
Chapitre 1

Fonctions de deux variables

1.1 Généralités sur les fonctions de deux variables

1.1.1 Exemples de sous-ensembles de R2

Rappel(s) 1.1. Étant donnés M0 = (x0, y0) et M = (x, y) deux points de R2 la distance entre
M0 et M , notée d(M0,M), est :

d(M0,M) =
√
(x− x0)2 + (y − y0)2.

Il s'agit d'une simple application du théorème de Pythagore (voir la �gure suivante).

M0

M

x0

y0

y

x

Soient A ∈ R2 et r > 0.

� On appelle disque ouvert de centre A et de rayon r et on note D(A, r) le
sous-ensemble de R2 dé�ni par :

D(A, r) =
{
M ∈ R2 | d(A,M) < r

}
.

� On appelle disque fermé de centre A et de rayon r et on note Df (A, r) le
sous-ensemble de R2 dé�ni par :

Df (A, r) =
{
M ∈ R2 | d(A,M) ≤ r

}
.

Dé�nition 1.1 (Disque ouverts/fermés)

Exemple 1.1. Faire des dessins de disques et de complémentaires de disques.
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Soient I et J deux intervalles de R.
� Le sous-ensemble I × J de R2 est appelé un pavé.

� Si les deux intervalles I et J sont ouverts, on parle de pavé ouvert.

Dé�nition 1.2 (Pavés)

Exemple 1.2. Faire des dessins.

1. Les ensembles de la forme ]a, b[× ]c, d[ sont des pavés ouverts.

2. Les ensembles de la forme [a, b]× [c, d], [0, 1[× [0, 1[ sont des pavés (pas ouverts).

Exemple 1.3. L'intersection de deux pavés (ouverts) est encore un pavé (ouvert).
Dessin.

Les pavés ouverts de la forme ]a,+∞[×R, ]−∞, a[×R, R×]−∞, a[ et R×]a,+∞[ sont
appelés des demi-plans ouverts.

Dé�nition 1.3 (Demi-plans)

Exemple 1.4. Dessins.

1.1.2 Fonctions de deux variables

On appelle fonction numérique de deux variables réelles toute application f
dé�nie sur un sous-ensemble D de R2 à valeurs dans R :

f : D −→ R
(x, y) 7−→ f(x, y).

Dé�nition 1.4 (Fonction de deux variables réelles)

Exemple 1.5. Chaque fois, écrire l'ensemble de dé�nition D et le dessiner.

1. Les fonctions de la forme suivante sont appelées des fonctions polynomiales.

R2 −→ R

(x, y) 7−→
∑

(i,j)∈A

ai,jx
iyj

avec A ⊂ N2 �ni.

2. Les fonctions obtenues par composition avec une fonction d'une variable :

(a) La fonction (x, y) 7−→ xy√
x2 + y2 − 4

est dé�nie sur R2\{(x, y) ∈ R2 | x2 + y2 < 4} ;

(b) La fonction (x, y) ∈ R2 7−→ exy − x+ 1.

3. Les fonctions qui ne dépendent que d'une variable :

(x, y) ∈ R2 7−→ xe−x ou (x, y) ∈ R2 7−→ y2 + ln (y4 + 2).
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Soit f une fonction numérique de deux variables réelles dé�nie sur une partie D de R2

et soit (x0, y0) ∈ D.

� On appelle première application partielle de f en (x0, y0) et on note fy=y0

l'application
x 7−→ f(x, y0)

dé�nie sur l'ensemble {x ∈ R | (x, y0) ∈ D}
� On appelle deuxième application partielle de f en (x0, y0) et on note fx=x0

l'application
y 7−→ f(x0, y)

dé�nie sur l'ensemble {y ∈ R | (x0, y) ∈ D}.

Dé�nition 1.5 (Applications partielles)

Exemple 1.6. Soit f la fonction dé�nie sur R2 par : ∀(x, y) ∈ R2, f(x, y) = x2+y2. Alors, pour
(x0, y0) = (−1, 3) on a :

fy=3 : R −→ R fx=−1 : R −→ R
x 7−→ x2 + 9 y 7−→ y2 + 1.

