ESPACES VECTORIELS

Dans tout ce chapitre \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

5.1 Structure d'espace vectoriel

5.1.1 Généralités

Théorème 5.1 (Exemple de référence : \mathbb{K}^n)

Soit $n \in \mathbb{N}^*$. L'ensemble \mathbb{K}^n muni des lois d'addition et de multiplication par un scalaire définies ci-dessous est un \mathbb{K} -espace vectoriel.

 $\bullet\,$ L'addition de deux éléments de \mathbb{K}^n :

$$+: \mathbb{K}^n \times \mathbb{K}^n \longrightarrow \mathbb{K}^n$$
$$((x_1, \dots, x_n), (y_1, \dots, y_n)) \longmapsto (x_1 + y_1, \dots, x_n + y_n).$$

• La multiplication d'un élément de \mathbb{K}^n par un scalaire de \mathbb{K} :

$$\begin{array}{ccc}
\cdot : \mathbb{K} \times \mathbb{K}^n & \longrightarrow \mathbb{K}^n \\
(\lambda, (x_1, \dots, x_n)) & \longmapsto (\lambda x_1, \dots, \lambda x_n).
\end{array}$$

L'élément neutre $0_{\mathbb{K}^n}$ est le vecteur nul.

Théorème 5.2 (Exemples de référence : espaces de polynômes)

Soit $n \in \mathbb{N}$. Les ensembles $\mathbb{K}[X]$ et $\mathbb{K}_n[X]$ munis des lois d'addition et de multiplication par un scalaire définies au chapitre 3 sont des \mathbb{K} -espaces vectoriels.

L'élément neutre $0_{\mathbb{K}[X]}$ (respectivement $0_{\mathbb{K}_n[X]}$) est le polynôme nul.

Théorème 5.3 (Exemple de référence : $\mathcal{M}_{n,p}(\mathbb{K})$)

Soient n et p deux entiers naturels non nuls. L'ensemble $\mathcal{M}_{n,p}(\mathbb{R})$ muni des lois d'addition et de multiplication par un scalaire définies ci-dessous est un \mathbb{K} -espace vectoriel.

• L'addition de deux éléments de $\mathcal{M}_{n,p}(\mathbb{K})$

$$+: \mathcal{M}_{n,p}(\mathbb{K}) \times \mathcal{M}_{n,p}(\mathbb{K}) \longrightarrow \mathcal{M}_{n,p}(\mathbb{K})$$
$$(A,B) \longmapsto A + B = (a_{i,j} + b_{i,j})_{(i,j) \in [1,n]^2}$$

• La multiplication d'un élément de $\mathcal{M}_{n,p}(\mathbb{K})$ par un scalaire de \mathbb{K} :

$$\cdot : \mathbb{K} \times \mathcal{M}_{n,p}(\mathbb{K}) \longrightarrow \mathcal{M}_{n,p}(\mathbb{K})
(\lambda, A) \longmapsto \lambda \cdot A = (\lambda \cdot a_{i,j})_{(i,j) \in [1,n]^2}$$

L'élément neutre $0_{\mathcal{M}_{n,p}(\mathbb{K})}$ est la matrice nulle.

Théorème 5.4 (Exemple de référence : \mathbb{K}^I)

Soient I un intervalle. L'ensemble \mathbb{K}^I des fonctions définies sur I à valeurs dans \mathbb{K} muni des lois d'addition et de multiplication par un scalaire définies ci-dessous est un \mathbb{K} -espace vectoriel.

• L'addition de deux éléments de \mathbb{K}^I :

$$+: \mathbb{K}^I \times \mathbb{K}^I \longrightarrow \mathbb{K}^I$$

 $(f,g) \longmapsto (f+g: x \mapsto f(x) + g(x))$

• La multiplication d'un élément de \mathbb{K}^I par un scalaire de \mathbb{K} :

$$\cdot : \mathbb{K} \times \mathbb{K}^I \longrightarrow \mathbb{K}^I$$

$$(\lambda, f) \longmapsto (\lambda \cdot f : x \mapsto \lambda f(x))$$

L'élément neutre $0_{\mathbb{K}^I}$ est la fonction nulle.

