Arnaud Stocker

Lycée Pierre-Gilles de Gennes 2025-2026
Mathématiques — TD9

VARIABLES A DENSITE

Correction de ’exercice 1.

1. — (a) Lafonction Fx est constante sur | — oo, 0[ et sur |1, +oo[ donc est de classe
C" (et a fortiori continue) sur ces intervalles.
Sur [0, 1], la fonction o — 2° est de classe C.

Ainsi Fx est de classe C' sur R\{0,1}.

(b) On vient de voir que Fx est continue sur R\{0, 1}.
Etude de la continuité en 0. On a :

lim Fy(z) =0= Fx(0) = lim Fx(x).

z—0— z—0t

Ainsi F'x est continue en 0.
Etude de la continuité en 1. On a :

lim Fy(x) =1= Fx(1) = lim Fx(x).

x—1— z—0t

Ainsi F'x est continue en 1.
Finalement F'x est continue sur R.

Ainsi X est bien a densité.
— Déterminons une densité de X. On a, pour tout = € R\{0,1} :

0 siz <0
Fy(z) =14 32° six€)0,1] .
0 stz >1
Donc la fonction f définie sur R par :
0 sixz <0
Ve eR f(z) =< 32* sixz€l0,1]
0 siz>1
est une densité de X.
2. — (a) Lafonction Fx est constante sur | — oo, 0] et sur |1, +o00[ donc est de classe

C" (et a fortiori continue) sur ces intervalles.
Sur [0,1], la fonction x — 1 — x est de classe C' & valeurs dans R’ et la
fonction z — 3 est de classe O sur R% . Par composition, F' est donc de
classe O sur [0, 1].
Ainsi Fx est de classe C'' sur R\{0,1}.

(b) On vient de voir que Fx est continue sur R\{0, 1}.
Etude de la continuité en 0. On a :

lim Fy(x) =0= Fx(0) = lim Fx(x).

z—0~ z—0t
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Ainsi F'x est continue en 0.
Etude de la continuité en 1. On a :

lim Fy(x) =1= Fx(1) = lim Fx(x).

z—1— z—0t

Ainsi F'x est continue en 1.
Finalement F'x est continue sur R.

Ainsi Fy est bien la fonction de répartition d’une variable aléatoire a densité
X.

— Déterminons une densité de X. On a, pour tout z € R\{0, 1} :

0 six <0
4 !
Fi(x) = g(l—x)§ stz €]0,1] .
0 stz >1
Donc la fonction f définie sur R par :
0 six <0
4 1
VeeR f(z)= g(l—z)g siz €]0,1]
0 siz>1

est une densité de X.

Correction de ’exercice 2.

1. La fonction f est continue sur R. Elle est positive si et seulement si ¢ est positif.
+o0o

Etudions f(t)dt généralisée en —oo et +00.

+oo
e Etude de f(t)dt. Soit x € [0,400[. On a :

0
/ f(t)dt = / cetdt = {—cet] =c—ce .
0 0 0

x +oo
Ainsi lim / f(t)dt = c. L’intégrale / f(t)dt est donc convergente et vaut
0 0

T—>+00
c.
0
e Comme f est paire, on en déduit que / f(t)dt est aussi convergente et vaut

c. o

+o00

Ainsi f(t)dt est convergente et :
—00

+oo 0 +oo
F(t)dt = / rodi+ [ faydt =2
00 —00 0

La fonction f est donc une densité de probabilité si et seulement si ¢ est positif et

) . 1
2¢ = 1 donc si et seulement si ¢ = 3
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2. Notons F'x la fonction de répartition de X et soit € R. Alors, on a :

Fﬂ@z/%fwﬁ:

;

\

3. Lavariable aléatoire X posséde une espérance si et seulement si I'intégrale /

converge absolument.

./
[ 2

siz < 0

1 [
5/_00 €tdt

1 X
etdt + —/ eldt six>0
2 )y

—e” iz <0
26 S1 X
1
1—=e™ siz>0
26 S1x >
o0
tf(t)dt

Or la fonction ¢ +— |t f(t)| est continue sur R donc cette intégrale est généralisée en

—00 et +o00.

0
e Btude de / [tf(t)|dt. Soit A €] — 00, 0]. On a alors :

0 1 0
/|tf(t)|dt:——/ te'dt.
A 2 A

Les fonctions ¢ — ¢ et t — e’ sont de classe C' sur [A,0] donc par intégration

par parties on obtient :

| e = =3

1 [0
/ teldt
A
1 0
— | |te — e'dt
2 A

1
§(A6A +1—e?).

0

1
Par croissance comparée, on a : lim [tf(t)|dt = =.

0
1
Ainsi / |tf(t)|dt converge et vaut o

+00 1
e Par parité de t — [tf(t)|, on déduit que / [tf(t)|dt converge et vaut 3
0

0 +00
e Les intégrales / [tf(t)|dt et / [tf(t)|dt convergent donc /
—00 0

“+o00

[£f(8)]dt

converge. Ainsi X posséde une espérance. De plus on a :

E(X)

/:otf(t)dt:/iotf(t)dt—i—/OJrootf(t)dt

1 [0
s/
4z
=0.

1 +00
|te!|dt + —/ [te™"|dt
2 Jo

2 2
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4. Comme la variable aléatoire X posseéde une espérance, d’aprés la formule de Koenig-
+00

Huygens elle admet une variance si et seulement si l'intégrale / t2f(t)dt converge

—0o0
absolument.
Or la fonction ¢ ~ [t?f(t)| est continue sur R donc cette intégrale est généralisée en
—00 et 4o00.