1.1.3 Représentation graphique

Soit f une fonction numérique de deux variables réelles dé�nie sur une partie D de R2.
On appelle graphe de la fonction f le sous-ensemble de R3 :{

(x, y, z) ∈ R3 | (x, y) ∈ D et z = f(x, y)
}
=

{
(x, y, f(x, y)) ∈ R3 , (x, y) ∈ D

}
.

Dé�nition 1.6 (Représentation graphique)

Exemple 1.7. Graphe des fonctions suivantes :

1. la fonction f : (x, y) ∈ R2 7→ x2 + y2,

2. la fonction f : (x, y) ∈ R2 7→ x2 − y2,

3. la fonction f : (x, y) ∈ R2 7→ x

x2 + y2 + 1
.

Illustrer le lien entre les fonctions partielles et les sections par des plans verticaux d'équation
x = x0 et y = y0.

Soit f une fonction numérique de deux variables réelles dé�nie sur une partie D de R2

et soit c ∈ R. On appelle ligne de niveau c de f le sous-ensemble de R2 :

{(x, y) ∈ D | f(x, y) = c} .

Dé�nition 1.7 (Ligne de niveau)

Remarque 1.1. Graphiquement, on regarde l'intersection du graphe de f avec le plan horizontal
d'équation z = c et on projette sur le plan (Oxy) pour obtenir la ligne de niveau c de f .
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Remarque 1.2. Lorsque f(x, y) représente :

� une température au point de coordonnées (x, y), les lignes de niveaux sont les courbes de
température constante : les isothermes ;

� une pression au point de coordonnées (x, y), les lignes de niveaux sont les courbes de
pression constante : les isobares ;

� une altitude au point de coordonnées (x, y), les lignes de niveaux sont les courbes d'altitude
constante.

Exemple 1.8.

1. a�cher les cartes IGN ;

2. a��cher les cartes isobares.

Exemple 1.9. On reprend l'exemple de la fonction f : (x, y) ∈ R2 7−→ x2 + y2.

1. La ligne de niveau −1 de f est l'ensemble vide.

2. La ligne de niveau 0 de f est {(0, 0)}.

3. La ligne de niveau 1 de f est le cercle de centre (0, 0) et de rayon 1.

4. Plus généralement, la ligne de niveau c ∈ R est

� l'ensemble vide si c < 0,

� {(0, 0)} si c = 0,

� le cercle de centre (0, 0) et de rayon
√
c si c > 0.

Exemple 1.10. Graphe et lignes de niveau des fonctions suivantes :

1. la fonction f : (x, y) ∈ R2 7→ x2 + y2,

2. la fonction f : (x, y) ∈ R2 7→ x2 − y2,

3. la fonction f : (x, y) ∈ R2 7→ x

x2 + y2 + 1
.

Lien entre lignes de niveaux et sections par des plans horizontaux.

1.2 Continuité des fonctions de deux variables

Rappel(s) 1.2. Pour les fonctions d'une variable : soit f une fonction dé�nie sur un intervalle
I de R et soit x0 ∈ I. On dit que f est continue en x0 si

∀ϵ > 0 ∃r > 0 ∀x ∈ [x0 − r, x0 + r] ∩ I, |f(x)− f(x0)| ≤ ϵ

ou encore

∀ϵ > 0 ∃r > 0 ∀x ∈ I, |x− x0| ≤ r ⇒ |f(x)− f(x0)| ≤ ϵ.

Autrement dit, une fonction d'une variable réelle f est continue en x0 si, pour toute précision
arbitrairement petite ϵ, toutes les valeurs f(x) de f sont à une distance maximale de ϵ de f(x0)
pourvu que x soit su�samment proche de x0.