Théorème 5.5 (Exemple de référence : $\mathbb{K}^{\mathbb{N}}$)

L'ensemble $\mathbb{K}^{\mathbb{N}}$ des suites à valeurs dans \mathbb{K} muni des lois d'addition et de multiplication par un scalaire définies ci-dessous est un \mathbb{K} -espace vectoriel.

• L'addition de deux éléments de $\mathbb{K}^{\mathbb{N}}$:

$$+: \mathbb{K}^{\mathbb{N}} \times \mathbb{K}^{\mathbb{N}} \longrightarrow \mathbb{K}^{\mathbb{N}}$$
$$((u_n)_n, (v_n)_n) \longmapsto (u_n + v_n)_n$$

• La multiplication d'un élément de $\mathbb{K}^{\mathbb{N}}$ par un scalaire de \mathbb{K} :

$$: \mathbb{K} \times \mathbb{K}^{\mathbb{N}} \longrightarrow \mathbb{K}^{\mathbb{N}}$$
$$(\lambda, (u_n)_n) \longmapsto (\lambda u_n)_n$$

L'élément neutre $0_{\mathbb{K}^{\mathbb{N}}}$ est la suite nulle.

5.1.2 Combinaisons linéaires et sous-espaces vectoriels

Définition 5.1 (Combinaison linéaire)

Soit E un \mathbb{K} -espace vectoriel.

Soient $p \in \mathbb{N}^*$ et x_1, \ldots, x_p des éléments de E.

Un vecteur x de E est dit **combinaison linéaire** de x_1, \ldots, x_p s'il existe des scalaires $\lambda_1, \ldots, \lambda_p \in \mathbb{K}$ tels que

$$x = \lambda_1 \cdot x_1 + \dots + \lambda_p \cdot x_p.$$

On appelle sous-espace vectoriel engendré par x_1, \ldots, x_p et on note $\text{Vect}(x_1, \ldots, x_p)$ l'ensemble des combinaisons de linéaires de x_1, \ldots, x_p

$$\operatorname{Vect}(x_1, \dots, x_p) = \left\{ \sum_{i=1}^p \lambda_i x_i \; ; \; \lambda_1, \dots, \lambda_p \in \mathbb{K} \right\}.$$

Définition 5.2 (Sous-espace vectoriel)

Soit E un \mathbb{K} -espace vectoriel et soit $F \subset E$. On dit que F est un sous-espace vectoriel de E lorsque

- 1. F est non vide,
- 2. $\forall x \in F \ \forall y \in F, x + y \in F \ (stabilité par \ addition),$
- 3. $\forall x \in F \ \forall \lambda \in \mathbb{K}, \ \lambda \cdot x \in F \ (stabilit\'{e} \ par \ multiplication \ par \ un \ scalaire).$

Proposition 5.1 (Caractérisation des sous-espaces vectoriels)

Soit E un espace vectoriel et soit $F \subset E$. Alors F est un sous-espace vectoriel de E si et seulement si

- 1. F est non vide,
- 2. $\forall (x,y) \in F^2, \ \forall \lambda \in \mathbb{K}, \ x + \lambda y \in F.$

Proposition 5.2

- 1. Tout sous-espace vectoriel d'un K-espace vectoriel est un K-espace vectoriel.
- 2. Toute intersection d'un nombre fini de sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E est un sous-espace vectoriel de E.
- 3. Tout sous-espace vectoriel engendré par une famille de vecteurs d'un \mathbb{K} -espace vectoriel E est un sous-espace vectoriel de E.

5.2 Familles de vecteurs

5.2.1 Familles génératrices

Définition 5.3 (Famille génératrice)

Soit E un \mathbb{K} -espace vectoriel et soit F un sous-espace vectoriel de E.