0

e Etude de / [t2f(t)|dt. Soit A €] — 00, 0]. On a alors :

0 1 0
/ |t2f(t)ydt:—/ t2edt.
A 2 A

Les fonctions t — % et ¢+ e’ sont de classe C' sur [A4,0] donc par intégration
par parties on obtient :

0 1 0
tf(t)|dt == | t2eldt
2
A A
1 2 _t10 0 t
=— | [t%e']s — [ 2te'dt
2 A

1 0
= ——A%eA —/ tetdt

2 A
1
= —§A2€A + Ae +1— e d’apreés les calculs de 1.
0
Par croissance comparée, on a : lim (2 f(t)|dt = 1.

A——o00 A

0
Ainsi / [t2f(t)|dt converge et vaut 1.

+oo
e Par parité de t — [t?f(t)], on déduit que / |t*f(t)|dt converge aussi et vaut
0

1.
0 +o00 +o00
e Les intégrales / [t2f(t)|dt et / |t2f(t)|dt convergent donc / [t2f (t)|dt
—o0 0

—0o0

converge. Ainsi X posséde un moment d’ordre deux donc une variance. De plus
on a :

400 0 400

E(X?) = / 2 f(t)dt = / t2f (t)dt +/ t2f(t)dt

o —o0 0
=2.

Par la formule de Koenig-Huygens, on a donc :

V(X) = E(X?) - E(X)*=2.

Correction de I’exercice 3. Soit c une constante réelle et f la fonction de variable réelle
définie par

1
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1. 1l est conseillé de tracer la représentation graphique de f! On voit alors facilement
(calcul d’aires de rectangles) que l'intégrale suivante converge et :

400 7
f(x) doe = ==z.
oo 6
) 6 . . N
Donc, si ¢ = = et seulement dans ce cas, f est positive, continue (sauf peut étre aux
2 Foo

1
points 0, 33 et 1) et par ailleurs, f(x) de =1 et donc f est une densité de

probabilité.
2. T1 s’agit de primitiver la fonction f. Sachant que f est constante par intervalle,
F, la fonction de répartition associée est continue, affine par intervalle (mémes

intervalles) :
( 0 sl x <0
gx s 0<wz<1/3
Ve eR, F(x)= g+c(x—%) si 1/3<x<2/3
E—|—2c<x—2) si 2/3<zx<1
2 3 -
\ 1 si >1
3. On a donc :
P(ng)—F(g)—f_§
3 3 2 7
et

2
Ainsi le nombre X tiré au hasard suivant cette loi a plus de chances d’étre > 3 que
2
d’étre < —.
3
Correction de 1’exercice 4.

+00
1. La fonction f est positive et continue sur R*. Etudions f(z)dz généralisée en
o

—00, 0 et +o0.
0
— Etude de / f(z)dx généralisée en —oo et 0. Comme f est nulle sur | — oo, 0]

alors l’intég_rale converge et vaut 0.
+0o0
— Etude de (x)dz. La fonction f est continue sur [0, +oo[ donc 'intégrale

0
n’est généralisée qu’en +oo. Soit A € [0,400[. On a :

+oo +oo 2)
dr = _° 4
s [ e

7 {ﬁ}:
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A
Ainsi : lim / f(z)dz = 1.
0

A—~o00
—+00

L’intégrale (x)dx converge donc et vaut 1.

0
+o0 +oo

(x)dz convergent donc f(z)dz converge
0 —o00

0
— Les intégrales/ f(z)dz et
et de plus : -

+o0 +oo +oo
f(z)dz = f(z)dx f(x)de=0+4+1=1.

0 —

Finalement, f est bien une densité de probabilité. Soit X une variable de densité f
et notons F sa fonction de répartition. Alors, pour tout réel x on a :

F(z):/_mf(t)dt: /f(t)dt siz >0
0
0 six <0
pu— 1
1——— six>0 -
1ty siz >0

. La fonction f est nulle en dehors de [0, +00[ donc d’apres le théoréme de transfert

+o0
X posséde une espérance si et seulement si / xf(z)dz converge absolument.
0

+o0
La fonction x +— |z f(z)| est continue sur [0, +o0o[ donc I'intégrale / zf(z)dz est
0

impropre en +oo. Soit A € [0, +oo[. Les fonctions z — z et z +— 5 étant de

(1+2)

classe C'* sur [0, A] on a par intégration par parties :

I e R e

[,
(1 + A)2 14z,
A 1

S Thtae 1xat

A
Ainsi  lim |z f(z)|dx = 1. La variable X posséde donc une espérance et :
0

A—+o0
+00 +oo 2
E(X) = /0 xf(z)dr = /0 ﬁdw = 1.

Comme X posseéde une espérance, d’aprés la formule de Koenig-Huygens et le

+o00
théoréme de transfert X posséde une espérance si et seulement si / 22 f(x)dx
0

converge absolument.
Or :

222 2
(14 x)3 a—=+00

2% f ()| =
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2
Les fonctions x + |2 f(x)| et 2 — = étant continues et positives sur [c, +-oo[ pour
x

tout ¢ > 0, d’aprés le théoréme de comparaison pour les intégrales de fonctions

+o0
continues positives on en déduit que pour tout ¢ > 0 les intégrales / 2% f (z)|dx
+00 9 +00 ¢
et / —dz sont de méme nature. Ainsi, pour tout ¢ > 0 / |2% f (z)|dz diverge.
C x C

+oo
Finalement l'intégrale / |z% f(x)|dx diverge et X ne posséde donc pas de va-
0

riance.