Dans le cas de deux variables, la distance entre deux arguments de la fonction n'est plus mesurée
par la valeur absolue de la di�érence mais par la norme (euclidienne) de la di�érence et mène à
la dé�nition suivante :
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Soit f une fonction numérique de deux variables dé�nie sur un pavé ouvert I × J et
soit (x0, y0) ∈ I × J . On dit que f est continue en (x0, y0) si

∀ϵ > 0 ∃r > 0 ∀(x, y) ∈ I × J, ∥ (x, y)− (x0, y0) ∥< r ⇒ |f(x, y)− f(x0, y0)| < ϵ.

Dé�nition 1.8 (Continuité en un point)

Autrement dit, f est continue en (x0, y0) si, pour toute précision arbitrairement petite ϵ, toutes
les valeurs f(x, y) de f sont à une distance maximale de ϵ de f(x0, y0) pourvu que (x, y) soit
su�samment proche de (x0, y0).

Soit f une fonction de deux variables dé�nie sur un pavé ouvert I × J . On dit que f
est continue sur I × J si f est continue en tout point de I × J .

Dé�nition 1.9 (Continuité)

Exemple 1.11 (Admis).

1. Les fonctions polynomiales sont continues.

2. Somme/produit/quotient dont le dénominateur ne s'annule pas de fonctions continues est
continue.

3. Composer une fonction d'une fonction d'une variable continue avec une fonction de deux
variables continues est continue : la fonction (x, y) 7→ ln (x2 + y2 + 1) est continue sur R2.

1.3 Dérivées partielles

But : généraliser la notion de dérivée aux fonctions de deux variables.
Dans toute la suite I × J désigne un pavé ouvert.

1.3.1 Dérivées partielles d'ordre 1

Soient f : I × J → R une fonction de deux variables et (x0, y0) ∈ I × J .

� On dit que f admet une dérivée partielle d'ordre 1 par rapport à la pre-

mière variable en (x0, y0) si l'application partielle fy=y0 est dérivable en x0.
Dans ce cas, le nombre dérivé de fy=y0 en x0 est noté :

∂f

∂x
(x0, y0) ou parfois ∂1(f)(x0, y0).

� On dit que f admet une dérivée partielle d'ordre 1 par rapport à la

deuxième variable en (x0, y0) si l'application partielle fx=x0 est dérivable en
y0. Dans ce cas, le nombre dérivé de fx=x0 en y0 est noté :

∂f

∂y
(x0, y0) ou parfois ∂2(f)(x0, y0).

Dé�nition 1.10 (Dérivées partielles d'ordre 1)
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Soit f : I × J → R une fonction de deux variables.

� Si f admet une dérivée partielle d'ordre 1 par rapport à la première variable en
tout point, on appelle dérivée partielle d'ordre 1 par rapport à la première

variable et on note
∂f

∂x
la fonction :

∂f

∂x
: I × J −→ R

(x, y) 7−→ ∂1(f)(x, y).

� Si f admet une dérivée partielle d'ordre 1 par rapport à la deuxième variable en
tout point, on appelle dérivée partielle d'ordre 1 par rapport à la deuxième

variable et on note
∂f

∂y
la fonction :

∂f

∂y
: I × J −→ R

(x, y) 7−→ ∂2(f)(x, y).

Dé�nition 1.11

D'un point de vue pratique, pour calculer les dérivées partielles d'une fonction f , on
laisse tomber les indices (x0 devient x, y0 devient y). Pour dériver une � formule � par
rapport à x, on considère que y est constant (non variable donc) et on dérive, comme
d'habitude, la formule de la seule variable réelle restante (x).

Méthode 1.1

Exemple 1.12. Calcul des dérivées partielles de :

1. La fonction f dé�nie par

∀(x, y) ∈ R2, f(x, y) = y3 − 2xy2 + 3x2y2 + 1.

2. La fonction g dé�nie par :

∀(x, y) ∈ R2, g(x, y) = ex
2+y2 .

