Lycée Pierre-Gilles de Gennes

2025-2026

Mathématiques – TD7

SÉRIES

Exercice 1. Étudier la nature des séries suivantes et, le cas échéant, calculer leur somme.

$$1. \sum_{n\geq 0} \frac{n}{7^{n-1}}.$$

3.
$$\sum_{n>0} \frac{(-1)^n n}{3^n}$$
.

5.
$$\sum_{n>0} \frac{n2^n}{n!}$$
.

2.
$$\sum_{n>0} \frac{4n^2 + 5n}{5^n}$$
. 4. $\sum_{n>0} \frac{2^n}{(n+1)!}$.

4.
$$\sum_{n\geq 0} \frac{2^n}{(n+1)!}$$

6.
$$\sum_{n>0} \frac{n}{2^{2n+1}}.$$

Exercice 2. On considère la série de terme général donné par :

$$\forall n \in \mathbb{N}^* \quad u_n = \frac{n^3 + 2n^2 - 4n + 1}{n!}.$$

- 1. Montrer que la famille (1, x, x(x-1), x(x-1)(x-2)) est une base de $\mathbb{R}_3[x]$.
- 2. Déterminer les coordonnées de $x^3 + 2x^2 4x + 1$ dans cette base.
- 3. En déduire que la série $\sum_{n>1} u_n$ converge et calculer sa somme.

Exercice 3 (Télescopage). Étudier la nature des séries et, le cas échéant, déterminer leur somme.

1.
$$\sum_{n\geq 1} \ln\left(1 + \frac{1}{n}\right);$$

3.
$$\sum_{n>2} \ln \left(1 - \frac{1}{n^2}\right)$$
;

2.
$$\sum_{n>1} \frac{1}{n(n+1)}$$
;

4.
$$\sum_{n\geq 2} \frac{2}{n(n^2-1)} \left(Calculer \frac{1}{n+1} - \frac{2}{n} + \frac{1}{n-1} \right).$$

Exercice 4. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 \in]0,1[\\ \forall n\in\mathbb{N} \ u_{n+1}=u_n-u_n^2. \end{cases}$

- 1. Montrer que : $\forall n \in \mathbb{N}, u_n \in]0, 1]$.
- 2. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.
- 3. Étudier la convergence de la série $\sum_{n} u_n^2$ et déterminer sa somme si elle existe.
- 4. Prouver que la série $\sum_{n\geq 0} \ln\left(\frac{u_{n+1}}{u_n}\right)$ diverge.
- 5. En déduire la nature de la série $\sum_{n=0}^{\infty} u_n$.

1.
$$\sum_{n>1} \frac{n^3 - n^2 + 1}{5n^5 + 3n^4 + 2n}$$

$$4. \sum_{n>1} \left(1 + \frac{1}{n}\right)^n.$$

$$7. \sum_{n \ge 2} \frac{n}{\ln n}.$$

2.
$$\sum_{n>1} (n^{\frac{1}{n}} - 1).$$

$$5. \sum_{n>1} \frac{1}{n^{\ln n}}$$

Exercice 5. Déterminer la nature des séries suivantes :
1.
$$\sum_{n\geq 1} \frac{n^3 - n^2 + 1}{5n^5 + 3n^4 + 2n}$$
. 4. $\sum_{n\geq 1} \left(1 + \frac{1}{n}\right)^n$. 7. $\sum_{n\geq 2} \frac{n}{\ln n}$.
2. $\sum_{n\geq 1} (n^{\frac{1}{n}} - 1)$. 5. $\sum_{n\geq 1} \frac{1}{n^{\ln n}}$ 8. $\sum_{n\geq 1} \left(\sqrt{n^2 - n + 2} - n\right)$.

3.
$$\sum_{n\geq 1} (-1)^n \ln\left(1+\frac{1}{n^2}\right)$$

6.
$$\sum_{n>1} \ln \left(1 + \frac{(-1)^n}{n^3} \right)$$

3.
$$\sum_{n\geq 1}^{n\geq 1} (-1)^n \ln\left(1+\frac{1}{n^2}\right). \quad 6. \sum_{n>1}^{n\geq 1} \ln\left(1+\frac{(-1)^n}{n^3}\right). \quad 9. \sum_{n\geq 1}^{n} \left(1-\left(1+\frac{1}{n^2}\right)^n\right).$$

Exercice 6. Étudier la nature des séries suivantes.

