-}
8
9
        x = a
10
        S = 0
11
        for k in range(n):
12
             S = S + f(x)
13
             x = x + (b-a)/n
14
        return (b-a)/n*S
```

2. Après avoir définie les fonctions f_1 , f_2 et f_3 dans python :

```
— pour f_1:
```

```
In[1]: Rectangle_g(f1,0,1,5)
Out[1]: 3.33492611381099

In[2]: Rectangle_g(f1,0,1,10)
Out[2]: 3.2399259889071588

In[3]: Rectangle_g(f1,0,1,100)
Out[3]: 3.151575986923129
```

Cela est cohérent avec la valeur exacte qui vaut :

$$\int_0^1 f_1(t)dt = [4\arctan(t)]_0^1 = \pi.$$

```
— Pour f_2:
```

```
1 In[5]: Rectangle_g(f2,0,1,5)
2 Out[5]: 0.7456349206349208
3 
4 In[6]: Rectangle_g(f2,0,1,10)
```

```
5 Out[6]: 0.718771403175428
6
7 In[7]: Rectangle_g(f2,0,1,100)
8 Out[7]: 0.6956534304818242
```

Cela est cohérent avec la valeur exacte qui vaut :

$$\int_0^1 f_1(t)dt = [\ln(1+x)]_0^1 = \ln(2).$$

— Pour f_3 :

```
In[8]: Rectangle_g(f3,0,1,5)
Out[8]: 3.437048828883551

In[9]: Rectangle_g(f3,0,1,10)
Out[9]: 3.304518326248319

In[10]: Rectangle_g(f3,0,1,100)
Out[10]: 3.1604170317790428
```

Cela est cohérent avec la valeur exacte. En effet, en effectuant le changement de variable $x = \sin(t)$ on obtient :

$$\int_{0}^{1} f_{3}(x)dx = 4 \int_{0}^{\frac{\pi}{2}} \sqrt{1 - \sin^{2}(t)} \cos(t)dt$$

$$= 4 \int_{0}^{\frac{\pi}{2}} \sqrt{\cos^{2}(t)} \cos(t)dt$$

$$= 4 \int_{0}^{\frac{\pi}{2}} \cos^{2}(t)dt \quad \text{car cos est positive sur } \left[0, \frac{\pi}{2}\right]$$

$$= 2 \int_{0}^{\frac{\pi}{2}} (\cos(2t) + 1)dt$$

$$= \left[\sin(2t) + 2t\right]_{0}^{\frac{\pi}{2}}$$

La méthode semble bien converger vers la valeur de l'intégrale mais assez lentement puisqu'avec un pas de 100, on obtient qu'une valeur approchée à seulement 10^{-1} .

1.3 Méthode des rectangles milieux

1. Pour $k \in [0, n-1]$, le k-ème rectangle est le rectangle de base $[x_k, x_{k+1}]$ et de hauteur $f(m_k)$. Son aire algébrique est donc :

$$(x_{k+1} - x_k)f(m_k) = \frac{b-a}{n}f\left(\frac{x_k + x_{k+1}}{2}\right) = \frac{b-a}{n}f\left(a + \left(k + \frac{1}{2}\right)\frac{b-a}{n}\right).$$

La valeur approchée de $\int_a^b f(t)dt$, obtenue en sommant l'aire de tous ces rectangles est donc :

$$\frac{b-a}{n}\sum_{k=0}^{n-1}f\left(a+\left(k+\frac{1}{2}\right)\frac{b-a}{n}\right).$$

2. (a) Code pour la méthode des rectangles milieux :

