CHAPITRE 1

FONCTIONS DE DEUX VARIABLES

1.1 Généralités sur les fonctions de deux variables

1.1.1 Exemples de sous-ensembles de R?

Rappel(s) 1.1. Etant donnés My = (z9,y0) et M = (x,y) deux points de R? la distance entre
My et M, notée d(My, M), est :

d(Mo, M) = \/(z — 20)% + (y — yo)*-

Il s’agit d’une simple application du théoréme de Pythagore (voir la figure suivante).

Yor----

— Définition 1.1 (Disque ouverts/fermés)

Soient A € R? et r > 0.

e On appelle disque ouvert de centre A et de rayon r et on note D(A,r) le
sous-ensemble de R? défini par :

D(A,;r)={M e R* | d(A,M) <r}.

¢ On appelle disque fermé de centre A et de rayon r et on note Df(A,r) le
sous-ensemble de R? défini par :

Dy(A,r)={M eR? | d(A,M) <r}.

Exemple 1.1. Faire des dessins de disques et de complémentaires de disques.
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— Définition 1.2 (Pavés)

Soient I et J deux intervalles de R.
e Le sous-ensemble I x J de R? est appelé un pavé.

e Si les deux intervalles I et J sont ouverts, on parle de pavé ouvert.

Exemple 1.2. Faire des dessins.
1. Les ensembles de la forme |a, b X ]c, d[ sont des pavés ouverts.
2. Les ensembles de la forme [a,b] X [¢,d], [0, 1] x [0, 1] sont des pavés (pas ouverts).

Exemple 1.3. L'intersection de deux pavés (ouverts) est encore un pavé (ouvert).
Dessin.

Définition 1.3 (Demi-plans)

Les pavés ouverts de la forme ]a, +00[ xR, | — 00, a[xR, Rx] — 00, a[ et Rx]a, +-00[ sont
appelés des demi-plans ouverts.

Exemple 1.4. Dessins.

1.1.2 Fonctions de deux variables

— Définition 1.4 (Fonction de deux variables réelles)

On appelle fonction numérique de deux variables réelles toute application f
définie sur un sous-ensemble D de R? & valeurs dans R :

f:D—R
(z,y) — f(z,y).

Exemple 1.5. Chaque fois, écrire I’ensemble de définition D et le dessiner.

1. Les fonctions de la forme suivante sont appelées des fonctions polynomiales.
R* — R
(z,y) — Z ai,inyj
(i,5)€A
avec A C N? fini.

2. Les fonctions obtenues par composition avec une fonction d’une variable :

Y est definie sur R?\{(z,y) € R? | 2% 4+ y* < 4} ;
x? +y? — 4

(b) La fonction (z,y) € R? — ™ — 2 4 1.

(a) La fonction (z,y) —

3. Les fonctions qui ne dépendent que d’une variable :

(z,y) ER*— z¢™® ou (z,y) € R? — y?> +In(y* +2).
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— Définition 1.5 (Applications partielles)

Soit f une fonction numeérique de deux variables réelles définie sur une partie D de R?
et soit (zo,yo) € D.

e On appelle premiére application partielle de f en (xg,yo) et on note fy—,
I'application
z +— f(2,90)
définie sur l'ensemble {x € R | (z,yo) € D}

e On appelle deuxiéme application partielle de f en (zo,yo) et on note fr—z,
I'application
y — f(z0,y)

définie sur 'ensemble {y € R | (zo,y) € D}.

Exemple 1.6. Soit f la fonction définie sur R? par : V(z,y) € R?, f(x,y) = 2% +y>. Alors, pour
('1"07y0) = (_133) on a:

fy=3:R—R fr=r1: R— R

r— 249 y— >+ 1.

1.1.3 Représentation graphique

— Définition 1.6 (Représentation graphique)

Soit f une fonction numérique de deux variables réelles définie sur une partie D de R2.
On appelle graphe de la fonction f le sous-ensemble de R :

{(z,9,2) €R® | (z,y) € D et z = f(z,9)} = {(z,, f(z,9)) €ER®, (z,y) € D}.

