Lycée Pierre-Gilles de Gennes

2025-2026

Mathématiques - TD6

DIMENSION

Exercice 1. Reprendre les familles de l'exercice 13 du TD précédent et montrer que ce sont des bases en utilisant un argument de dimension.

Exercice 2. Montrer que la famille

$$\left(\begin{pmatrix}1 & -1\\0 & 0\end{pmatrix}\;;\; \begin{pmatrix}-1 & 1\\1 & 0\end{pmatrix}\;;\; \begin{pmatrix}0 & -1\\1 & -1\end{pmatrix}\;;\; \begin{pmatrix}0 & 0\\-1 & 1\end{pmatrix}\right)$$

est une base de $\mathcal{M}_2(\mathbb{K})$.

Exercice 3. Soit $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$. On pose :

$$g_1: x \in \mathbb{R} \mapsto e^{2x}$$
; $g_2: x \in \mathbb{R} \mapsto e^{-x}\cos(x\sqrt{3})$; $g_3: x \in \mathbb{R} \mapsto e^{-x}\sin(x\sqrt{3})$.

Déterminer une base de $F = \text{Vect}(g_1, g_2, g_3)$ et en déduire sa dimension.

Exercice 4. Dans $E = \mathcal{M}_3(\mathbb{R})$, on note $\mathcal{A}_3(\mathbb{R})$ l'ensemble des matrices antisymétriques et $\mathcal{S}_3(\mathbb{R})$ l'ensemble des matrices symétriques.

- 1. Montrer que $\mathcal{A}_3(\mathbb{R})$ est un sous-espace vectoriel de E, trouver une base et sa dimension
- 2. Montrer que $S_3(\mathbb{R})$ est un sous-espace vectoriel de E, trouver une base et sa dimension.

Exercice 5 (Polynômes interpolateurs de Lagrange). Soient z_0, \ldots, z_n $(n \in \mathbb{N}^*)$ des nombres complexes distincts. Pour tout $j \in [0, n]$ on pose :

$$L_j = \prod_{\substack{k=0\\k\neq j}}^n \frac{X - z_k}{z_j - z_k}.$$

- 1. Pour tout $j \in \llbracket 0, n \rrbracket$ et tout $k \in \llbracket 0, n \rrbracket$ calculer $L_j(z_k)$.
- 2. Montrer que $(L_i)_{i\in \llbracket 0,n\rrbracket}$ est une famille génératrice de $\mathbb{C}_n[X]$.
- 3. En déduire que c'est une base de $\mathbb{C}_n[X]$ et déterminer les coordonnées d'un polynôme $P \in \mathbb{C}_n[X]$ dans cette base.

Exercice 6. Dans \mathbb{R}^4 , on considère les vecteurs :

$$v_1 = (1, -1, 2, 0)$$
; $v_2 = (0, 2, 1, 1)$; $v_3 = (1, 1, 3, 1)$; $v_4 = (2, 0, 5, 1)$.

- 1. La famille $\mathcal{F} = (v_1, v_2, v_3, v_4)$ est-elle libre?
- 2. Soit $E = \text{Vect}(\mathcal{F})$. Extraire de \mathcal{F} une base de E et en déduire la dimension de E.

Exercice 7. Dans $\mathbb{R}_2[X]$ on considère la famille :

$$\mathcal{F} = (1 + X + X^2, 1, X + X^2, X^2).$$

- 1. Montrer que \mathcal{F} est génératrice de $\mathbb{R}_2[X]$.
- 2. Extraire de \mathcal{F} une base de $\mathbb{R}_2[X]$.

Exercice 8.

- 1. Soit $v_1 = (1, -2, 1)$ et $v_2 = (-1, 2, 1)$. Montrer que (v_1, v_2) est libre et compléter-la en une base de \mathbb{R}^3 .
- 2. Soit

$$M_1 = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} \; ; \; M_2 = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \; ; \; M_3 = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}.$$

Montrer que (M_1, M_2, M_3) est libre et compléter-la en une base de $\mathcal{M}_2(\mathbb{R})$.

3. Soit

$$P = 1 - X + X^2 - X^3$$
; $Q = 1 + X + X^2 + X^3$.

Montrer que (P,Q) est libre et compléter-la en une base de $\mathbb{R}_3[X]$.

Exercice 9. Donner la dimension des espaces vectoriels des exercices 14 et 15 du TD précédent.

Exercice 10. Donner une base et la dimension des espaces vectoriels des exercices 5 et 6 du TD précédent.

Exercice 11. Soit $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$. On pose, pour tout $n \in \mathbb{N}^*$:

$$g_n: x \in \mathbb{R} \mapsto e^{nx}$$
.

- 1. Montrer que pour tout $n \in \mathbb{N}^*$ la famille (g_1, \ldots, g_n) est libre. Indication: penser aux limites.
- 2. En déduire que E n'est pas de dimension finie.

Exercice 12. Déterminer le rang des familles suivantes :

1.
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$, $\begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix}$.

2.
$$(2, 3 + X, 7 - 6X^2, 2X + X^2)$$
.

Correction de l'exercice 1. Dans \mathbb{R}^3 , on donne

$$u_1 = (1, 0, -1)$$
 ; $u_2 = (-1, 2, 1)$; $u_3 = (3, -4, -3)$.

- 1. Déterminer le rang de la famille (u_1, u_2, u_3) .
- 2. Déterminer la dimension du sous-espace vectoriel F engendré par (u_1, u_2, u_3) et donner en une base.