
Chapitre 9

Variables aléatoires à densité

9.1 Variables aléatoires à densité

9.1.1 Densité

Soit f : R → R une fonction telle que

� f est positive,

� f est continue sauf éventuellement en un nombre �ni de points,

� l'intégrale

∫ +∞

−∞
f(t)dt converge et vaut 1.

Dé�nition 9.1 (Densité)

9.1.2 Variables aléatoires à densité

Soit X une variable aléatoire réelle sur un espace probabilisé (Ω,A,P).
On dit que X est une variable aléatoire à densité s'il existe une densité f telle que :

∀x ∈ R, FX(x) =

∫ x

−∞
f(t)dt

où FX désigne la fonction de répartition de X.
On dit que f est une densité de X.

Dé�nition 9.2 (Variables aléatoires à densité)

Remarque 9.1.

1. Il n'y a pas unicité d'une densité f associé à une variable aléatoire à densité. Si f est une
densité de X alors toute densité qui coïncide avec f partout sauf éventuellement en un
nombre �ni de points est encore une densité de f .

2. La convergence de l'intégrale généralisée

∫ x

−∞
f(t)dt est conséquence du dernier point de

la dé�nition d'une densité.
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Soit (Ω,A,P) un espace probabilisé.
Si f est une densité alors il existe une variable aléatoire sur (Ω,A,P) dont f est une
densité.

Théorème 9.1 (Existence des variables aléatoires à densité)

Soit (Ω,A,P) un espace probabilisé et X une variable aléatoire sur (Ω,A,P) de densité
f .

1. La fonction de répartition FX de X est continue sur R.
2. La fonction FX est dérivable en tout réel x où f est continue et dans ce cas

F ′
X(x) = f(x).

3. Pour tout a ∈ R, P(X = a) = 0.

4. Pour tout −∞ ≤ a < b ≤ +∞ et tout intervalle I d'extrémités a et b on a :

P(X ∈ I) =

∫ b

a
f(t)dt.

Proposition 9.1

Une variable aléatoire X est à densité si et seulement si sa fonction de répartition FX

est continue sur R et de classe C1 sur R sauf éventuellement en un nombre �ni de
points.
Dans ce cas, toute fonction f : R → R positive et qui coïncide avec F ′

X partout sauf
éventuellement en un nombre �ni de points est une densité de X.

Proposition 9.2

Remarque 9.2.

1. Dans le contexte des variables à densité, � trouver la loi de X � consiste à montrer que X
est à densité et à en donner une densité.

2. La fonction de répartition caractérise aussi la loi (deux variables aléatoires suivent la même
loi si et seulement si elles ont la même fonction de répartition).

3. Pour une variable aléatoire à densité, la notion de support (c'est-à-dire l'ensemble des
valeurs prises par la variable aléatoire) est plus compliquée à dé�nir que pour les variables
�nis.

Il s'agit du complémentaire de la réunion des intervalles ouverts sur lesquels la fonction de
répartition est constantes.
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Soit F une fonction de R dans R telle que :

� F est croissante sur R,
� lim

x→−∞
F (x) = 0 et lim

x→+∞
F (x) = 1,

� F est continue sur R,
� F est de classe C1 sur R sauf éventuellement en un nombre �ni de points.

Alors F est la fonction de répartition d'une variable aléatoire à densité.

Théorème 9.2 (Caractérisation des fonctions de répartition des variables à densité)

9.2 Espérance et variance

9.2.1 Espérance

Soit X une variable aléatoire à densité dont on note f une densité de X.

On dit que X possède une espérance si l'intégrale

∫ +∞

−∞
tf(t)dt converge absolument.

Dans ce cas, l'espérance de X, notée E(X) est le réel dé�ni par

E(X) =

∫ +∞

−∞
tf(t)dt.

Dé�nition 9.3 (Espérance d'une variable aléatoire à densité)

Soit X et Y deux variables aléatoires à densité sur un espace probabilisé.

1. (Linéarité) Si X et Y possèdent une espérance alors pour tout (λ, µ) ∈ R2 la
variable λX + µY possède une espérance et :

E(λX + µY ) = λE(X) + µE(Y ).

2. (Positivité) Si X est positive et possède une espérance alors E(X) ≥ 0.

3. (Croissance) Si X et Y possèdent une espérance et que X ≥ Y alors E(X) ≥
E(Y ).

Proposition 9.3

Soit X une variable aléatoire à densité et soit f une densité de X.
Si g est une fonction continue sur un intervalle I contenant le support de X alors la

variable aléatoire g(X) admet une espérance si et seulement si l'intégrale

∫
I
g(t)f(t)dt

converge absolument. Dans ce cas :

E(g(X)) =

∫
I
g(t)f(t)dt.