```
1
        Rectangle_m(f,a,b,n):
 2
3
         Arguments : fct f, intervalle [a,b] , nb de
 4
         subdivision n
 5
         Sortie : valeur approchée de intégrale de f sur
6
          [a,b] par la méthode des rectangles
 7
         milieux avec n rectangles
        \mathbf{H}_{-}\mathbf{H}_{-}\mathbf{H}_{-}
8
9
        h = (b-a)/n
                      # pas de la subdivision
10
        m = (a+a+h)/2 # milieu de l'intervalle
        S = 0
11
12
        for k in range(n):
13
             S = S + f(m)
                                # somme des aires des rectangles
14
             m = m + h
        return h*S
15
```

(b) En testant avec la fonction $x \mapsto x-1$ par exemple, on trouve pour n de 1 à 7:

On peux conjecturer que la méthode des rectangles milieux fournit la valeur exacte pour les polynômes de degré et ce peut importe le pas de subdivision. Prouvons-le : soit $f: x \mapsto \mu x + \lambda$ une fonction polynômiale de degré 1 sur un intervalle [a, b]. On a d'une part :

$$\int_{a}^{b} f(x)dx = \left[\mu \frac{x^{2}}{2} + \lambda x\right]_{a}^{b} = \mu \frac{b^{2} - a^{2}}{2} + \lambda(b - a).$$

D'autre part, pour $n \in \mathbb{N}^*$, la valeur approchée avec n rectangles est :

$$\begin{split} \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + \left(k + \frac{1}{2}\right) \frac{b-a}{n}\right) &= \frac{b-a}{n} \sum_{k=0}^{n-1} \left(\mu \left(a + \left(k + \frac{1}{2}\right) \frac{b-a}{n}\right) + \lambda\right) \\ &= \frac{b-a}{n} \sum_{k=0}^{n-1} \mu \left(a + \left(k + \frac{1}{2}\right) \frac{b-a}{n}\right) + \frac{b-a}{n} \sum_{k=0}^{n-1} \lambda \\ &= \frac{\mu(b-a)}{n} \left(na + n \frac{b-a}{2n} + \frac{b-a}{n} \frac{n(n-1)}{2}\right) + \lambda(b-a) \\ &= \frac{\mu(b-a)}{n} \left(na + \frac{b-a}{2} + \frac{(b-a)(n-1)}{2}\right) + \lambda(b-a) \\ &= \frac{\mu(b-a)}{n} \left(na + \frac{(b-a)n}{2}\right) + \lambda(b-a) \\ &= \mu(b-a) \frac{b+a}{2} + \lambda(b-a) \\ &= \mu \frac{b^2 - a^2}{2} + \lambda(b-a). \end{split}$$

Donc la valeur approchée est en fait exacte dans ce cas.

(c) Pour la fonction f_1 (le comportement est le même pour les autres), on obtient :

```
In[16]: Rectangle_m(f1,0,1,5)
Out[16]: 3.1449258640033277

In[17]: Rectangle_m(f1,0,1,10)
Out[17]: 3.1424259850010987

In[18]: Rectangle_m(f1,0,1,100)
Out[18]: 3.1416009869231245
```

La méthode semble bien converger vers la valeur de l'intégrale. La convergence semble plus rapide que la méthode précédente : avec n=10 on a déjà une valeur approchée à 10^{-2} près et à n=100 à 10^{-4} près.

2 Méthode des trapèzes

1. (a) En mettant bout à bout deux copies du k-ième trapèze en quinconce, on obtient un rectangle de base $[x_k, x_{k+1}]$ et de hauteur $f(x_k) + f(x_{k+1})$. On en déduit que l'aire du $k^{\text{ième}}$ trapèze, qui vaut la moitié de l'aire de ce rectangle est : $\frac{b-a}{2n}(f(x_k)+f(x_{k+1})).$

(b) La valeur approchée de $\int_a^b f(t)dt$ obtenue par cette méthode est donc :

$$\frac{b-a}{2n} \sum_{k=0}^{n-1} (f(x_k) + f(x_{k+1})) = \frac{b-a}{2n} \left(\sum_{k=0}^{n-1} f(x_k) + \sum_{k=0}^{n-1} f(x_{k+1}) \right)$$

$$= \frac{b-a}{2n} \left(\sum_{k=0}^{n-1} f(x_k) + \sum_{i=1}^{n} f(x_i) \right) \text{ en posant } i = k+1$$

$$= \frac{b-a}{2n} \left(f(x_0) + 2 \sum_{k=1}^{n-1} f(x_k) + f(x_n) \right)$$

$$= \frac{b-a}{2n} \left(f(a) + f(b) + 2 \sum_{k=1}^{n-1} f(x_k) \right).$$

On retrouve bien:

$$\frac{b-a}{n}\left(\frac{1}{2}(f(a)+f(b))+\sum_{k=1}^{n-1}f\left(a+k\frac{b-a}{n}\right)\right).$$

2. (a) Le code pour la méthode des trapèzes :