Correction de ’exercice 5. Soit f la fonction définie sur R par :

1

1. La fonction f est continue. Pour tout A < B on a :

/ * Ha)de = {aretanw)} ¥ _ arctan(B) — arctan(4)
A

70 A - T
0
Comme arctan(x) a pour limite iE quand x tend vers +oo, on en déduit que

+oo
I'intégrale doublement généralisé (x)dx converge et :

—0o0

f(z)de = % (g = %”) — 1.

Ainsi f est une densité de probabilité.

—+00

—0o0

2. D’aprés ce qui précéde :

* t 1
Vo eR, Fy(z)= / f(w)do = 2tant@) 5.
o T
+00
La variable aléatoire X admet une espérance si et seulement 'intégrale / xf(z)dx

—00

converge absolument.

Or:
1

o f(@)] ~ ——

r—Fo00 7T|Jj"

+0o0 1 —c 1
et pour tout ¢ > 0, / —dx et / —dz divergent. On en déduit, par le
P oo —X

théoréme de d’équivalence pour les intégrales de fonctions continues positives, que
+oo
/ |z f(z)|dx diverge.
—00
Ainsi, X ne posséde pas d’espérance.

3. Soit U de loi uniforme sur 0, 1[.

(a) La fonction Fx est continue et strictement croissante sur R. D’aprés le théoréme
de la bijection, Fx réalise une bijection de R dans |0, 1[ (Fx est une fonction
de répartition donc la limite en —oo est 0 et en 400 est 1).
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De plus, pour tout x € Ret y €]0,1[ on a :

arctan(z) 1 1
—+§:y<:>arctan(x):7r y=3

—amin( (o)

Fx(z) =y <~

(b) On note Y = F'(U). Soit x € R.
Fy(x) = P(Y <) = P(F{'(U) < 2) = P(U < Fx(x))

car Fx est strictement croissante et bijection réciproque de F );1.
Comme U suit la loi uniforme sur ]0, 1] et que Fx(z) €]0, 1] alors :

Fy(z) = P(U < Fx(x)) = Fx(z).

Comme la fonction de répartition caractérise la loi, on en déduit que Y suit la
méme loi que X.

(c) Lafonction rd.rand du module numpy .random (importé sous le label rd) simule
une loi uniforme sur |0, 1[. D’aprés la question précédente :

def simuleX ():
return np.tan(np.pi*(rd.rand()-0.5))

simule la variable aléatoire X.

Correction de ’exercice 6.
1. Soit z € R.
— Siz e [O, a alors f(x) = cos(z) > 0.
— Sinon, f(z) =0.
Ainsi f est positive.

De plus f étant nulle en dehors de [O, }, Iintégrale / f(x)dx converge et :
R

N[N

™

/R f(x)dz = / ? cos(x)dz = [sin(z)]F = 1.

0

Ainsi, f est bien une densité de probabilité.
2. Soit z € R. On a:

N 0 six <0 0 siz<0
Fx(x)=P(X <z) = / cos(t)dt si0 <z < g = sin(z) si0<z< g
’ sinon 1 sinon
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T
3. On remarque que X € [O, 5} presque stirement.

4. Enfin, f étant nulle en dehors de [0, g] , Pintégrale / xf(x)dx converge absolument
R
donc X posséde une espérance et on a :
E(X) = / zf(z)dr = /2 xcos(x)dx
R 0

En effectuant une intégration par parties (z — z et = + sin(x) sont de classe C")
on trouve :

2
Correction de ’exercice 7.
1. On rappelle que la fonction de répartition F'x de X est définie par :

0 six <0

vz €R, FX(I):{ 1—e™ siz>0.

(a) Soit y € R. On a:

Frl) =PV <) ={ py ) au50

0 sty <0
1— e siy>0

La fonction Fy est de classe C* (donc continue) sur R* et :

lim Fy(y) = lim Fy(y) = Fy(0) =0

y—0~ y—0+

donc Fy est aussi continue en 0.
Finalement, Fy est de classe C' sur R* et continue sur R donc Y est & densité.

Pour tout y # 0 on a :
0 sty <0
F = :
v(v) { 2)\ye’)‘y2 siy >0
donc la fonction f définie sur R par :

0 siy <0
fy) = { 2)\ye_ky2 siy >0

est une densité de Y.
La variable aléatoire Y posséde une densité nulle en dehors de [0, 400, elle

+o0o
posséde donc une espérance si et seulement si / zfy(x)dzr converge abso-
0

lument.
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Soitt A > 0. Par intégration par parties :

A A , . N 2
/ |z fy (z)|dx = / T X 2 ze M dr = [_IB—AI ]81 +/ o2 Iy
0 0 0

A
= Ae M +/ e dr.
0
En effectuant le changement de variable y = VAz on trouve :

4 2 4 2
/ |z fy (z)|dx = Ae™™ +/ e dx
0 0

A Y A L
= Ae ™M + ﬁ/ e dy
0

+oo
. a2 ™ R .,
Or on sait que / e ¥ dy converge et vaut 5 (penser a une densité d’une
0

1
loi N { 0, — ]). Finalement :
( \/§>)
A
, 1 /7
Am [ lefy@)lde = =25

Ainsi Y posséde une espérance et :

N | —
=

B = [ ahvloie =

Soit y € R. On a :

_{ 0 sty <0

Fy(y) = P(X” <y) = P(X < ¥/y) 1= e siy>0

La fonction Fy est de classe C* (donc continue) sur R* et :

lim Fy(y) = lim Fy(y) = Fy(0) =0

y—0~ y—0t

donc Fy est aussi continue en 0.
Finalement, Fy est de classe C* sur R* et continue sur R donc Y est & densité.
Pour tout y # 0 on a :

0 siy <0
F =q 1 .
v () g)\y_%e_)‘% sty >0

donc la fonction f définie sur R par :

0 siy >0
TW =3 Lyt sy50

est une densité de Y.