Exemple 1.7. Graphe des fonctions suivantes :
1. la fonction f : (z,9) € R* — 2% + 42,
2. la fonction f : (z,y) € R? — 22 — 3%,
x
?2+y?+1
[lustrer le lien entre les fonctions partielles et les sections par des plans verticaux d’équation
T =x0 et y=1yop.

3. la fonction f : (z,y) € R? —

— Définition 1.7 (Ligne de niveau)

Soit f une fonction numérique de deux variables réelles définie sur une partie D de R?
et soit ¢ € R. On appelle ligne de niveau ¢ de f le sous-ensemble de R? :

{(z,y) €D | fz,y) = c}.

Remarque 1.1. Graphiquement, on regarde 'intersection du graphe de f avec le plan horizontal
d’équation z = ¢ et on projette sur le plan (Oxy) pour obtenir la ligne de niveau ¢ de f.
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Remarque 1.2. Lorsque f(x,y) représente :

— une température au point de coordonnées (x,y), les lignes de niveaux sont les courbes de
température constante : les isothermes;

— une pression au point de coordonnées (z,y), les lignes de niveaux sont les courbes de
pression constante : les isobares ;

— une altitude au point de coordonnées (z,y), les lignes de niveaux sont les courbes d’altitude
constante.
Exemple 1.8.
1. afficher les cartes IGN;

2. affficher les cartes isobares.

Exemple 1.9. On reprend l'exemple de la fonction f : (z,7y) € R? — 22 + 2.
1. La ligne de niveau —1 de f est ’ensemble vide.
2. La ligne de niveau 0 de f est {(0,0)}.
3. La ligne de niveau 1 de f est le cercle de centre (0,0) et de rayon 1.
4. Plus généralement, la ligne de niveau c € R est

e 'ensemble vide si ¢ < 0,
e {(0,0)} sic=0,
e le cercle de centre (0,0) et de rayon /c si ¢ > 0.

Exemple 1.10. Graphe et lignes de niveau des fonctions suivantes :

1. la fonction f : (z,9) € R* — 2% + ¢/,

2. la fonction f : (z,y) € R? s 22 — 3%,
3. la fonction f : (x,y) € Rz — #ﬁ-}-l

Lien entre lignes de niveaux et sections par des plans horizontaux.

1.2 Continuité des fonctions de deux variables

Rappel(s) 1.2. Pour les fonctions d’une variable : soit f une fonction définie sur un intervalle
I de R et soit xg € I. On dit que f est continue en xg si

Ve>03r >0Va €lzg—r,xzo+7r|NI, |f(x)— f(zo)] <€

ou encore

Ve>03dr>0Veel, |[x—xo| <r=|f(z)— f(zo)] <e

Autrement dit, une fonction d’une variable réelle f est continue en x( si, pour toute précision
arbitrairement petite €, toutes les valeurs f(x) de f sont a une distance maximale de € de f(zg)
pourvu que x soit suffisamment proche de xo.

Dans le cas de deux variables, la distance entre deux arguments de la fonction n’est plus mesurée
par la valeur absolue de la différence mais par la norme (euclidienne) de la différence et méne a
la définition suivante :
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Définition 1.8 (Continuité en un point)

Soit f une fonction numérique de deux variables définie sur un pavé ouvert I x J et
soit (xo,y0) € I x J. On dit que f est continue en (xg,yo) si

Ve>03r>0V(x,y) € IxJ, | (z,y) — (xo,y0) |<7=|f(z,y) — f(z0,%0)| < e

Autrement dit, f est continue en (x,yp) si, pour toute précision arbitrairement petite €, toutes
les valeurs f(z,y) de f sont a une distance maximale de € de f(zp,yo) pourvu que (x,y) soit
suffisamment proche de (zg, yo).

Définition 1.9 (Continuité)

Soit f une fonction de deux variables définie sur un pavé ouvert I x J. On dit que f
est continue sur I x J si f est continue en tout point de I x J.

Exemple 1.11 (Admis).

1.
2.

Les fonctions polynomiales sont continues.

Somme/produit/quotient dont le dénominateur ne s’annule pas de fonctions continues est
continue.

. Composer une fonction d’une fonction d’une variable continue avec une fonction de deux

variables continues est continue : la fonction (z,y) — In (2% 4+ 3® 4 1) est continue sur R?.

1.3 Dérivées partielles

But :

généraliser la notion de dérivée aux fonctions de deux variables.