```
1
   def Trapeze(f,a,b,n):
2
3
        Arguments : fct f, intervalle [a,b] , nb de
4
        subdivision n
5
        Sortie : valeur approchée de intégrale de f sur
6
        [a,b] par la méthode des trapèzes avec n rectangles
7
       h = (b-a)/n # pas de la subdivision
8
9
       x = a
10
        S = 0
11
        for k in range(n):
            S = S + 1/2*h*(f(x)+f(x+h)) # somme des aires des trapèzes
12
13
            x = x + h
14
        return S
```

(b) Pour la fonction f_1 (le comportement est le même pour les autres), on obtient :

```
In[16]: Trapeze(f1,0,1,5)
Out[16]: 3.13492611381099

In[17]: Trapeze(f1,0,1,10)
Out[17]: 3.1399259889071596

In[18]: Trapeze(f1,0,1,100)
Out[18]: 3.1415759869231303
```

La méthode semble bien converger vers la valeur de l'intégrale. La convergence semble plus rapide que la méthode précédente : avec n=10 on a déjà une valeur approchée à 10^{-2} près et à n=100 à 10^{-4} près.

3 Méthode de Simpson

La méthode de Simpson consiste à approcher l'aire sous la courbe non plus par des quadrilatères mais par des morceaux de paraboles.

Plus précisément, on approche l'aire sous la courbe entre x_k et x_{k+1} par l'aire sous la parabole passant par les points $(x_k, f(x_k)), (m_k, f(m_k))$ et $(x_{k+1}, f(x_{k+1}))$.

Travail demandé

- 1. Soit $n \in \mathbb{N}^*$ et $k \in [0, n-1]$.
 - (a) On cherche P_k de degré 2 telle que :

$$P_k(x_k) = f(x_k)$$
 ; $P_k(m_k) = f(m_k)$; $P_k(x_{k+1}) = f(x_{k+1})$

Posons $Q_k = P_k - f(x_k)$. Alors Q_k vérifie :

$$Q_k(x_k) = 0$$
 ; $Q_k(m_k) = f(m_k) - f(x_k)$; $Q_k(x_{k+1}) = f(x_{k+1}) - f(x_k)$.

En particulier, x_k est une racine de Q_k donc il existe u, v tels que :

$$Q_k = (X - x_k)(uX + v).$$

Comme $Q_k(m_k) = f(m_k) - f(x_k)$ on obtient :

$$(L_1) \quad f(m_k) - f(x_k) = (m_k - x_k)(um_k + v) = \frac{b - a}{2m}(um_k + v).$$

Comme $Q_k(x_{k+1}) = f(x_{k+1}) - f(x_k)$ on obtient:

$$(L_2) \quad f(x_{k+1}) - f(x_k) = (x_{k+1} - x_k)(ux_{k+1} + v) = \frac{b - a}{n}(um_k + v).$$

En faisant $L_2 - 2L_1$ on trouve :

$$u = \frac{2n^2}{(b-a)^2} (f(x_{k+1}) - 2f(m_k) + f(x_k)).$$

On a alors

$$v = \frac{2n}{b-a}(f(m_k) - f(x_k)) - um_k$$

Puis $P_k = Q_k + f(x_k)$.

(b) On a, par IPP:

$$\begin{split} \int_{x_k}^{x_{k+1}} P_k(x) dx &= \int_{x_k}^{x_{k+1}} \left((x - x_k)(ux + v) + f(x_k) \right) dx \\ &= \left[\frac{(x - x_k)^2}{2} (ux + v) \right]_{x_k}^{x_{k+1}} - \int_{x_k}^{x_{k+1}} u \frac{(x - x_k)^2}{2} dx + f(x_k)(x_{k+1} - x_k) \\ &= \frac{(b - a)^2}{2n^2} (x_{k+1}u + v) - u \left[\frac{(x - x_k)^3}{6} \right]_{x_k}^{x_{k+1}} + \frac{(b - a)f(x_k)}{n} \\ &= \frac{b - a}{2n} (f(x_{k+1}) - f(x_k)) - u \frac{(b - a)^3}{6n^3} + \frac{(b - a)f(x_k)}{n} \\ &= \frac{b - a}{2n} (f(x_{k+1}) - f(x_k)) - (f(x_{k+1}) - 2f(m_k) + f(x_k)) \frac{(b - a)}{3n} \\ &+ \frac{(b - a)f(x_k)}{n} \\ &= \frac{b - a}{6n} (f(x_{k+1}) + 4f(m_k) + f(x_k)). \end{split}$$

La valeur approchée de $\int_a^b f(t)dt$ obtenue par cette méthode est donc la somme des aires des portion de paraboles obtenues l :

$$\frac{b-a}{6n}\sum_{k=0}^{n-1}(f(x_k)+4f(m_k)+f(x_{k+1})).$$

2. (a) Le code pour la méthode de Simpson :

