CHAPITRE 9

VARIABLES ALEATOIRES A DENSITE

9.1 Variables aléatoires a densité

9.1.1 Densité

— Définition 9.1 (Densité)

Soit f : R — R une fonction telle que
e f est positive,

e f est continue sauf éventuellement en un nombre fini de points,
+00
e l'intégrale / f(t)dt converge et vaut 1.

—00

9.1.2 Variables aléatoires A densité

— Définition 9.2 (Variables aléatoires & densité)

Soit X une variable aléatoire réelle sur un espace probabilisé (2, 4, P).
On dit que X est une variable aléatoire a densité 8’il existe une densité f telle que :

Wz R, Fy(x)= /x F(t)dt

ou Fx désigne la fonction de répartition de X.
On dit que f est une densité de X.

Remarque 9.1.

1. Il n’y a pas unicité d’une densité f associé & une variable aléatoire & densité. Si f est une
densité de X alors toute densité qui coincide avec f partout sauf éventuellement en un
nombre fini de points est encore une densité de f.

T
2. La convergence de l'intégrale généralisée / f(t)dt est conséquence du dernier point de
—o0

la définition d’une densité.



Arnaud Stocker

— Théoréme 9.1 (Existence des variables aléatoires a densité)

Soit (£2,.4,P) un espace probabilisé.
Si f est une densité alors il existe une variable aléatoire sur (92, .4,P) dont f est une
densité.

—{ Proposition 9.1 }

Soit (€2, A, P) un espace probabilisé et X une variable aléatoire sur (€2, .4, P) de densité
f
1. La fonction de répartition Fx de X est continue sur R.

2. La fonction Fx est dérivable en tout réel xz ol f est continue et dans ce cas
Fx(z) = f(2).
3. Pour tout @ € R, P(X =a) = 0.

4. Pour tout —oo < a < b < +o00o et tout intervalle I d’extrémités a et b on a :

P(X el)= / b F(t)dt.

—{ Proposition 9.2 }

Une variable aléatoire X est & densité si et seulement si sa fonction de répartition Fx
est continue sur R et de classe C! sur R sauf éventuellement en un nombre fini de
points.

Dans ce cas, toute fonction f : R — R positive et qui coincide avec F% partout sauf
éventuellement en un nombre fini de points est une densité de X.

Remarque 9.2.

1. Dans le contexte des variables & densité, « trouver la loi de X » consiste & montrer que X
est & densité et & en donner une densité.

2. La fonction de répartition caractérise aussi la loi (deux variables aléatoires suivent la méme
loi si et seulement si elles ont la méme fonction de répartition).

3. Pour une variable aléatoire & densité, la notion de support (c’est-a-dire I’ensemble des
valeurs prises par la variable aléatoire) est plus compliquée a définir que pour les variables
finis.

11 s’agit du complémentaire de la réunion des intervalles ouverts sur lesquels la fonction de
répartition est constantes.
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— Théoréme 9.2 (Caractérisation des fonctions de répartition des variables a densité) (—

Soit F' une fonction de R dans R telle que :
e F' est croissante sur R,
e lim F(zr)=0et lim F(z)=1,

T——00 Tr—r—+00

e F' est continue sur R,
o F est de classe C! sur R sauf éventuellement en un nombre fini de points.

Alors F est la fonction de répartition d’une variable aléatoire a densité.

9.2 Espérance et variance

9.2.1 Espérance

— Définition 9.3 (Espérance d’une variable aléatoire & densité)

Soit X une variable aléatoire & densité dont on note f une densité de X.
+oo
On dit que X posséde une espérance si I'intégrale / tf(t)dt converge absolument.
—00
Dans ce cas, 'espérance de X, notée E(X) est le réel défini par

E(X) = / bt

—00

—{ Proposition 9.3 }

Soit X et Y deux variables aléatoires & densité sur un espace probabilisé.

1. (Linéarité) Si X et Y possédent une espérance alors pour tout (A, u) € R? 1a
variable AX + puY posséde une espérance et :

EAX 4+ pY) = AE(X) + pE(Y).

2. (Positivité) Si X est positive et posséde une espérance alors E(X) > 0.