10
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La variable aléatoire X posséde une densité nulle en dehors de [0, +o0[ et la
fonction cube est continue sur [0,4o00[. D’aprés le théoréme de transfert, la

“+o0o
variable X? posséde donc une espérance si et seulement si / Arde M dx
0

converge absolument.

La fonction z ~— Az®e™* est continue et positive sur [0, +-oo[ donc I'intégrale
est impropre en +oo et il suffit de montrer la convergence.

Soit A > 0. Par intégration par parties :

A 3 - 1A A
/ \de Mdr = [x ¢ } + §/ x2e Mdy.
0 —A 0 A 0

Comme X posséde un moment d’ordre 2, on en déduit :

A

3
lim \te Mdr = “E(X?).
A——+oo 0 )\

Ainsi X? posséde une espérance et :

SE(X) = S (V(X) + B(X)) = 5

3y _
E(X)_/\ 3 G

(c) Notons Fy la fonction de répartition de Y et soit y € R. On a :

(b)) s

B(Y <yl N[X £0) +B(Y <yn[X =0]) siy>0

1

IP<[ <X<OD siy <0
Y -
P(X < 0) S —0 car P(X =0)=0

P(Y <y]N[X #0]) siy>0

{
i
ol ) 20
{
{
{

Fy(y) =P(Y <y) =

_0 ) sty <0

P(igX) siy >0
_O ) siy <0
1—]P><X<1) sty >0

0 ] siy <0
) . car X est a densité
sty >0

—_

X< -

<

s1y<0
673 siy>0

La fonction Fy est de classe C! sur R* donc a fortiori continue sur R*.
Etudions la continuité en 0. Par limite usuelle, on a :

lim Fy(y) =0 = Fy(0) = lim Fy(y).

y—0t y—0—

11
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2.

Ainsi Fy est continue en 0 et finalement Fy est continue sur R.
On en déduit donc que Y est & densité. De plus, on a pour tout y € R* :

0 siy <0
/ — )\
By (w) Ee_z siy>0 -

Ainsi la fonction f définie sur R par :

0 sty <0

S
VeER, f(y) 2ot siy>0
Y

est une densité de Y.

(a) On remarque que comme X est & valeurs dans [0, 1] alors Y = X? est aussi a

valeurs dans [0, 1]. Soit y € R.
— Comme Y est presque sirement a valeurs dans [0,1], on a

0 siy<O
1 siy>1"
— Pour y € [0,1], on a
P(Y <y) =P(X* <y)
=P(X < /y) (car X est p.s. >0)
=,/y (fr. d'une v.a. de loi uniforme sur [0, 1], car 0 <y < 1)

On a donc, en notant Fy la fonction de répartition de Y, pour y € R,

0 sty <0
Fy(y) =P(Y <y)=4y si0<y<1
1 sty >1

La fonction Fy est une fonction de répartition, elle est de classe C* sur chacun
des intervalles | — 00, 0[, [0, 1], ]1, +00] et est de plus continue sur R (observer
limite & droite et & gauche aux points 0 et 1). La variable Y est donc une v.a
a densité dont une densité est donnée par

Fy(y) siy#0ety#1

YyEeR, fY(y):{o siy=0ouy=1

c’est-a-dire

0 siy <0

1
={—= si0<y<1
Yy eR, fy(y) NG si0<y
0 sty >1
L’espérance de Y est donc donnée par la formule de transfert pour X :

1

1

EY) =E(X?) = / 2? dx = 3
0

car l'intégrale est bien absolument convergente (ce n’est pas une intégrale gé-
néralisée).

12
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(b) On remarque que Y est a valeurs dans [0, +oo[. Soit y € R.

— Comme Y est presque siirement & valeurs dans [0, +00], on a
Yy <0, PY <y)=0.
— Pour y € [0, +00[, on a
PY <y) = P(X*<y)
= P(-vy <X <y
= Fx(Vy) = Fx(=V)

On a donc, en notant Fy la fonction de répartition de Y, pour y € R,

Fx(Vy) — Fx(—=y) si0<y

Noter qu’on ne connait pas de formule pour F'x en termes de fonctions élémen-
taires. Cependant, on sait que
2

i. Fx de classe C* sur R

1
ii. Ve €R, Fy (1) = —e 2.
Par les arguments usuels de composition, on obtient que Fy est continue sur
R (observer le bon recollement en 0) et qu’elle est de classe C' sur chacun des

intervalles | — oo, 0] et |0, +-00].