```
def Simpson(f,a,b,n):
 2
3
        Arguments : fct f, intervalle [a,b],
 4
       nb de subdivision n
5
        Sortie : valeur approchée de intégrale de f
6
        sur [a,b] par la méthode de Simpson
 7
        avec n subdivisions
8
9
       h=(b-a)/n #pas de la subdivision
10
       x = a
       S = 0
11
       for k in range(n):
12
            S = S + f(x)+f(x+h)+4*f(x+h/2)
13
14
            x = x + h
15
       return h/6*S
```

(b) En testant avec $x \mapsto x^2 - 2x + 3$ sur [0,1] on trouve pour n entre 1 et 7:

La méthode semble donnée la valeur exacte $\frac{7}{3}$) sur les polynômes de degré 2 pour n'importe quel pas.

En effet, si f est un polynôme de degré deux alors pour tout $n \in \mathbb{N}^*$ et tout $k \in [0, n-1]$, $P_k = f$ donc la valeur approchée que l'on obtient est :

$$\sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} P_k(x) dx = \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} f(x) dx = \int_a^b f(x) dx.$$

(c) Pour la fonction f_1 (le comportement est le même pour les autres), on obtient :

```
1 In[24]: Simpson(f1,0,1,5)
2 Out[24]: 3.1415926139392147
3
4 In[26]: Simpson(f1,0,1,10)
5 Out[25]: 3.1415926529697855
```

```
6
7 In [26]: Simpson (f1,0,1,100)
8 Out [26]: 3.141592653589791
```

La méthode semble bien converger vers la valeur de l'intégrale. La convergence semble bien plus rapide que les méthodes précédentes : avec n=10 on a déjà une valeur approchée à 10^{-4} près et à n=100 à 10^{-14} près !

4 Comparaison des méthodes

Pour quantifier la qualité de la méthode d'approximation, il est important de s'intéresser à la vitesse à laquelle la valeur approchée tend vers la valeur exacte quand n tend vers $+\infty$.

Plus précisément, on s'intéresse à l'erreur commise lors qu'on fait l'approximation avec n quadrilatères :

$$E_n(f, a, b) = \left| \text{Valeur approchée} - \int_a^b f(t)dt \right|.$$

Par exemple, pour la méthode des rectangles à gauche :

$$E_n(f, a, b) = \left| \frac{b - a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b - a}{n}\right) - \int_a^b f(t)dt \right|.$$

Pour que la méthode fournisse une valeur approchée de l'intégrale recherchée, il faut que l'erreur tende vers 0 quand n tend vers $+\infty$. Plus la convergence vers 0 est rapide, meilleure est la méthode.

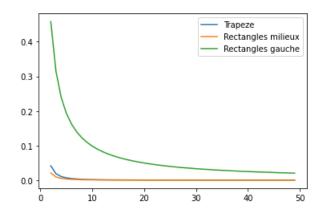
Travail demandé

1. Le code:

```
1 N =range(2,50)
2 E1 = [np.abs(Simpson(f1,0,1,n)-np.pi) for n in N]
3 E2 = [np.abs(Rectangle_m(f1,0,1,n)-np.pi) for n in N]
4 E3 = [np.abs(Trapeze(f1,0,1,n)-np.pi) for n in N]
5 E4 = [np.abs(Rectangle_g(f1,0,1,n)-np.pi) for n in N]
6 plt.plot(N,E3,label='Trapeze')
7 plt.plot(N,E1, label='Simpson')
8 plt.plot(N,E2, label='Rectangles_milieux')
9 plt.plot(N,E4, label='Rectangles_gauche')
10 plt.legend()
11 plt.show()
```

2. On obtient alors les graphiques suivants (je ne mets pas tout sur le même graphique pour des raisons de lisibilité) :

Cela confirme les observations précédentes : la méthode de Simpson semblent bien plus efficace (l'erreur plus petit et qui converge rapidement vers 0) suivie des méthodes des rectangles milieux et des trapèzes (vitesses de convergence vers 0 de l'erreur comparables). La méthode des rectangles à gauche est la moins efficace.



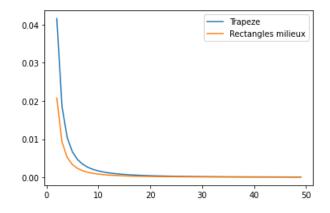


FIGURE 1 – Comparaison de l'erreur des 3 pre-FIGURE 2 – Comparaison de l'erreur Trapèmières méthodes zes/Milieux

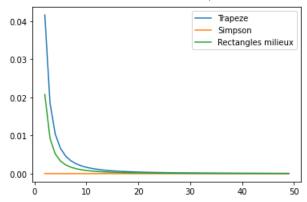


Figure 3 – Comparaison de l'erreur Trapèzes/Milieux/Simpson

5 Pour aller plus loin

5.1 Erreur pour la méthode des rectangles à gauche

On se propose d'étudier mathématiquement l'erreur dans le cas de la méthode des rectangles à gauche. On suppose que f est de classe \mathcal{C}^1 sur [a, b] et soit $n \in \mathbb{N}^*$.

1. Comme f est de classe \mathcal{C}^1 sur [a,b], f' est continue sur [a,b]. D'après le théorème des bornes atteintes, elle est bornée sur [a,b]. Notons M le maximum de |f'| sur [a,b].

L'inégalité des accroissement finis sur le segment $[x_k, x_{k+1}]$ donne alors, pour tout $k \in [0, n-1]$:

$$\forall x \in [x_k, x_{k+1}], \quad |f(x) - f(x_k)| \le M(x - x_k).$$

2. Par définition on a :

$$E_n(f, a, b) = \left| \frac{b - a}{n} \sum_{k=0}^{n-1} f(x_k) - \int_a^b f(x) dx \right|.$$

Or on remarque que:

— par la relation de Chasles
$$\int_a^b f(x)dx = \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} f(x)dx$$
;

$$-\int_{x_k}^{x_{k+1}} f(x_k) dx = (x_{k+1} - x_k) f(x_k) = \frac{b - a}{n} f(x_k).$$

Ainsi

$$E_n(f, a, b) = \left| \frac{b - a}{n} \sum_{k=0}^{n-1} f(x_k) - \int_a^b f(x) dx \right| = \left| \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} f(x_k) dx - \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} f(x) dx \right|$$
$$= \left| \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} (f(x) - f(x_k)) dx \right|$$

puis par inégalité triangulaire :

$$E_n(f, a, b) = \left| \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} (f(x) - f(x_k)) dx \right| \le \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} |f(x) - f(x_k)| dx.$$