Théorème 9.3 (Théorème de transfert)
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Soit X une variable aléatoire à densité positive et possédant une espérance. Alors :

∀a > 0, P(X ≥ a) ≤ E(X)

a
.

Proposition 9.4 (Inégalité de Markov)

9.2.2 Variance

Soit r ∈ N∗. Soit X une variable aléatoire à densité dont on note f une densité de X.

On dit que X possède un moment d'ordre r si l'intégrale

∫ +∞

−∞
trf(t)dt converge

absolument. On note alors

mr(X) =

∫ +∞

−∞
trf(t)dt.

Dé�nition 9.4 (Moments d'une variable aléatoire à densité)

Soit X une variable aléatoire à densité de densité f .

� Si X possède un moment d'ordre 2 alors X possède une espérance.

� Dans ce cas, X−E(X) possède un moment d'ordre 2 que l'on appelle la variance
de X, notée V(X) :

V(X) = E((X − E(X))2).

Dé�nition 9.5 (Variance/écart-type d'une variable aléatoire à densité)

Soit X une variable aléatoire à densité possédant un moment d'ordre 2. Alors :

V(X) = E(X2)− E(X)2.

Proposition 9.5 (Formule de Koenig-Huygens)

Soit X une variable aléatoire à densité possédant une variance.

1. V(X) est un réel positif et on appelle écart-type, noté σ(X) le réel :

σ(X) =
√

V(X).

2. Pour tous réels a et b, la variable aléatoire aX + b possède une variance et

V(aX + b) = a2V(X).

Proposition 9.6
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Soit X une variable aléatoire à densité.

� On dit que X est centrée si X possède une espérance nulle.

� On dit que X est réduite si X possède une variance égale à 1.

� Si X une variable à densité possédant une variance non nulle, on appelle variable

aléatoire centrée réduite associée à X la variable X∗ =
X − E(X)

σ(X)
.

Dé�nition 9.6 (Variable aléatoire centrée/réduite)

Soit X une variable aléatoire à densité possédant une variance. Alors :

∀ε > 0, P(|X − E(X)| ≥ ε) ≤ V(X)

ε2
.

Théorème 9.4 (Inégalité de Bienaymée-Tchebychev)

9.2.3 Indépendance

Soient X, Y , (Xn)n∈ N des variables aléatoires à densité dé�nies sur un espace proba-
bilisé (Ω,A, P ).

� On dit que X et Y sont indépendantes (pour la probabilité P ) si pour tous
intervalles réels I et J on a :

P ([X ∈ I] ∩ [Y ∈ J ]) = P ([X ∈ I])P ([Y ∈ J ]) .

� On dit que X1, . . . , Xn sont mutuellement indépendantes si pour tous inter-
valles I1, . . ., In de R on a :

P

(
n⋂

k=1

[Xk ∈ Ik]

)
=

n∏
k=1

P ([Xk ∈ Ik]) .

� On dit que les variables (Xn)n∈N sont mutuellement indépendantes si toute
sous famille �nie de (Xn)n∈N est mutuellement indépendante au sens du point
précédent.

Dé�nition 9.7 (Indépendance)

Soient X1, . . . , Xn (n ≥ 2) des variables aléatoires à densité mutuellement indépen-
dantes.
Soit (Ik)k∈J1,pK (p ≤ n) une partition de J1, nK.
Si pour tout k ∈ J1, pK, Yk est une variable aléatoire fonction des (Xi)i∈Ik alors les
variables Y1, . . . , Yp sont mutuellement indépendantes.

Proposition 9.7 (Lemme des coalitions)
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Exemple 9.1 (Loi du minimum de deux variables aléatoires réelles indépendantes).
Soient X et Y deux variables aléatoires à densité indépendantes et soit Z = min(X,Y ).

Exprimer la fonction de répartition FZ de Z en fonction des fonctions de répartition FX de X
et FY de Y .

1. On montre que : ∀t ∈ R, [Z > t] = [X > t] ∩ [Y > t].

Soit t ∈ R et soit ω ∈ Ω

ω ∈ [Z > t] ⇐⇒ Z(ω) > t ⇐⇒ min(X(ω), Y (ω)) > t ⇐⇒ X(ω) > t et Y (ω) > t

⇐⇒ ω ∈ [X > t] ∩ [Y > t].