Soit f : I × J → R une fonction de deux variables.
On dit que f est de classe C1 sur I × J si elle admet des dérivées partielles sur I × J
et que les dérivées partielles sont continues sur I × J .

Dé�nition 1.12 (Fonctions de classe C1 sur R2)

Exemple 1.13 (Admis).

1. Les fonctions polynomiales sont C1.

2. Somme/produit/quotient dont le dénominateur ne s'annule pas de fonctions C1 est C1.

3. Composer une fonction C1 d'une variable continue avec une fonction C1 de deux variables
continues est C1 : la fonction (x, y) 7→ ln (x2 + y2 + 1) est C1 sur R2.
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Soient f : I × J → R une fonction de deux variables de classe C1 sur I × J et
(x0, y0) ∈ I × J . Alors on a :

f(x0 + h, y0 + k) = f(x0, y0) +
∂f

∂x
(x0, y0)h+

∂f

∂y
(x0, y0)k + o (∥ (h, k) ∥) .

Cette expression est appelée développement limité d'ordre 1 de f en (x0, y0) et
est unique.

Proposition 1.1 (Développement limité d'ordre 1)

Remarque 1.3.

1. De manière équivalente, le développement limité en (x0, y0) s'écrit aussi :

f(x, y) = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0) + o (∥ (x− x0, y − y0) ∥) .

2. Il s'agit de l'analogue pour les fonctions de deux variables du développement limité d'ordre
1 pour les fonctions f : R → R.

3. Graphiquement, l'équation z =
∂f

∂x
(x0, y0)(x − x0) +

∂f

∂y
(x0, y0)(y − y0) est l'équation du

plan tangent au graphe de f au point de coordonnées (x0, y0, f(x0, y0)).

Soit f : I × J → R une fonction de deux variables admettant des dérivées partielles en
(x0, y0) ∈ I × J .
On appelle gradient de f en (x0, y0) le vecteur de M2,1(R), noté ∇(f)(x0, y0) (se lit
"nabla"), dé�ni par :

∇(f)(x0, y0) =

∂f

∂x
(x0, y0)

∂f

∂y
(x0, y0)

 .

Dé�nition 1.13 (Gradient)

Remarque 1.4. Graphiquement, la direction du gradient de f en un point (x0, y0) est la direction
de plus forte variation de f .

Soit f : I × J → R une fonction de classe C1 et x, y deux fonctions de dérivables sur
un intervalle T et à valeurs dans I et J respectivement. Alors la fonction h : T → R
dé�nie par :

∀t ∈ T, h(t) = f(x(t), y(t))

est dérivable sur T et :

∀t ∈ T, h′(t) = x′(t)
∂f

∂x
(x(t), y(t)) + y′(t)

∂f

∂y
(x(t), y(t)).

Théorème 1.0
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Preuve : Soit t0 ∈ T et notons (x0, y0) = (x(t0), y(t0)). On fait le DL1 de f :

h(t+ h) = f(x(t+ h), y(t+ h))

= h(t) +
∂f

∂x
(x(t), y(t))(x(t+ h)− x(t)) +

∂f

∂y
(x(t), y(t))(y(t+ h)− y(t)) + o (∥ . ∥)

= h(t) +
∂f

∂x
(x(t), y(t))(x′(t)h+ o(h)) +

∂f

∂y
(x(t), y(t))(y′(t)h+ o(h)) + o (∥ . ∥)

= h(t) +

(
x′(t)

∂f

∂x
(x(t), y(t)) + y′(t)

∂f

∂y
(x(t), y(t))

)
h+ o(h) + o(∥ . ∥).

où

o(∥ . ∥) = o(∥ (x(t+ h)− x(t), y(t+ h)− y(t)) ∥)
= o(∥ (x′(t)h+ o(h), y′(t)h+ o(h)) ∥)
= o(h).

□

Exemple 1.14. Cas où x(t), y(t)) est à valeurs dans une ligne de niveau et orthogonalité du
gradient.