Fy(y):IP(ng):{O sty <0

La fonction Fy est une fonction de répartition, elle est de classe C* sur chacun
des intervalles | — 0o, 0[ et ]0, +-00[ et est de plus continue sur R. La variable Y’
est donc une v.a & densité dont une densité est donnée par

Fy(y) siy#0

¢’est-a-dire

0 siy <0
Vye]R, fY(y): 1 / / .
—(Fy(WVYy) + Fx(—y)) si0<y
2\/5( x(VY) + Fx(=vy))
0 siy <0
= 1 1 y

— e 2?2 s10<
VY2 Y

L’espérance de Y est donc donnée, en cas de CVA de l'intégrale en jeu, par la
formule

te 11 1

+oo
y———e 2 dy =/ y
0 \/ﬂv 2T 0 \/_\/ 2T

On peut effectuer ce calcul en effectuant le changement de variable z = /y
mais on peut aussi accélérer ce calcul en utilisant directement nos connaissances
sur les variables gaussiennes :

E(Y) =E(X?) = V(X) + E(X)? = 1.

E(Y) = e"% dy

13



Arnaud Stocker

Correction de 1’exercice 8.
1. On remarque dans un premier temps que E est a valeurs dans [0, +oo].
Soit y € R.
— siy < 0alors P(E <y)=0.
— siy >0 alors :

PE<y)=P(—In(U)<y)=PU>e?¥)=1—¢"

car e ¥ € [0, 1].

Finalement :
0 siy <0
YWER, Fily) = { 1—e? sinon

On reconnait une loi exponentielle de paramétre 1.
2. Notons Y = —X. Soit x e R :

+oo 1

Fy(x) = P(=X < 2) = P(X > —z) = / e dt,

 OV2T

En effectuant le changement de variable u = —t dans cette intégrale (qui est bien
convergente), on obtient :

tee 1 2 1 (w? S
Fy(z) = e 22dt = — e 202 du = e 202 du.
—z OV2T +  oV2r oo OV 27
On reconnait alors que —X suit la loi (0, 0?).
3. Notons Y = —X. Soit z € R :

L stz 20 1 siz>0
Fy(I):P(—XSx):P(XZ—x): /+Oo/\e—)\tdt sirz<0 :{6/\:13 51x;0

On remarque que Fy est continue sur R et de classe C' sur R*. Donc —X est une
variable a densité dont une densité est donnée par :

0 siz>0
VLCGR, fY(x):{ )\6)\30 sizr <0

Correction de ’exercice 9.

1. (a) C’est immeédiat car la fonction partie entiére est a valeurs dans N.

(b) Soit k € N*. Alors, par définition de la partie entiére et compte tenu que k et
k — 1 sont positifs on a :

PY =k—1)=Pk—1< X <k)=Fx(k) — Fx(k—1)

—1— ef)\k _ (1 _ ef)\(szl))

—A(k=1) _ =Mk

=€ (&

14
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(c)

(c)

Soit k£ € N*. On a donc :

P(Y4+1=k)=P(Y = k—1) = e MV — o AG=D(]_e=2) = (M) (1—e?).

Ainsi Y + 1 suit la loi géométrique de paramétre 1 — e >,

Puisque la variable aléatoire Y +1 suit la loi géométrique de paramétre 1 —e >,

elle posséde une espérance et une variance :

1 e

EY +1) =15 V' +) =g =5

On en déduit que Y posséde une espérance et une variance :

E(Y) = E(Y)—1= 1_A—1:€A1 ;V(Y):V(YJrl):ﬁ.

La fonction x — z — |z] est & valeurs dans [0,1] donc Z = X — [ X ] est a
valeurs dans [0, 1[.

Soit z € [0,1[. D’aprés la formule des probabilités totales appliquée avec le
systéme complet d’événements ([Y = k])pen on a :

P(Z < x) ZP (Z<z]n]Yy =k]) = ZP([X—kgx]ﬂ[k§X<k+1])
:fP([X§x+k]ﬂ[k§X<k:+1])
:Jiop(k:<X<x+k]) car z € [0,1]
k=0

= ZFX(:U + k) — Fx(k) car X a densité

k=0
+oo
_ (1 6—)@) Ze—)\k
k=0
1— 6—)\37
S l—e

En particulier, on déduit des questions précédentes que la fonction de réparti-
tion F; de Z est la fonction définie sur R par :

0 six <0

VeeR Fyx)= ﬂ sixel0,1] -
1—e ’
1 siz>1

La fonction Fy est de classe C' (a fortiori continue) sur R\{0,1}. On vérifie
facilement qu’elle est continue en 0 et en 1.

15
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Ainsi Z est bien a densité. De plus pour tout z € R\{0,1} on a:

0 six <0
/ o )\6_)@ .
Fy(x) = T si x €]0,1] -
0 stz >1
Donc la fonction f définie sur R par :
0 stz <0
Vo € R D
T € f(z) = — siz€)0,1]

0 siz>1

est une densité de 7.
(d) Comme X et Y possédent une espérance alors par linéarité Z aussi et on a :

1 1
A et —17

Correction de D’exercice 10.

1. La fonction g est dérivable sur | — oo, 0] (fonction constante) et sur |0, +oo[ (produit
de fonctions dérivables sur 0, +o00[). On a

lim g(z) = lim ze " =0=g(0) = lim g(x).

z—0t z—0t z—0—

Ainsi g est continue en 0. En revanche

lim M: lim A lim e * =1
z—0*t i z—0t+t X z—0t
et 0
i 9@ =90) _ o

z—0~ xT z—0~

Donc g n’est pas dérivable en 0.

2. (a) La fonction g est continue et positive sur R. De plus, si X est une variable
aléatoire de loi £(1), on remarque que :

/+Oog(t)dt _E(X) = 1.