On dit qu'une famille (u_1, \ldots, u_n) de vecteurs de F $(n \in \mathbb{N}^*)$ est **génératrice** de F si :

$$F = \text{Vect}(u_1, \dots, u_n).$$

Cela signifie que tout vecteur de F peut s'écrire comme une combinaison linéaire de u_1, \ldots, u_n .

5.2.2 Familles libres

Définition 5.4 (Famille libre/liée)

Soient E un \mathbb{K} -espace vectoriel et soit $n \in \mathbb{N}^*$.

• Une famille (u_1, \ldots, u_n) de vecteurs de E est dite libre si

$$\forall (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, \quad \lambda_1 u_1 + \dots + \lambda_n u_n = 0_E \Longrightarrow \lambda_1 = \dots = \lambda_n = 0.$$

• Une famille qui n'est pas libre est dite liée.

Faits importants sur les familles liées

- Toute famille contenant le vecteur nul est liée.
- Toute famille contenant plusieurs fois le même vecteur est liée.

- Une famille est liée si et seulement si un des vecteurs de la famille est combinaison linéaire des autres.
- Toute sur-famille d'une famille liée est liée.

Faits importants sur les familles libres

- Une famille constituée d'un seul vecteur est libre si et seulement si ce vecteur est non nul.
- Deux vecteurs u et v d'un espace vectoriel E sont dits **colinéaires** s'il existe $\lambda \in \mathbb{K}$ tel que $u = \lambda v$ ou $v = \lambda u$.

Une famille constituée de **deux vecteurs** est libre si et seulement si ces vecteurs ne sont pas colinéaires.

- Une famille de polynômes **non nuls** de degrés **distincts** est libre. Une telle famille est appelée une famille **échelonnée** de polynômes.
- Toute sous-famille d'une famille libre est libre.

5.2.3 Bases

Définition 5.5 (Base)

Soit E un \mathbb{K} -espace vectoriel. On dit qu'une famille de vecteurs de E est une **base** de E si elle est libre et génératrice de E.

Définition 5.6 (Proposition/Définition : coordonnées dans une base)

Soit $p \in \mathbb{N}^*$.

Soit E un \mathbb{K} -espace vectoriel et (u_1, \ldots, u_p) une base de E.

Pour tout $u \in E$, il existe un unique p-uplet $(\lambda_1, \ldots, \lambda_p) \in \mathbb{K}^p$ tel que

$$u = \lambda_1 u_1 + \dots + \lambda_p u_p$$
.

Les scalaires $\lambda_1, \ldots, \lambda_p$ sont appelés les **coordonnées** de u dans la base (u_1, \ldots, u_p) .

Exemples de référence : base canonique et coordonnées : soient $n, p \in \mathbb{R}^*$.

1. Base canonique de \mathbb{K}^n .

La base canonique de \mathbb{K}^n est la famille constituée des vecteurs

$$e_1 = (1, 0, \dots, 0)$$
, $e_2 = (0, 1, 0, \dots, 0)$, \dots , $e_n = (0, \dots, 0, 1)$.

Les coordonnées d'un vecteur (x_1, \ldots, x_n) dans la base canonique sont (x_1, \ldots, x_n) car

$$(x_1,\ldots,x_n)=x_1e_1+\cdots+x_ne_n.$$

2. Base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$.

La base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$ est la famille $(E_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ où $E_{i,j}$ est la matrice dont tous les coefficients valent 0 sauf le coefficient d'indices (i,j) qui vaut 1.

Les coordonnées d'une matrice $(a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ dans la base canonique sont $(a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$.

3. Base canonique de $\mathbb{K}_n[x]$.

La base canonique de $\mathbb{K}_n[x]$ est la famille $(1, x, x^2, \dots, x^n)$. Les coordonnées d'un polynôme $P = a_0 + a_1 x + \dots + a_n x^n$ dans la base canonique sont (a_0, a_1, \dots, a_n) .