Dans toute la suite I x J désigne un pavé ouvert.

1.3.1 Dérivées partielles d’ordre 1

Définition 1.10 (Dérivées partielles d’ordre 1)

Soient f : I x J — R une fonction de deux variables et (xo,y0) € I x J.

e On dit que f admet une dérivée partielle d’ordre 1 par rapport a la pre-
miére variable en (zg,yo) si I'application partielle f,—,, est dérivable en z.
Dans ce cas, le nombre dérivé de f,—,, en xo est noté :

0 .
a*i(ivo,yo) ou parfois  91(f)(xo,yo)-

e On dit que f admet une dérivée partielle d’ordre 1 par rapport a la
deuxiéme variable en (zo,yo) si I'application partielle f,—, est dérivable en
yo- Dans ce cas, le nombre dérivé de f,—,, en yo est noté :

0 .
5£($0’y0) ou parfois  92(f)(xo,yo)-
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—{ Définition 1.11]

Soit f : I x J — R une fonction de deux variables.

e Si f admet une dérivée partielle d’ordre 1 par rapport & la premiére variable en
tout point, on appelle dérivée partielle d’ordre 1 par rapport a la premiére

variable et on note — la fonction :
ox
g :IxJ—R
ox

(xvy) — al(f)(xvy)

e Si f admet une dérivée partielle d’ordre 1 par rapport & la deuxiéme variable en
tout point, on appelle dérivée partielle d’ordre 1 par rapport a la deuxiéme

variable et on note 50 la fonction :
Yy

of

. IxJ—R
oy %

(xvy) — a?(f)($7y)

— Méthode 1.1]

D’un point de vue pratique, pour calculer les dérivées partielles d’une fonction f, on
laisse tomber les indices (xg devient x, yo devient y). Pour dériver une « formule » par
rapport & x, on considére que y est constant (non variable donc) et on dérive, comme
d’habitude, la formule de la seule variable réelle restante (z).

Exemple 1.12. Calcul des dérivées partielles de :
1. La fonction f définie par

Y(z,y) € R?  f(x,y) =1y — 2xy* + 32%9° + 1.
2. La fonction g définie par :

2

V(z,y) € R?,  g(z,y) = e HY°

—{ Définition 1.12 (Fonctions de classe C'! sur R?)

Soit f : I x J — R une fonction de deux variables.
On dit que f est de classe C' sur I x J si elle admet des dérivées partielles sur I x J
et que les dérivées partielles sont continues sur I x .J.

Exemple 1.13 (Admis).
1. Les fonctions polynomiales sont C*.
2. Somme/produit/quotient dont le dénominateur ne s’annule pas de fonctions C* est C.

3. Composer une fonction C' d’une variable continue avec une fonction C! de deux variables
continues est C' : la fonction (z,y) — In (2% +y* + 1) est C' sur R%
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— Proposition 1.1 (Développement limité d’ordre 1)

Soient f : I x J — R une fonction de deux variables de classe C! sur I x J et
(zo,y0) € I x J. Alors on a :

(@0, 50)h + 2L (2o, w0k + o (Il (B ).

f($0+h,yo+k):f($o7yo)+ai By

ox

Cette expression est appelée développement limité d’ordre 1 de f en (zg,yp) et
est unique.

Remarque 1.3.

1. De maniére équivalente, le développement limité en (z,yp) s’écrit aussi :

) = f o) + 5 o) = ) + 5 0,00y = 90) + 0 (1 2 = 0, = o) )

2. 1l s’agit de I'analogue pour les fonctions de deux variables du développement limité d’ordre

1 pour les fonctions f : R — R.

3. Graphiquement, I’équation z = Zf(xo,yo)(x —x0) + gf(xo,yo)(y — yo) est 'équation du
€z Y

plan tangent au graphe de f au point de coordonnées (xg, yo, f (0, %0))-

— Définition 1.13 (Gradient)

Soit f : I x J — R une fonction de deux variables admettant des dérivées partielles en
(.%'o,yo) el xJ.