[e.9]

Donc g est une densité de probabilité.
(b) La fonction g est continue sur R donc G est de classe C" sur R.
(¢) Soit z € R,

e Siz<0:

car ¢g(t) = 0 pour tout ¢ < 0.
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e Siz>0:

T

G(z) = P(Y < z) :/

—00

g(t)dt = / te~"dt.
0

En faisant une intégration par parties, on trouve :
G(x) = [—te*t}z + / eldt =—ze ™ —e " +1=1-e"(1+2).
0

Ainsi ‘
0 six <0,

vz eR, G(x):{ l—e“(142) siz>0.

La fonction g étant nulle en dehors de [0, 400 la variable aléatoire Y admet une

+oo
espérance si et seulement si / tg(t)dt convergence absolument. Soit A > 0.
0

Par intégration par parties, on a :

A A A A
/ Itg(t)|dt :/ tre~ldt = [—th—t]g‘—/ 2 x (—e H)dt = —A2e—A+2/ g(t)dt.
0 0 0

0
Or on sait que :

A +o0
lim —A% ™4 =0 et lim g(t)dt = / g(t)dt = 1.

A—+o00 A—+o00 0

Donc :
A

[ eg(o)de =2

Ainsi, Y posséde une espérance et comme ¢ — tg(t) est positive on a :

+o0 +00
IE(Y):/O tg(t)dt:/o ltg(t)|dt = 2.

Soit ¢ € R. Comme la fonction exponentielle réalise une bijection croissante de
R sur R’ on a :

(Z<t]=[" <t =

Y <In(t)] sit>0
1] sit<(0

On obtient alors :

[ G(n() sit>0 0 sit<1
vVt € R, H(t)_{ _{1_¥<

. 1 .
0 sit<0 1+In(t) sit>1

La fonction H est de classe C*' sur R\{1} donc a fortiori continue sur R\{1}.
Etudions la continuité en 1. Par opérations sur les limites on a :

lim H(t) =0= H(1) = lim H(¢).

A HO) ()=t H)

Ainsi H est continue en 1 et finalement sur R.
Ainsi, Z est a densité. De plus, pour tout t # 1 on a :

0 sit<1
H'(t) = )
O=91 mew
2 sit<1

17
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Au final, la fonction h définie sur R par :

0 sit<1
VteR, h(t)= In (£)
sit<1
t2

est une densité de Z.

Correction de I’exercice 11. Soit n € N*, on considére la fonction f, : R — R définie

par i
fo(a) = {cn (1—%) siz e 0,n]

0 sinon

1. On a:

Vre[on1-2>0
n

et donc il est clair que la fonction f,,, manifestement continue sur R a ’exception,
peut-étre des points 0 et n, est positive sur R, non identiquement nulle, si et seule-
ment si ¢, > 0.

On a par ailleurs, en effectuent le changement de variable affine

x 1 {y—)O siz—n

y:]-__a 7dy:_—-d% .
n n y—1 six—0

que

- fo(z) de = /ncn <1 - z>n dx
0

o n
1
= cnn/ y" dy
0
n
= ¢, .
n+1

Pour ¢, > 0, de ce qui a été dit auparavant, f,, soit une densité de probabilité si et
+00

seulement si fn(x) dx =1, ¢’est-a-~dire
oo

n+1
Cp = .
n

2. Soit X,, une variable aléatoire ayant pour densité f,.

Soit k£ € N, du fait du caractére classique de l'intégrale écrite a la premiére ligne, le
moment d’ordre k de X, existe et, avec le changement de variables linéaire,

x 1 {y%O siz—0
Yy=— ady:_dl‘y ) . )
n n y—1 six—n

18
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on obtient,

E(XF) = /jooxkfn(x) dx—n+1/0nxk<1—z)n dx

0o n
1
= (nt) / Wbyt = g)" dy
0

= nk(n+1)/oly’“(1—y)” dy

On reconnait dans cette derniére intégrale le sujet de nombre d’exercices sur les
intégrations par parties et les formules de récurrence et on obtient le résultat attendu
en faisant cet exercice de calcul. On obtient, tous calculs repris,

nk

1
BXE) =00+ 1) [ (1= )" dy = o
0 ( k )
3. La v.a X, est a valeurs dans [0, n[, sa fonction de répartition, F,, est donc
— nulle sur | — o0, 0],
— 1 sur [n, +o0],
Pour z € [0,n], on a (avec le méme changement de variable affine que dans la
premiére question)

1 [" t !
Fa) =B, <) =22 [a-Dyat=(nan) [ yray=1-- 2y
n Jo n i n
En résumé, on a
1 siz>n
Foa)=d1—(1=2)" sin>z>0
n
0 six <0
4. Soit x € R.
— Pour z < 0,
VneN, F,(z) =0
et donc
F.(x) —— 0
n——+o0o
— Pour z > 0,
VneN, n>r= Fz)=1-(1— 2)!
n
et donc (aprés passage au In, développement limité de In(1 — f) I +
n n

2 ()

La limite F'(x) de F,(x) lorsque n — 400 est

F.(z) ——e™®

n—-+o0o

1—e® siz>0
0 six <0
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5. On reconnait en I’ la fonction de répartition d’une variable aléatoire réelle de loi
£(1), a densité donc.

Correction de ’exercice 12.