1.3.2 Fonctions de classe C2

Soit f : I × J → R une fonction de deux variables admettant des dérivées partielles
d'ordre 1.
On dit que f admet des dérivée partielle d'ordre 2 sur I × J si

� f admet des dérivées partielles d'ordre 1 sur I × J ,

�

∂f

∂x
et

∂f

∂y
admettent des dérivées partielles sur I × J .

Dans ce cas, on note :

∂2f

∂x2
=

∂
(
∂f
∂x

)
∂x

;
∂2f

∂y2
=

∂
(
∂f
∂y

)
∂y

,

∂2f

∂x∂y
=

∂
(
∂f
∂y

)
∂x

;
∂2f

∂y∂x
=

∂
(
∂f
∂x

)
∂y

.

On dit que f est de classe C2 sur I × J si, de plus, les quatre dérivées partielles
d'ordre 2 sont continues sur I × J .

Dé�nition 1.14 (Dérivées partielles d'ordre 2)

Exemple 1.15 (Admis).

1. Les fonctions polynomiales sont C2.

2. Somme/produit/quotient dont le dénominateur ne s'annule pas de fonctions C2 est C2.

3. Composer une fonction C2 d'une variable continue avec une fonction C2 de deux variables
continues est C2 : la fonction (x, y) 7→ ln (x2 + y2 + 1) est C2 sur R2.

Exemple 1.16. Dérivée d'ordre 2 (surtout les dérivées croisées) sur les exemples suivants :

1. f1 : (x, y) 7→ y3 − 2xy2 + 3x2y2 + 1,
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2. f2 : (x, y) 7→ ex sin(xy),

3. f3 : (x, y) 7→ ex
2+y2 .

Soit f une fonction de classe C2 sur I × J . Alors :

∂2f

∂x∂y
=

∂2f

∂y∂x
.

Théorème 1.0 (de Schwarz)

1.4 Extrema des fonctions de deux variables

Soit f une fonction de deux variables dé�nie sur une partie D de R2.

� On dit que f admet un minimum local en (x0, y0) ∈ D s'il existe un pavé
ouvert I × J tel que :

∀(x, y) ∈ (I × J) ∩D f(x, y) ≥ f(x0, y0).

Le minimum est dit global si l'inégalité est vraie pour tout (x, y) ∈ D.

� On dit que f admet un maximum local en (x0, y0) ∈ D s'il existe un pavé
ouvert I × J tel que :

∀(x, y) ∈ (I × J) ∩D f(x, y) ≤ f(x0, y0).

Le maximum est dit global si l'inégalité est vraie pour tout (x, y) ∈ D.

Dé�nition 1.15 (Maximum, minimum)

Remarque 1.5.

1. Un minimum/ maximum global est toujours local mais la réciproque est fausse.

2. Une fonction n'admet pas nécessairement de minimum ou de maximum (qu'il soit local ou
global).

3. Un maximum/minimum (qu'il soit local ou global) n'est pas nécessairement unique.

Exemple 1.17. Soit f la fonction dé�nie sur U par :

∀(x, y) ∈ U, f(x, y) = x2 + y2

où U est une partie de R2

1. On prend U = R2.

La fonction f admet un minimum global en (0, 0). En e�et, pour tout (x, y) ∈ R2,

f(x, y) = x2 + y2 ≥ 0 = f(0, 0).

La fonction f n'admet aucun maximum (local).
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2. On prend U = Bf ((0, 0), 1).

La fonction f admet un minimum global en (0, 0). La fonction f admet un maximum global
en (1, 0).

En e�et, pour tout (x, y) ∈ Bf ((0, 0), 1),

f(x, y) = x2 + y2 ≤ 1 = f(1, 0).

Il n'y a pas unicité du maximum : tout point de la sphère de de centre (0, 0) et de rayon 1
est un maximum global.

Soit f : I × J → R une fonction de classe C1 sur un pavé ouvert I × J de R2 et soit
(x0, y0) ∈ I × J .