3. Des questions 1 et 2 on déduit par croissance de l'intégrale :

$$E_n(f, a, b) \le \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} |f(x) - f(x_k)| dx$$

$$\le \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} M(x - x_k) dx$$

$$\le M \sum_{k=0}^{n-1} \left[\frac{(x - x_k)^2}{2} \right]_{x_k}^{x_{k+1}}$$

$$\le M \sum_{k=0}^{n-1} \frac{(x_{k+1} - x_k)^2}{2}$$

$$\le M \sum_{k=0}^{n-1} \frac{(b - a)^2}{2n^2}$$

D'où

$$E_n(a, b, f) \le \frac{(b-a)^2 M}{2n}.$$

4. Soit $f: x \mapsto rx + s$ une fonction affine. On a alors :

$$\frac{b-a}{n} \sum_{k=0}^{n-1} f(x_k) = \frac{b-a}{n} \sum_{k=0}^{n-1} \left(r \left(a + k \frac{b-a}{n} \right) + s \right)$$

$$= \frac{b-a}{n} n(ra+s) + r \frac{(b-a)^2}{n^2} \sum_{k=0}^{n-1} k$$

$$= (b-a)(ra+s) + r \frac{(n-1)(b-a)^2}{2n}$$

$$= (b-a)(ra+s) + \frac{r}{2}(b-a)^2 - r \frac{(b-a)^2}{2n}$$

et

$$\int_{a}^{b} f(x)dx = \left[\frac{r}{2}x^{2} + sx\right]_{a}^{b}$$
$$= \frac{r}{2}(b^{2} - a^{2}) + s(b - a).$$

D'où l'erreur :

$$E_n(f,a,b) = \left| (b-a)(ra+s) + \frac{r}{2}(b-a)^2 - r\frac{(b-a)^2}{2n} - \frac{r}{2}(b^2 - a^2) - s(b-a) \right|$$

$$= \left| ra(b-a) + \frac{r}{2}(b-a)^2 - r\frac{(b-a)^2}{2n} - \frac{r}{2}(b^2 - a^2) \right|$$

$$= \left| r \left| \frac{(b-a)^2}{2n} \right|.$$

Or $|r| = \sup |f'|$ donc cela montre que dans le cas affine, l'inégalité de la question précédente est une égalité.

5.2 Erreur pour la méthode des rectangles milieux

On se propose d'étudier mathématiquement l'erreur dans le cas de la méthode des rectangles milieux. On suppose que f est de classe C^2 sur [a, b] et soit $n \in \mathbb{N}^*$.

- 1. La fonction f est de classe C^2 sur [a, b] donc f'' est continue sur [a, b]. D'après le théorème des bornes atteintes, elle est donc bornée sur [a, b].
- 2. (a) D'après l'inégalité des accroissement finis appliquée à f', on a, pour tout $k \in [0, n-1]$:

$$\forall t \in [x_k, x_{k+1}], \quad |f'(t) - f'(m_k)| \le M|t - m_k|.$$

- (b) Soit $k \in [0, n-1]$ et $x \in [x_k, x_{k+1}]$.
 - Cas où $x \in [x_k, m_k]$. Pour tout $t \in [x_k, m_k]$ l'inégalité de la question précédente se réécrit :

$$-M(m_k - t) \le f'(t) - f'(m_k) \le M(m_k - t).$$

En intégrant entre x et m_k on obtient par croissance de l'intégrale :

$$-M \int_{x}^{m_k} (m_k - t)dt \le f(m_k) - f(x) - f'(m_k)(m_k - x) \le M \int_{x}^{m_k} (m_k - t)dt$$

d'où

$$-M\frac{(x-m_k)^2}{2} \le f(x) - f(m_k) - f'(m_k)(x-m_k) \le M\frac{(x-m_k)^2}{2}.$$

- Cas où $x \in [m_k, x_k]$. On fait le même raisonnement mais en intégrant entre m_k et x.