3. (Croissance) Si X et Y possédent une espérance et que X > Y alors E(X) >
(Y).

— Théoréme 9.3 (Théoréme de transfert)

Soit X une variable aléatoire & densité et soit f une densité de X.
Si g est une fonction continue sur un intervalle I contenant le support de X alors la

variable aléatoire g(X) admet une espérance si et seulement si I'intégrale / g(t) f(t)dt
I
converge absolument. Dans ce cas :

E(g(X)) = / o(t) f(t)dt.

I
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— Proposition 9.4 (Inégalité de Markov)

Soit. X une variable aléatoire & densité positive et possédant une espérance. Alors :

E(X)

Va >0, P(X>a)< ;

9.2.2 Variance

— Définition 9.4 (Moments d’une variable aléatoire & densité)

Soit 7 € N*. Soit X une variable aléatoire & densité dont on note f une densité de X.
+oo

On dit que X posséde un moment d’ordre r si intégrale / t" f(t)dt converge
—o
absolument. On note alors

+o0
my(X) = / £ F(t)dt.

—00

— Définition 9.5 (Variance/écart-type d’'une variable aléatoire a densité)

Soit X une variable aléatoire & densité de densité f.
e Si X posséde un moment d’ordre 2 alors X posséde une espérance.

e Dans ce cas, X —E(X) posséde un moment d’ordre 2 que 'on appelle la variance
de X, notée V(X) :
V(X) = E(X - E(X))?).

— Proposition 9.5 (Formule de Koenig-Huygens)

Soit. X une variable aléatoire & densité possédant un moment d’ordre 2. Alors :

V(X) =E(X?) - E(X)2.

—{ Proposition 9.6 }

Soit X une variable aléatoire & densité possédant une variance.

1. V(X)) est un réel positif et on appelle écart-type, noté o(X) le réel :

2. Pour tous réels a et b, la variable aléatoire a X + b posséde une variance et

V(aX +b) = a®V(X).
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— Définition 9.6 (Variable aléatoire centrée/réduite)

Soit X une variable aléatoire & densité.
e On dit que X est centrée si X posséde une espérance nulle.
e On dit que X est réduite si X posséde une variance égale a 1.

e Si X une variable a densité possédant une variance non nulle, on appelle variable
X - E(X)

aléatoire centrée réduite associée a X la variable X* = X)
o

— Théoréme 9.4 (Inégalité de Bienaymée-Tchebychev)

Soit. X une variable aléatoire & densité possédant une variance. Alors :

Ve>0, P(X-E(X)|>¢)< V(‘f).

€

9.2.3 Indépendance

— Définition 9.7 (Indépendance)

Soient X, Y, (X,,)n€ N des variables aléatoires a densité définies sur un espace proba-
bilisé (€2, A4, P).

e On dit que X et Y sont indépendantes (pour la probabilité P) si pour tous
intervalles réels I et J on a :

P(XeI]ln[Y e J]) =P (X e I])P([Y € J)).

e On dit que X3,..., X, sont mutuellement indépendantes si pour tous inter-
valles I, ..., I, de Ron a :
n n
P (ﬂ (X}, € Ik]> =[] P(Xx € It)).
k=1 k=1

e On dit que les variables (X,,)nen sont mutuellement indépendantes si toute
sous famille finie de (X,,)nen est mutuellement indépendante au sens du point
précédent.

—{ Proposition 9.7 (Lemme des coalitions)

Soient Xi,..., X, (n > 2) des variables aléatoires & densité mutuellement indépen-
dantes.

Soit (Ix)ref1,p] (P < n) une partition de [1, n].

Si pour tout k € [1,p], Y est une variable aléatoire fonction des (X;)ies, alors les
variables Y7, ...,Y), sont mutuellement indépendantes.
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Exemple 9.1 (Loi du minimum de deux variables aléatoires réelles indépendantes).

Soient X et Y deux variables aléatoires a densité indépendantes et soit Z = min(X,Y).
Exprimer la fonction de répartition Fz de Z en fonction des fonctions de répartition Fy de X
et Fy deY.