1.
$$\sum_{n\geq 2} \left(\frac{1}{n} - \ln\left(1 + \frac{1}{n}\right)\right)$$
. 2. $\sum_{n\geq 1} \left(1 - \cos\left(\frac{1}{n}\right)\right)$. 3. $\sum_{n\geq 0} ((-1)^n n + \sqrt{n})e^{-\sqrt{n}}$.

$$2. \sum_{n>1} \left(1 - \cos\left(\frac{1}{n}\right)\right)$$

3.
$$\sum_{n>0} ((-1)^n n + \sqrt{n}) e^{-\sqrt{n}}$$

Exercice 7 (Une série convergente mais pas absolument convergente). Soit $(u_n)_{n>1}$ la suite définie par

$$\forall n \ge 1 \quad u_n = \frac{(-1)^n}{\sqrt{n}}.$$

Pour tout $n \ge 1$, on note $S_n = \sum_{k=1}^{n} u_k$.

- 1. Montrer que la série $\sum_{n\geq 1} u_n$ n'est pas absolument convergente.
- 2. (a) Montrer que les suites $(S_{2n})_{n\geq 1}$ et $(S_{2n+1})_{n\geq 0}$ sont adjacentes.
 - (b) En déduire que la suite $(S_n)_{n\geq 1}$ converge.
 - (c) En déduire que la série $\sum u_n$ converge.

Exercice 8 (Deux suites équivalentes, l'une convergente, l'autre divergente). Soit $(v_n)_{n\geq 1}$ la suite définie par

$$\forall n \ge 1 \quad v_n = \frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}$$

et $(u_n)_{n\geq 1}$ la suite définie par

$$\forall n \ge 1 \quad u_n = \frac{(-1)^n}{\sqrt{n}}.$$

- 1. Montrer que $v_n \sim u_n$.
- 2. Montrer que la série $\sum v_n$ diverge (on pourra utiliser le résultat de l'exercice précédent).

Exercice 9. On note $f:]1, +\infty[\to \mathbb{R}$ l'application définie par :

$$\forall x \in]1, +\infty[, f(x) = \frac{1}{x \ln(x)}]$$

et pour tout $n \in \mathbb{N}$ tel que $n \geq 2$, on note $S_n = \sum_{k=0}^{\infty} f(k)$.

1. Étudier les variations de f et tracer sa courbe représentative.

2. Montrer, pour tout entier k tel que $k \geq 3$:

$$f(k) \le \int_{k-1}^{k} f(x) dx \le f(k-1).$$

3. (a) Montrer, pour tout $n \in \mathbb{N}$ tel que $n \geq 2$:

$$S_n - \frac{1}{2\ln(2)} \le \int_2^n f(x) dx \le S_n - \frac{1}{n\ln(n)}.$$

(b) En déduire, pour tout $n \in \mathbb{N}$ tel que $n \ge 2$:

$$\ln(\ln(n)) - \ln(\ln(2)) \le S_n \le \ln(\ln(n)) - \ln(\ln(2)) + \frac{1}{2\ln(2)}.$$

- (c) Établir : $S_n \underset{n \to +\infty}{\sim} \ln(\ln(n))$.
- 4. Pour tout $n \in \mathbb{N}$ tel que $n \geq 2$, on note

$$u_n = S_n - \ln(\ln(n+1))$$
 et $v_n = S_n - \ln(\ln(n))$.

- (a) En utilisant le résultat de la question 2., montrer que les suites $(u_n)_{n\geq 2}$ et $(v_n)_{n\geq 2}$ sont adjacentes. On note ℓ leur limite commune.
- (b) Montrer, pour tout $n \in \mathbb{N}$ tel que $n \geq 2$:

$$0 \le v_n - \ell \le \frac{1}{n \ln(n)}.$$

(c) En déduire une fonction Python prenant en entrée un réel eps > 0 et renvoyant une valeur approchée de ℓ à eps près.