1. Notons Y = max(X;, Xs) et soit £ € R. Alors on a :

Fy(t)=PY <t)=P([X; <t]N[Xy < t])
= P(X; <t)P(X, <t) parindépendance

- FX1(t)FX2<t>
0 sit<0
=< t* site]0,1]
1 sit>1.

2. Notons Y = min(Xy, ..., X,,) et soit ¢t € R. Alors on a :

Ft)=1-PY >t)=1—-P([Xg>tNn---N[X, >1])
=1—-—P(X;>t)x---x P(X, >t) parindépendance mutuelle

=1— P(X; >1t)" car elles suivent toutes la méme loi que X,
=1-(1-Fx(1)"

- 0 sit<0
_{ L—e™ sit>0.
Ainsi Y suit la loi £(nA).
Correction de I’exercice 13. Une densité de X est donnée par la formule
Ve €R, fx(z)= e 1k, (7)
et une densité de Y est donnée par la formule

Vy eR, fy(y) = e Mg, (y).

Comme X et Y sont indépendantes, une densité de Z = X + Y est donc donnée par
VieR fo2)= [ ey - o) do
R

On a, pour z € R, z € R,

Fx(@)fy(z = ) = A 1g, (@)Ae N D1g, (2 — )

= Ne Mg, (2)1g, (2 — 7).

Il est alors clair que si z < 0, Vo € R, fx(x)fy(z —x) =0 et donc fz(z) =0.
Siz>0,o0na

/ @) fr(z — 2) do — / N2 da
R 0

= \Nze ™

et en résumé, une densité f7 de Z est donnée par

VzER, fz(2) = Nze Mg, (2).
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Correction de l’exercice 14. La formule de convolution, donne que X + Y est une
variable aléatoire a densité dont une densité fx.y est calculable par la formule :

1 “+o00 1 1
VER L) =5 | T aTr o @

Calculons cette intégrale généralisée en utilisant la décomposition proposée (et dont la
vérification est laissée a la sagacité des lecteurs et lectrices).

Attention, les intégrales qui vont apparaitre via cette décomposition sont divergentes! Il
est donc impératif de raisonner avec des bornes finies puis de passer a la limite!

Soit A, B deux nombres destinés a tendre vers 400 et —

On a, pour s € R, s #£ 0,

4 1 1 A0+ s 1 A2(s—a)+s
dr = dr + dz
g l+a21+(s—x)? s(s2+4) Jp 1422 s(s2+4) Jp 14 (s—x)?
S /A ! d:c+/A;dx +
(824 4) \Jp 1+ a2 g 1+ (s—1)?
1 42 A 9(s -
—/ ‘ dx+/ —(8 ?) dx
s(s2+4) \Jp 1+ a2 5 1+ (s—ux)?

Dans cette somme, la limite lorsque A, B — £o00 du premier terme est

———.2m (on
EETiR
reconnait une primitive en arctan).

Intéressons nous au deuxiéme terme (on oublie le terme

note R(B,A). On a

) en facteur) que 'on

RCIy
(/ 1+x2 _/B 1—2:;26[:6)

[In(1+2%)]% — (1 +2%)]"7%
_ 1+ A W 1+ B
B 1+(5—A)2 1+ (s— B)?

et, lorsque A, B — +00, on a donc R(B,A) —» 0 .
En reprenant notre calcul, on vient donc d’obtenir aprés ce passage a la limite que

2 1
Vs ER,s #0,  fxiv(s) ==

m(s2+4)
Un changement de variable linéaire, basé sur le fait que Z = — montre que Z est a

densité et que f est une densité de Z.

Correction de D’exercice 15.

— Initialisation : pour n = 2. On rappelle que pour tout 7, une densité de X; est
donnée par
Ve e R, f(z)=e "1g, ().
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Par indépendance, une densité de S, est donc donnée par

VzeR, foz /f (z —x)
On a, pour z € R, x € R,

f($)f(2 - iL’) = €7x1R+ (w)ei(Z7x)1R+ (’Z - x)

=e 1, (2)1g, (2 — o).

Il est alors clair que si z < 0, Vx € R, f(x)f(z —x) =0 et donc fo(z) = 0.

Siz>0,ona
/f (z—=z dx:/e_zdx
0

= ze 7

et en résumé, une densité fy de S est donnée par
VzeR, foz) =z2e"1g, (2).

— Heérédité : soit n > 2. On suppose que 5, est a densité et que f, est une densité
de S,,.
Par lemme des coalitions, S, et X, .1 sont indépendantes donc S,,1 = 5, + X,,11
est & densité.

Par indépendance, une densité de S,,.1 est donc donnée par

VzeR, foul(z /fn (z — ) dx.

On a, pour z € R, z € R,

)z =) = e L (@) s (2 =)
= 0 _1 1>!x"’16721R+ ()1, (2 — ).

Il est alors clair que si z < 0, Vo € R, f,.(x)f(z —x) =0 et donc f,41(2) =0.

Siz>0,o0na
d _ ? 1 n—1 7zd
fn flz—2) de = i (n—l)!m e “dx

-5 ),

2"eF

n!

et en résumé, f,. 1 est une densité de S, 1.

— Conclusion : par principe de récurrence, la propriété est vraie pour tout n € N*,
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Par linéarité de 'espérance, comme X1,...,X,, ont une espérance alors S,, posséde une
espérance et :

E(S,) =Y E(X;) =n.

De méme, les X,..., X, sont indépendantes et possédent une variance. Donc .S,, posséde
une variance :

V(S,) = V(Xi) =n.