Ainsi [Z > t] = [X > t] ∩ [Y > t]

2. On en déduit : ∀t ∈ R, P([Z > t]) = P([X > t])P([Y > t]).

Comme les variables aléatoires X et Y sont indépendantes, on a

P([Z > t]) = P([X > t] ∩ [Y > t]) = P([X > t])P([Y > t])

car [X > t] =
[
X ∈]t,+∞[

]
et [Y > t] =

[
Y ∈]t,+∞[

]
.

3. On trouve la fonction de répartition de FZ .

Par dé�nition, pour tout t ∈ R, FZ(t) = P(Z ≤ t) et de même pour FX et FY . Donc

FZ(t) = 1− P([Z > t]) = 1− P([X > t])P([Y > t]) = 1− (1− P([X ≤ t]))(1− P([Y ≤ t]))

= 1− (1− FX(t))(1− FY (t)).

4. On étudie ensuite si Z est à densité en véri�ant si FZ est continue sur R et de classe C1

sur R sauf éventuellement en un nombre �ni de points.

Exemple 9.2 (Loi du maximum de deux variables aléatoires réelles indépendantes).
Soient X et Y deux variables aléatoires à densité indépendantes et soit Z = max(X,Y ).

Exprimer la fonction de répartition FZ de Z en fonction des fonctions de répartition FX de X
et FY de Y .

1. On montre que : ∀t ∈ R, [Z ≤ t] = [X ≤ t] ∩ [Y ≤ t].

Soit t ∈ R et soit ω ∈ Ω

ω ∈ [Z ≤ t] ⇐⇒ Z(ω) ≤ t ⇐⇒ max(X(ω), Y (ω)) ≤ t ⇐⇒ X(ω) ≤ t et Y (ω) ≤ t

⇐⇒ ω ∈ [X ≤ t] ∩ [Y ≤ t].

Ainsi [Z ≤ t] = [X ≤ t] ∩ [Y ≤ t]

2. On en déduit : ∀t ∈ R, P([Z ≤ t]) = P([X ≤ t])P([Y ≤ t]).

Comme les variables aléatoires X et Y sont indépendantes, on a

P([Z ≤ t]) = P([X ≤ t] ∩ [Y ≤ t]) = P([X ≤ t])P([Y ≤ t]).

3. On trouve la fonction de répartition de FZ .

Par dé�nition, pour tout t ∈ R, FZ(t) = P(Z ≤ t) et de même pour FX et FY . Donc

FZ(t) = P([X ≤ t])P([Y ≤ t]) = FX(t)FY (t).

4. On étudie ensuite si Z est à densité en véri�ant si FZ est continue sur R et de classe C1

sur R sauf éventuellement en un nombre �ni de points.
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SoientX et Y deux variables aléatoires à densité indépendantes dé�nies sur (Ω,A, P ).

1. Si X et Y admettent une espérance alors XY admet une espérance et E(XY ) =
E(X)E(Y ).

2. Si X et Y admettent une variance alors X+Y admet une variance et V(X+Y ) =
V(X) + V(Y ).

Proposition 9.8 (Espérance et variance de variables indépendantes)

Remarque 9.3. Plus généralement, soit X1, . . ., Xn des variables aléatoires à densité mutuel-
lement indépendantes dé�nies sur (Ω,A, P ).

1. Si pour tout k ∈ J1, nK, Xk possède une espérance alors X1×· · ·×Xn admet une espérance
et E(X1 × · · · ×Xn) = E(X1)× · · · × E(Xn).

2. Si pour tout k ∈ J1, nK, Xk possède une variance alors X1 + · · ·+Xn admet une variance
et V(X1 + · · ·+Xn) = V(X1) + · · ·+ V(Xn).
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9.3 Lois usuelles à densité

9.3.1 Lois uniformes

Soit a < b deux nombres réels.

� On dit qu'une variable aléatoire X suit la loi uniforme sur [a, b] et on note
X ↪→ U([a, b]) si X a pour densité la fonction f dé�nie par

∀x ∈ R, f(x) =


1

b− a
si x ∈ [a, b]

0 sinon
.

� Si X ↪→ U([a, b]) alors la fonction de répartition de X est donnée par

∀x ∈ R, FX(x) =


0 si x < a

x− a

b− a
si x ∈ [a, b]

1 si x > b

.

� Si X ↪→ U([a, b]) alors X possède une espérance et une variance et :

E(X) =
a+ b

2
; V(X) =

(b− a)2

12
.

