ESPACES VECTORIELS DE DIMENSION FINIE

Dans tout ce chapitre \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

6.1 Dimension

6.1.1 Espaces vectoriels de dimension finie

Définition 6.1 (Espace vectoriel de dimension finie)

Un \mathbb{K} -espace vectoriel E est dit de dimension finie s'il possède une famille génératrice finie.

Exemples de référence. Soit $n, p \in \mathbb{N}^*$.

Les espaces vectoriels \mathbb{K}^n , $\mathcal{M}_{n,p}(\mathbb{K})$ et $\mathbb{K}_n[X]$ sont de dimension finie.

Proposition 6.1

Soit E un \mathbb{K} -espace vectoriel de dimension finie non réduit au vecteur nul.

De toute famille génératrice de E on peut extraire une sous-famille qui est une base de E.

6.1.2 Dimension

Définition 6.2 (Dimension d'un espace vectoriel de dimension finie)

Soit E un \mathbb{K} -espace vectoriel de dimension finie non réduit au vecteur nul.

Alors toutes les bases de E ont le même cardinal.

Le cardinal commun à toutes les bases de E est un entier naturel non nul appelé dimension de E et noté $\dim(E)$.

Par convention, la dimension d'un K espace vectoriel réduit au vecteur nul est 0.

Exemples de référence.

- 1. Pour tout $n \in \mathbb{N}^*$, $\dim(\mathbb{K}^n) = n$;
- 2. Pour tout $n \in \mathbb{N}$, $\dim(\mathbb{K}_n[X]) = n + 1$;
- 3. Pour tout $n, p \in \mathbb{N}^*$, $\dim(\mathcal{M}_{n,p}(\mathbb{K}) = np$.

Proposition 6.2

Soit E un \mathbb{K} -espace vectoriel de dimension finie et F un sous-espace vectoriel de E. Alors :

- 1. F est un \mathbb{K} -espace vectoriel de dimension finie;
- 2. $\dim(F) \leq \dim(E)$;
- 3. $\dim(F) = \dim(E)$ si et seulement si F = E.

6.1.3 Famille de vecteurs et dimension

Proposition 6.3

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$.

- 1. Soit \mathcal{G} une famille génératrice de vecteurs de E. Alors $\operatorname{Card}(\mathcal{G}) \geq n$. De plus, si $\operatorname{Card}(\mathcal{G}) = n$ alors \mathcal{G} est une base de E.
- 2. Soit \mathcal{L} une famille libre de vecteurs de E. Alors $\operatorname{Card}(\mathcal{L}) \leq n$. De plus, si $\operatorname{Card}(\mathcal{L}) = n$ alors \mathcal{L} est une base de E.
- 3. Toute famille libre peut se compléter en une base de E.

6.2 Rang d'une famille de vecteurs

Définition 6.3 (Rang d'un famille de vecteurs)

Soit E un \mathbb{K} -espace vectoriel de dimension finie. Soient $n \in \mathbb{N}^*$ et (u_1, \ldots, u_n) une famille de vecteurs de E.

On appelle **rang** de cette famille, et on note $rg(u_1, ..., u_n)$, la dimension de l'espace vectoriel $Vect(u_1, ..., u_n)$.

Proposition 6.4

Soit E un \mathbb{K} -espace vectoriel de dimension finie. Soient $n \in \mathbb{N}^*$ et (u_1, \ldots, u_n) une famille de vecteurs de E.

- 1. $\operatorname{rg}(u_1,\ldots,u_n) \leq \dim(E)$ avec égalité si et seulement si $E = \operatorname{Vect}(u_1,\ldots,u_n)$.
- 2. $\operatorname{rg}(u_1,\ldots,u_n) \leq n$ avec égalité si et seulement si (u_1,\ldots,u_n) est libre.
- 3. Le rang d'une famille de vecteurs reste inchangé si :
 - on change l'ordre des vecteurs,
 - on multiplie un des vecteurs par un scalaire non nul,
 - on retire de la famille un vecteur qui s'écrit comme combinaison linéaire des autres.
 - on ajoute à l'un des éléments de la famille une combinaison linéaires des autres.

En pratique: soient n et p deux entiers naturels non nuls.

Soit E un espace vectoriel de dimension finie n et soit \mathcal{B} une base de E.

1. Soit $u \in E$ et notons $(x_1, \ldots, x_n) \in \mathbb{K}^n$ les coordonnées de u dans la base \mathcal{B} . On appelle

matrice de u dans la base \mathcal{B} et on note $\operatorname{Mat}_{\mathcal{B}}(u)$ la matrice colonne $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

2. Soit $(u_1, \ldots, u_p) \in E^p$ une famille de vecteurs de E. On appelle **matrice de** (u_1, \ldots, u_p) dans la base \mathcal{B} et on note $\operatorname{Mat}_{\mathcal{B}}(u_1, \ldots, u_p)$ la matrice de $\mathcal{M}_{n,p}(\mathbb{R})$ dont la j-ième colonne est la $\operatorname{Mat}_{\mathcal{B}}(u_j)$.

Alors le rang de (u_1, \ldots, u_p) est égal au rang de la matrice $\operatorname{Mat}_{\mathcal{B}}(u_1, \ldots, u_p)$.