On appelle gradient de f en (zg,yo) le vecteur de My 1(R), noté V(f)(xo, yo) (se lit
"nabla"), défini par :

8 LUO,Z/()
V(f)(@o, yo) = 3
By ( 0, Y0)

Remarque 1.4. Graphiquement, la direction du gradient de f en un point (g, yo) est la direction

de plus forte variation de f.

—{ Théoréme 1.0 }

Soit f : I x J — R une fonction de classe C! et &, y deux fonctions de dérivables sur
un intervalle T" et & valeurs dans I et J respectivement. Alors la fonction A : T — R
définie par :

vteT, h(t)=f(z(t),y(t))

est dérivable sur T et :

VEeT, N(t)=a'(t)5 - (2(t),y() + ¥ ()5 (@), y(1))-
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Preuve : Soit tg € T et notons (xo,y0) = (z(t0),y(to)). On fait le DL1 de f :

h(t+h) = f(x(t+h),y(t+ h))

= h(0) + SO0 O) e+ )~ 2(0) + L w0 )+ ) = u(0) +o ] )
= h(0) + S0, 0O O+ o) + 2L (al0) () O+ o) +o ] )
= 1(0) + (&' (05 (01910 + O 5 (0,0 ) 400 + o1
ol ) = ol (aft + h) — 2(t). (¢ + )~ y(®) )
= of| (/(6)h + o)./ ()h + o)) |
=o(h).

O

Exemple 1.14. Cas ou z(t),y(t)) est a valeurs dans une ligne de niveau et orthogonalité du
gradient.

1.3.2 Fonctions de classe C?

— Définition 1.14 (Dérivées partielles d’ordre 2)

Soit f : I x J — R une fonction de deux variables admettant des dérivées partielles
d’ordre 1.
On dit que f admet des dérivée partielle d’ordre 2 sur [ x J si

e f admet des dérivées partielles d’ordre 1 sur I x J,

0 0
. —f et —f admettent des dérivées partielles sur I x J.

Oor Oy

Dans ce cas, on note :

er (%) ey (%)

812~ Oz ooy oy
P 9

or _0(%)  er _0(%)

Oxdy Ox " Qyox oy

On dit que f est de classe C? sur I x J si, de plus, les quatre dérivées partielles
d’ordre 2 sont continues sur I x J.

Exemple 1.15 (Admis).
1. Les fonctions polynomiales sont C2.
2. Somme/produit/quotient dont le dénominateur ne s’annule pas de fonctions C? est C2.
3. Composer une fonction C? d’une variable continue avec une fonction C? de deux variables
continues est C? : la fonction (z,y) +— In (2% + y* + 1) est C? sur R%
Exemple 1.16. Dérivée d’ordre 2 (surtout les dérivées croisées) sur les exemples suivants :
L f1:(2,9) — y® — 229 + 32%y% + 1,
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2.
3.

f2 : (:E)y) et sin(xy),

fo: (2,y) = e

Théoréme 1.0 (de Schwarz)

Soit f une fonction de classe C? sur I x J. Alors :

0% f B 0% f
0xdy  Oyox’

1.4 Extrema des fonctions de deux variables

Définition 1.15 (Maximum, minimum)

Soit f une fonction de deux variables définie sur une partie D de R2.

e On dit que f admet un minimum local en (xg,y9) € D s’il existe un pavé
ouvert I x J tel que :

V(z,y)e I xJ)ND  f(z,y) = f(x0,%0)-

Le minimum est dit global si I'inégalité est vraie pour tout (z,y) € D.

e On dit que f admet un maximum local en (zg,y9) € D s’il existe un pavé
ouvert I x J tel que :

V(J:?y) € (I X J) nD f(l‘ay) < f(J:anO)'

Le maximum est dit global si I'inégalité est vraie pour tout (z,y) € D.

Remarque 1.5.

1.
2.

3.

Un minimum/ maximum global est toujours local mais la réciproque est fausse.

Une fonction n’admet pas nécessairement de minimum ou de maximum (qu'il soit local ou
global).

Un maximum /minimum (qu’il soit local ou global) n’est pas nécessairement unique.

Exemple 1.17. Soit f la fonction définie sur U par :

V(z,y) €U, f(z,y)=2"+y

ot U est une partie de R?

1.

On prend U = R?.
La fonction f admet un minimum global en (0,0). En effet, pour tout (z,y) € R?,

flz,y) =2 +y* > 0= £(0,0).