Dé�nition 9.8 (Lois uniformes)

Figure 9.1 � Densité de la loi U([a, b]). Figure 9.2 � Fonction de répartition de la loi
U([a, b]).
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9.3.2 Lois normales

� On dit qu'une variable aléatoire X suit la loi normale centrée réduite et on
note X ↪→ N (0, 1) si X a pour densité la fonction f dé�nie par

∀x ∈ R, f(x) =
1√
2π

e−
x2

2 .

� Si X ↪→ N (0, 1) alors la fonction de répartition de X est donnée par

∀x ∈ R, FX(x) =

∫ x

−∞

1√
2π

e−
t2

2 dt.

� Si X ↪→ N (0, 1) alors X possède une espérance et une variance et

E(X) = 0 ; V(X) = 1.

Dé�nition 9.9 (Loi normale centrée réduite)

Soit X ↪→ N (0, 1). Alors, pour tout x ∈ R, on a :

FX(−x) = 1− FX(x).

En particulier, FX(0) =
1

2
.

Proposition 9.9

Soit µ et σ > 0 deux réels.

� On dit qu'une variable aléatoire X suit la loi normale de paramètres µ et σ2

et on note X ↪→ N (µ, σ2) si X a pour densité la fonction f dé�nie par

∀x ∈ R, f(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 .

� Si X ↪→ N (µ, σ) alors la fonction de répartition de X est donnée par

∀x ∈ R, FX(x) =

∫ x

−∞

1

σ
√
2π

e−
(t−µ)2

2σ2 dt.

� Si X ↪→ N (µ, σ2) alors X possède une espérance et une variance et

E(X) = µ ; V(X) = σ2.

Dé�nition 9.10 (Lois normales)
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Figure 9.3 � Densité de la loi N (µ, σ2)

Soient µ, σ, a et b des nombres réels tels que : σ > 0 et a ̸= 0. Soit X une variable
aléatoire. Alors :

X ↪→ N (µ, σ2) ⇐⇒ aX + b ↪→ N (aµ+ b, a2σ2).

Proposition 9.10

9.3.3 Lois exponentielles

Soit λ > 0.

� On dit qu'une variable aléatoire X suit la loi exponentielle de paramètre
λ > 0 et on note X ↪→ E(λ) si X a pour densité la fonction f dé�nie par

∀x ∈ R, f(x) =

{
λe−λx si x ≥ 0

0 sinon
.

� Si X ↪→ E(λ) alors la fonction de répartition de X est donnée par

∀x ∈ R, FX(x) =

{
0 si x < 0

1− e−λx si x ≥ 0
.

� Si X ↪→ E(λ) alors X possède une espérance et une variance et

E(X) =
1

λ
; V(X) =

1

λ2
.

Dé�nition 9.11 (Lois exponentielles)
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Figure 9.4 � Densité de la loi E(λ). Figure 9.5 � Fonction de répartition de la loi
E(λ).

Soit λ > 0 et X une variable de loi exponentielle de paramètre λ.
Alors :

∀(s, t) ∈ (R∗
+)

2, P[X≥s](X ≥ s+ t) = P(X ≥ t).

Proposition 9.11

9.4 Exemples de transfert

9.4.1 Étude de variables de la forme g(X)

But : étant donnée une variable à densité X de loi connue, déterminer la loi de Y = g(X) où g
est une fonction.

1. On commence par déterminer le support (les valeurs prises) par Y (par exemple,
si Y = X2 alors Y ne prend que des valeurs positives).

2. Ensuite, on détermine la fonction de répartition de Y : pour tout t ∈ R on
détermine P (Y ≤ t) à l'aide FX en essayant d'écrire [Y ≤ t] sous la forme
[X ∈ I].

3. On cherche en�n à véri�er si FY est la fonction de répartition d'une variable à
densité et, le cas échéant, calculer une densité de Y .

Méthode 9.1
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9.4.2 Somme de variables aléatoires à densité indépendantes

Soit X,Y deux variables aléatoires indépendantes à densité.
On considère fX et fY une densité de X et Y respectivement.
Alors X + Y est une variable aléatoire à densité et une densité de X + Y est donnée
par :

fX+Y : t 7−→
∫ +∞

−∞
fX(t− x)fY (x)dx =

∫ +∞

−∞
fY (t− x)fX(x)dx.

Cette fonction est appelée le produit de convolution de fX et fY et noté fX ∗ fY .

Proposition 9.12

Soit X1, . . . , Xn des variables aléatoires mutuellement indépendantes telles que pour
tout i ∈ J1, nK, Xi ↪→ N (µi, σ

2
i ).

Alors
n∑

i=1

Xi suit la loi N (
n∑

i=1

µi,
n∑

i=1

σ2
i ).

Proposition 9.13
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