Correction de I’exercice 16. Comme X et Y sont indépendantes, une densité de S est
donc donnée par

VieR, fs(0) = [ Fx@)frlz— o) do
R
1. Dans ce cas, on a pour tout z € R :

1 1

fx@)fy(z —2) = Sl-1(@)5 - (2 — ).

On en déduit que si z < —2 ou z > 2 alors fx(z)fy(z — x) est nul pour tout réel =
et donc fs(z) = 0.
Soit z € [-2,2]. On a :

1@z —2) #0<= —-1<2<1 et —1<z—-2<1
— —1<z<] et z—-1<zx<z+1
<= max(z — 1,—1) <z <min(z + 1, 1).

— Siz € [-2,0] alors max(z —1,—1) = —1l et min(z+ 1,1) = 2+ 1 d’ou :

Ainsi : +o )
z —Z
4 1[_270](2) + 4 1[272}(2).

2. Dans un premier temps, on détermine une densité de Y. Pour tout y € R :

Vz € R, fs(z) =

—+00
oo / e Mdr siy>0
PY <y)=P(-Y > —y) = / /\e_mlﬂg+ (x)dx = 0t
—Y / Xe Mdr  sinon
-y
- 1 siy>0
- { M sinon
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puis
Yy eR,  fr(y) =AeM1g_(y).

Dans ce cas, on a pour tout z € R :
fx(@) fy(z —2) = Xe M1g (2)ArFD 1, (2 — 2) = N2eMe M1y, (2)1g_ (2 — ).
Soit z€ R. On a:

g, (2)1g, (2 —2) #0<=2>0 et 2z2—2<0
<= max(z,0) < x.

Ainsi, pour tout z € R :

+o0 e—2 Az Ho0 A by
fS(Z) — / )\2€Az€—2)\xdl, _ )\26)\2 |:_ 5 :| — _e—)\(Zmax(O,z)—z) _ _e—)\|z\'

max(0,z) max(0,z)

. Dans ce cas, on a pour tout z € R :

fx(@) fy(z—x) = = 1)!337’_16_”1R+ (x)((]%w(z — :U)q_le_(z_x)lM(z — )
1 —1 q—1_—=z
= (p—l)!(q—l)!jnp (z—2)1 e *1g, (x)1g, (2 — )

On en déduit que si z < 0 alors fx(z)fy(z — x) est nul pour tout réel = et donc

Pour 2 > 0, on a :

g (2)1lg, (2 —2) #0<=2>0 et z2—2>0
—0<r<z.

Ainsi :

1 —z /z p—1 q—1
z) = e 2Pz — )T dr
A VIS VA AR
et en factorisant par z et effectuant le changement de variable ¢ = Lona:
z
fs(z) = L e 72071 /Z P71 - E)q_ldac
(p—1Dlg—1)! 0 Z
1 1
= e—zzpﬂ—l/ (1 — )7 dt.
b Dla 1) Y

En effectuant des intégrations par parties successives, on obtient :

fs(z) = ! e 7 Ptal (p—Dig— D _ 1 o7 pta-1

(p=1DHg = 1)! Prg-1"  (p+qg-1)
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Finalement, on obtient :

1

VzeR, fs(z)= T

e P g (2).

On peut, plus rapidement, utiliser I’exercice précédent en remarquant que X est la
loi de la somme de p variables indépendantes de loi £(1) et Y est la loi de la somme
de ¢ variables indépendantes de loi £(1). Alors, S est la loi d'une somme de p + ¢
variables indépendantes de loi £(1).

Correction de D’exercice 17.

1. Soit A > 0. Comme f est continue par hypothése, alors Fly, primitive de f, est de
classe C' sur R. Par intégration par parties, on a donc :

/Atf(t)dt = [tFx(t)]s — /A Fx(t)dt
0 /(1)4
= AFx(A) — | P(X <t)dt
OA
— AFy(A) —/ (1—P(X > ))dt
’ A
= AFy(A) — A+ / P(X > t)dt.

+oo
2. Comme f est positive, elle posséde une espérance si et seulement si tf(t)dt est

0
absolument convergente (le « absolument » est superflu car I'intégrande est positif).

400
— Supposons que / P(X > t)dt converge. Alors pour tout A >0 :
0

/Atf(t)dt: /A]P(X > t)dt+A(Fx(A)—1) < /A]P’(X > t)dt < /+OOIP’(X > t)dt

ou on a utilisé le fait que Fy(A) < 1.

A
La fonction A — / tf(t)dt est donc croissante (intégrande positif) et majorée
0

+oo
donc posséde une limite finie en +o00. Cela signifie exactement / tf(t)dt
0

converge (absolument) donc que X posséde une espérance.
On remarque aussi qu’alors :

E(X) < / R
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— Supposons que X posséde une espérance. Alors pour tout A > 0 :

/A P(X > 1)t = /A LF(E)dE + A1 — Fy(A)) = /A LE(E)dE + AP(X > A)
400

- /A tfdt+A [ f(t)dt

A

< /OA tf(t)dt + /+OO tf(t)dt

A
< /m tf(t)dt
< E(X)

A
La fonction A — / P(X > t)dt est donc croissante (intégrande positif) et

0
majorée donc posséde une limite finie en +o00. Cela signifie exactement que

+o0
/ P(X > t)dt converge et que :
0
+oo
/ P(X > t)dt <E(X).
0

+oo
— Conclusion : X posséde une espérance si et seulement si / P(X > t)dt
0

converge et on a

E(X) < / RS < (X,
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