1. On montre que : Vi € R, [Z > t] = [X > t|N[Y > t].
Soit t € R et soit w € 2

we[Z>t] = Z(w) >t <= min(X(w),Y(w)) >t<= X(w) >t et Y(w) >t
SwelX >Ny >t

Ainsi [Z >t =[X > t]|N[Y > {]
2. On en déduit : Vt € R, P([Z > t]) = P([X > t)P([Y > t]).
Comme les variables aléatoires X et Y sont indépendantes, on a

P([Z>1)) =P(X > t]N[Y > t]) = P(X > )P([Y > ¢])

car [X > t] = [X €]t, +oof] et [V > t] = [V €]t, +o0].
3. On trouve la fonction de répartition de Fy.
Par deéfinition, pour tout ¢t € R, Fz(t) = P(Z <) et de méme pour Fx et Fy. Donc

Fpt)=1-P([Z>1])=1-P(X >)P([Y > #]) =1 (1 - P([X <¢]))(1 - P([Y <¢]))
=1-(1-Fx()1 - Fy(t)).

4. On étudie ensuite si Z est a densité en vérifiant si Fiy est continue sur R et de classe C*
sur R sauf éventuellement en un nombre fini de points.

Exemple 9.2 (Loi du maximum de deux variables aléatoires réelles indépendantes).

Soient X et Y deux variables aléatoires & densité indépendantes et soit Z = max(X,Y).
Exprimer la fonction de répartition Fz de Z en fonction des fonctions de répartition Fy de X
et Iy deY.

1. On montre que : Vt € R, [Z <] =[X <t N[Y <.
Soit t € R et soit w € 2

wel[Z<t<= Z(w) <t<=max(X(w),Y(w)) <t<= X(w) <t et Y(w)<t

SwelX <Ny <t

Ainsi [Z <t =[X <{n[Y <1
2. On en deduit : Vt € R, P([Z < t]) = P([X < ¢])P([Y < ¢)).

Comme les variables aléatoires X et Y sont indépendantes, on a
P(Z <#)) = P(X <40y <#]) = P(IX < )B(Y <1)).

3. On trouve la fonction de répartition de Fy.
Par deéfinition, pour tout t € R, Fz(t) =P(Z <) et de méme pour Fx et Fy. Donc

Fy(t) = B(IX < )B(Y < 1]) = Fx(t)Fy(t).

4. On étudie ensuite si Z est & densité en vérifiant si 'z est continue sur R et de classe c!
sur R sauf éventuellement en un nombre fini de points.
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— Proposition 9.8 (Espérance et variance de variables indépendantes)

Soient X et Y deux variables aléatoires a densité indépendantes définies sur (€2, A, P).

1. Si X et Y admettent une espérance alors XY admet une espérance et E(XY) =

E(X)E(Y).
2. Si X et Y admettent une variance alors X +Y admet une variance et V(X +Y) =
V(X) +V(Y).
Remarque 9.3. Plus généralement, soit X1, ..., X,, des variables aléatoires a densité mutuel-

lement indépendantes définies sur (2, 4, P).
1. Sipour tout k € [1,n], Xj posséde une espérance alors X; X - - - X X, admet une espérance
et (X1 x -+ x Xp) =E(X;) x -+ x E(X,,).
2. Si pour tout k € [1,n], X posséde une variance alors X; + --- + X,, admet une variance
et V(X7 +-- -+ X,,) =V(Xy) + -+ V(X,).
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9.3 Lois usuelles & densité

9.3.1 Lois uniformes

— Définition 9.8 (Lois uniformes)

Soit a < b deux nombres réels.

e On dit qu’une variable aléatoire X suit la loi uniforme sur [a,b] et on note
X — U([a,b]) si X a pour densité la fonction f définie par

1
Ve eR, f(x)=1 b-—a

0 sinon

si z € [a,b)

e Si X — U([a,b]) alors la fonction de répartition de X est donnée par

0 siz<a
r—a .
Vz eR, Fx(z)= — si x € [a, b
1 siz>b

e Si X — U([a,b]) alors X posséde une espérance et une variance et :

_a+b _(b— a)?
Ex) =220 v = 0
1
fix) F(x)
1
b-al| ’—.
0 Cll ;; X 0 a b X

FIGURE 9.2 — Fonction de répartition de la loi

FIGURE 9.1 — Densité de la loi U([a, b]). U([a, b))
a,bl).