Si f admet un extremum local en (x0, y0) alors ∇(f)(x0, y0) =

(
0
0

)
.

Proposition 1.2 (Condition nécessaire d'existence d'un extremum)

Preuve : Idée : utiliser DL1 avec (h, k) = ± ∥ ε∇f(x0, y0) ∥. □

Remarque 1.6. Il s'agit d'une condition nécessaire et non su�sante : considérons la fonction f
dé�nie sur R2 par

∀(x, y) ∈ R2, f(x, y) = xy.

Alors pour tout (x, y) ∈ R2

∇(f)(x, y) =

(
y
x

)
.

Donc : ∇(f)(0, 0) =

(
0
0

)
. En revanche, f n'a pas de minimum local (0, 0) car :

∀r > 0, f(−r, r) = −r2 < f(0, 0).

Elle n'a pas non plus de maximum local car :

∀r > 0, f (r, r) = r2 > f(0, 0).

Soit f : I × J → R une fonction de classe C1 sur un ouvert I × J de R2 et soit
(x0, y0) ∈ I × J .

On dit que (x0, y0) est un point critique de f si ∇(f)(x0, y0) =

(
0
0

)
.

Dé�nition 1.16 (Point critique)

Remarque 1.7. Autrement dit, les extrema sont à rechercher parmi les points critiques.
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Étant donnée une fonction f dé�nie sur un pavé ouvert I × J de R2.

1. On cherche les points critique en résolvant le système de deux inconnues à deux
équations ∇(f)(x, y) = 0R2 .

Attention, ce système n'est en général pas linéaire ! Attention aussi : un point

critique n'est pas nécessairement un extremum !

2. Pour chaque point critique (x0, y0) trouvé, on étudie f(x, y) − f(x0, y0) pour
déterminer si elle est de signe constant ou non.

Cette partie, en général guidée, consiste souvent à faire apparaître des carrées par

des factorisations plus ou moins astucieuses.

Méthode 1.2 (Étude des extremas)

Exemple 1.18. Étude de (x, y) 7→ x2 + y2 − 2x− 4y + 1.

On considère une fonction f dé�nie sur un ouvert U de R2.

� Pour montrer que f possède un maximum global (resp. minimum global) en
(x0, y0) ∈ U , il faut montrer que f(x, y) ≤ f(x0, y0) (resp. f(x, y) ≥ f(x0, y0) )
pour tout (x, y) ∈ U (voir l'exemple ??).

� Pour montrer que f n'a pas d'extremum global, l'énoncé suggère parfois de consi-
dérer deux fonctions g et h d'une variable telles que t 7→ f(g(t), h(t)) possède
une limite in�nie (−∞ pour contredire un minimum et +∞ pour contredire un
maximum).

Méthode 1.3 (Déterminer si un extremum est global)

Exemple 1.19. Soit f : R2 → R dé�nie par : ∀(x, y) ∈ R2, f(x, y) = xy3 − x2 − 3y2 + 2xy + 1.
Montrons que f ne possède pas d'extremum global en considérant y 7→ f(1, y).

1. Supposons par l'absurde que f possède un maximum global en un point (x0, y0).

On note M = f(x0, y0). Alors :

∀(x, y) ∈ R2, f(x, y) ≤ M.

En particulier,
∀y ∈ R, f(1, y) ≤ M.

Or lim
y→+∞

f(1, y) = lim
y→+∞

y3 − 3y2 + 2y = +∞. Absurde !

Ainsi, f ne possède pas de maximum global.

2. Supposons par l'absurde que f possède un minimum global en un point (x0, y0).

On note m = f(x0, y0). Alors :

∀(x, y) ∈ R2, f(x, y) ≥ m.

En particulier,
∀y ∈ R, f(1, y) ≥ m.

Or lim
y→−∞

f(1, y) = lim
y→−∞

y3 − 3y2 + 2y = −∞. Absurde !

Ainsi, f ne possède pas de minimum global.
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