La fonction f n’admet aucun maximum (local).
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2. On prend U = B¢((0,0),1).
La fonction f admet un minimum global en (0, 0). La fonction f admet un maximum global
en (1,0).
En effet, pour tout (x,y) € Bf((0,0), 1),

flz,y) =22+ 92 < 1= f(1,0).

I n’y a pas unicité du maximum : tout point de la sphére de de centre (0,0) et de rayon 1
est un maximum global.

— Proposition 1.2 (Condition nécessaire d’existence d’un extremum)

Soit f : I x J — R une fonction de classe C! sur un pavé ouvert I x J de R? et soit
(.%'Q,y()) el xJ.

Si f admet un extremum local en (z,yo) alors V(f)(zo,y0) = <8>

Preuve : Idée : utiliser DL1 avec (h,k) = £ || eV f(x0,0) |- O

Remarque 1.6. 1l s’agit d’une condition nécessaire et non suffisante : considérons la fonction f
définie sur R? par

V(w,y) € R, f(z.y) = zy.
Alors pour tout (z,y) € R?

V(e = (1),

x
Donc : V(f)(0,0) = <8> En revanche, f n’a pas de minimum local (0,0) car :
Vr >0, f(—r,r)=—r*< £(0,0).

Elle n’a pas non plus de maximum local car :

Vr >0, f(r,r)= r? > £(0,0).

— Définition 1.16 (Point critique)

Soit f : I x J — R une fonction de classe C! sur un ouvert I x J de R? et soit
(xo,yo) el xJ.

On dit que (zg, yo) est un point critique de f si V(f)(zo,y0) = (8)

Remarque 1.7. Autrement dit, les extrema sont a rechercher parmi les points critiques.
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— Méthode 1.2 (Etude des extremas)

Etant donnée une fonction f définie sur un pavé ouvert I x J de R2.
1. On cherche les points critique en résolvant le systéme de deux inconnues & deux
équations V(f)(z,y) = Oge.
Attention, ce systéme n’est en général pas linéaire! Attention aussi : un point
critigue n’est pas nécessairement un extremum !
2. Pour chaque point critique (zg,y0) trouvé, on étudie f(z,y) — f(xo,yo) pour
déterminer si elle est de signe constant ou non.

Cette partie, en général guidée, consiste souvent & faire apparaitre des carrées par
des factorisations plus ou moins astucieuses.

Exemple 1.18. Etude de (z,y) — 22 + ¢y — 2z — 4y + 1.

— Méthode 1.3 (Déterminer si un extremum est global)

On considére une fonction f définie sur un ouvert U de R

e Pour montrer que f posséde un maximum global (resp. minimum global) en
(z0,y0) € U, il faut montrer que f(z,y) < f(zo,y0) (resp. f(z,y) = f(zo,y0) )
pour tout (z,y) € U (voir 'exemple 77?).

e Pour montrer que f n’a pas d’extremum global, ’énoncé suggére parfois de consi-
dérer deux fonctions g et h d’une variable telles que t — f(g(t),h(t)) posséde
une limite infinie (—oco pour contredire un minimum et 4+0o0 pour contredire un
maximum).

Exemple 1.19. Soit f : R? — R définie par : ¥(z,y) € R?, f(x,y) = zy® — 2% — 3y> + 2zy + 1.
Montrons que f ne posséde pas d’extremum global en considérant y — f(1,y).

1. Supposons par 'absurde que f posséde un maximum global en un point (zg, yo).
On note M = f(x0,y0). Alors :

V(z,y) € R2, flz,y) < M.

En particulier,
Yy eR, f(1,y) <M.

Or lim f(1,9) = lim y®—3y®+ 2y = +00. Absurde'!
Yy—r—+00 Yy—r+00
Ainsi, f ne posséde pas de maximum global.

2. Supposons par I'absurde que f posséde un minimum global en un point (xg,yo)-
On note m = f(xg,yo). Alors :

Y(z,y) € R?,  f(x,y) > m.

En particulier,
Vy eR, f(Ly) = m.

Or lim f(1,y9)= lim g3 —3y*+ 2y = —occ. Absurde!
y——00 y——00

Ainsi, f ne posséde pas de minimum global.
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