Arnaud Stocker

9.3.2 Lois normales

— Définition 9.9 (Loi normale centrée réduite)

e On dit qu’une variable aléatoire X suit la loi normale centrée réduite et on
note X < N(0,1) si X a pour densité la fonction f définie par

1 z2
Ve e R, f(x)= \/ﬂe_T.

e Si X — N(0,1) alors la fonction de répartition de X est donnée par

x 1 t2

e 2 dt.

Vz €R, FX(x):/

oo V2T

e Si X — N(0,1) alors X posséde une espérance et une variance et

—{ Proposition 9.9 }

Soit X < N(0,1). Alors, pour tout z € R, on a :
Fx(—z)=1- Fx(x).

1
En particulier, Fx(0) = >

— Définition 9.10 (Lois normales)

Soit p et o > 0 deux réels.

e On dit qu'une variable aléatoire X suit la loi normale de paramétres u et o>
et on note X < N(p,0?%) si X a pour densité la fonction f définie par

1 _e@-w?

= e 202
oV 2T

e Si X < N (u,0) alors la fonction de répartition de X est donnée par

Ve e R, f(x)

x 1 =2
e 202 (t.

vz € R, FX(x)—/

oo OV 2T

e Si X < N(u,0?) alors X posséde une espérance et une variance et
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0.8

PR

0.2

0.0

FIGURE 9.3 — Densité de la loi N'(u, 0?)

—{ Proposition 9.10 }

Soient u, o, a et b des nombres réels tels que : ¢ > 0 et a # 0. Soit X une variable
aléatoire. Alors :

X — N(p,0%) <= aX +b— N(ap +b,a’c?).

9.3.3 Lois exponentielles

— Définition 9.11 (Lois exponentielles)

Soit A > 0.
e On dit qu’'une variable aléatoire X suit la loi exponentielle de paramétre

A > 0 et on note X < £(A) si X a pour densité la fonction f définie par

Ae ™™ sz >0
vrER, flz)= { 0 sinon

e Si X — &£(A) alors la fonction de répartition de X est donnée par

0 sizx <0

vo e R, FX(‘T):{1—6—“ siz>0

e Si X — £(A) alors X posséde une espérance et une variance et

10
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FIGURE 9.5 — Fonction de répartition de la loi
E(N).

FIGURE 9.4 — Densité de la loi £()).

—{ Proposition 9.11 }

Soit A > 0 et X une variable de loi exponentielle de paramétre \.
Alors :
V(s,t) € (RE)?, Prxsq(X >s+1t) =P(X > 1).

9.4 Exemples de transfert

9.4.1 Etude de variables de la forme g(X)

But : étant donnée une variable a densité X de loi connue, déterminer la loi de Y = g(X) ou g
est une fonction.

— Méthode 9.1 |

1. On commence par déterminer le support (les valeurs prises) par Y (par exemple,
si Y = X2 alors Y ne prend que des valeurs positives).

2. Ensuite, on détermine la fonction de répartition de Y : pour tout t € R on
détermine P(Y < t) a l'aide Fx en essayant d’écrire [Y < t] sous la forme
(X eI

3. On cherche enfin & vérifier si Fy est la fonction de répartition d’une variable a
densité et, le cas échéant, calculer une densité de Y.

11
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9.4.2 Somme de variables aléatoires a densité indépendantes

—{ Proposition 9.12 }

Soit X,Y deux variables aléatoires indépendantes & densité.
On consideére fx et fy une densité de X et Y respectivement.
Alors X + Y est une variable aléatoire & densité et une densité de X + Y est donnée

par :
—+00 “+o00

fxqy it— fx(t—2)fy(z)dr = / fy(t —2)fx(z)dz

—00 —0o0

Cette fonction est appelée le produit de convolution de fx et fy et noté fx * fy.

—{ Proposition 9.13 }

Soit X1,..., X, des variables aléatoires mutuellement indépendantes telles que pour
tout 1 E [1, n]] X; ‘—)./\/‘(,ul, .

Alors Z X; suit la loi NV( Z Wi Z o}

12
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