- 3. (a) Soit $k \in [\![0,n-1]\!]$. D'après la question précédente, on a pour tout $x \in [x_k,x_{k+1}]$:

$$f'(m_k)(x-m_k)-M\frac{(x-m_k)^2}{2} \le f(x)-f(m_k) \le M\frac{(x-m_k)^2}{2}+f'(m_k)(x-m_k).$$

Donc en intégrant entre x_k et x_{k+1} et en sommant pour k allant de 0 à n-1 on obtient les inégalités souhaitées par croissance de l'intégrale.

(b) Soit $k \in [0, n-1]$.

$$\int_{x_k}^{x_{k+1}} \frac{(x - m_k)^2}{2} dx = \left[\frac{(x - m_k)^3}{6} \right]_{x_k}^{x_{k+1}} = 2 \frac{\left(\frac{b - a}{2n}\right)^3}{6} = \frac{(b - a)^3}{24n^3}.$$

et

$$\int_{x_k}^{x_{k+1}} (x - m_k) dx = \left[\frac{(x - m_k)^2}{2} \right]_{x_k}^{x_{k+1}} = \frac{\left(\frac{b - a}{2n} \right)^2}{2} - \frac{\left(\frac{b - a}{2n} \right)^2}{2} = 0.$$

(c) Ainsi, avec les questions 3.(a) et 3.(b), on conclut :

$$-M\sum_{k=0}^{n-1} \frac{(b-a)^3}{24n^3} \le \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} (f(x) - f(m_k)) dx + 0 \le M\sum_{k=0}^{n-1} \frac{(b-a)^3}{24n^3}$$

d'où

$$-M\frac{(b-a)^3}{24n^2} \le \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} (f(x) - f(m_k)) dx \le M\frac{(b-a)^3}{24n^2}.$$

Remarque: il manquait la constante M dans l'énoncé (ainsi que dans la question suivante).

4. On a, par la relation de Chasles:

$$\sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} (f(x) - f(m_k)) dx = \int_a^b f(x) dx - \sum_{k=0}^{n-1} f(m_k) (x_{k+1} - x_k).$$

Donc:

$$E_n(f, a, b) = \left| \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} (f(x) - f(m_k)) dx \right|.$$

La question précédente montre alors que :

$$E_n(f, a, b) \le M \frac{(b-a)^3}{24n^2}.$$

5. Les résultats de la question précédente et du résultat analogue pour la méthode des rectangles à gauche sont cohérents avec les observations du paragraphe 4 : l'erreur converge plus vite vers 0 pour les rectangles milieux que pour les rectangles à gauche.

5.3 Erreur pour la méthode de Simpson

On peut montrer par des techniques analogues mais plus fines que l'erreur pour la méthode de Simpson vérifie :

$$E_n(f, a, b) \le C \frac{(b - a)^5}{n^4}$$

où C est une constante.

Très concrètement une majoration en $\frac{1}{n}$ (comme dans la méthode des rectangles à gauche) signifie qu'en multipliant le nombre de points de la subdivision par 10 alors l'écart entre notre somme de Riemann et l'intégrale est divisé par 10, autrement dit on gagne à coup sûr un chiffre sur le résultat.

Pour une majoration en $\frac{1}{n^2}$ (comme dans la méthode des rectangles milieux), on divise l'écart par 100, et donc on gagne deux chiffres.

Pour une majoration en $\frac{1}{n^4}$ (comme dans la méthode de Simpson), on divise l'écart par 10000, et donc on gagne quatre chiffres!