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Mathématiques � TD9

Variables à densité

Correction de l'exercice 1.

1. � (a) La fonction FX est constante sur ]−∞, 0[ et sur ]1,+∞[ donc est de classe
C1 (et a fortiori continue) sur ces intervalles.
Sur [0, 1], la fonction x 7→ x3 est de classe C1.
Ainsi FX est de classe C1 sur R\{0, 1}.

(b) On vient de voir que FX est continue sur R\{0, 1}.
Étude de la continuité en 0. On a :

lim
x→0−

FX(x) = 0 = FX(0) = lim
x→0+

FX(x).

Ainsi FX est continue en 0.
Étude de la continuité en 1. On a :

lim
x→1−

FX(x) = 1 = FX(1) = lim
x→0+

FX(x).

Ainsi FX est continue en 1.
Finalement FX est continue sur R.

Ainsi X est bien à densité.
� Déterminons une densité de X. On a, pour tout x ∈ R\{0, 1} :

F ′
X(x) =


0 si x < 0
3x2 si x ∈]0, 1[
0 si x > 1

.

Donc la fonction f dé�nie sur R par :

∀x ∈ R f(x) =


0 si x ≤ 0
3x2 si x ∈]0, 1[
0 si x ≥ 1

est une densité de X.

2. � (a) La fonction FX est constante sur ]−∞, 0[ et sur ]1,+∞[ donc est de classe
C1 (et a fortiori continue) sur ces intervalles.
Sur [0, 1[, la fonction x 7→ 1 − x est de classe C1 à valeurs dans R∗

+ et la

fonction x 7→ x
4
3 est de classe C1 sur R∗

+. Par composition, F est donc de
classe C1 sur [0, 1[.
Ainsi FX est de classe C1 sur R\{0, 1}.

(b) On vient de voir que FX est continue sur R\{0, 1}.
Étude de la continuité en 0. On a :

lim
x→0−

FX(x) = 0 = FX(0) = lim
x→0+

FX(x).
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Ainsi FX est continue en 0.
Étude de la continuité en 1. On a :

lim
x→1−

FX(x) = 1 = FX(1) = lim
x→0+

FX(x).

Ainsi FX est continue en 1.
Finalement FX est continue sur R.

Ainsi FX est bien la fonction de répartition d'une variable aléatoire à densité
X.

� Déterminons une densité de X. On a, pour tout x ∈ R\{0, 1} :

F ′
X(x) =


0 si x < 0

4

3
(1− x)

1
3 si x ∈]0, 1[

0 si x > 1

.

Donc la fonction f dé�nie sur R par :

∀x ∈ R f(x) =


0 si x ≤ 0

4

3
(1− x)

1
3 si x ∈]0, 1[

0 si x ≥ 1

est une densité de X.

Correction de l'exercice 2.

1. La fonction f est continue sur R. Elle est positive si et seulement si c est positif.

Étudions
∫ +∞

−∞
f(t)dt généralisée en −∞ et +∞.

� Étude de
∫ +∞

0

f(t)dt. Soit x ∈ [0,+∞[. On a :

∫ x

0

f(t)dt =

∫ x

0

ce−tdt =

[
−ce−t

]x
0

= c− ce−x.

Ainsi lim
x→+∞

∫ x

0

f(t)dt = c. L'intégrale
∫ +∞

0

f(t)dt est donc convergente et vaut

c.

� Comme f est paire, on en déduit que
∫ 0

−∞
f(t)dt est aussi convergente et vaut

c.

Ainsi
∫ +∞

−∞
f(t)dt est convergente et :

∫ +∞

−∞
f(t)dt =

∫ 0

−∞
f(t)dt+

∫ +∞

0

f(t)dt = 2c.

La fonction f est donc une densité de probabilité si et seulement si c est positif et

2c = 1 donc si et seulement si c =
1

2
.
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2. Notons FX la fonction de répartition de X et soit x ∈ R. Alors, on a :

FX(x) =

∫ x

−∞
f(t)dt =


1

2

∫ x

−∞
etdt six < 0

1

2

∫ 0

−∞
etdt+

1

2

∫ x

0

e−tdt si x ≥ 0

=


1

2
ex si x < 0

1− 1

2
e−x si x ≥ 0

.

3. La variable aléatoireX possède une espérance si et seulement si l'intégrale
∫ +∞

−∞
tf(t)dt

converge absolument.
Or la fonction t 7→ |tf(t)| est continue sur R donc cette intégrale est généralisée en
−∞ et +∞.

� Étude de
∫ 0

−∞
|tf(t)|dt. Soit A ∈]−∞, 0]. On a alors :∫ 0

A

|tf(t)|dt = −1

2

∫ 0

A

tetdt.

Les fonctions t 7→ t et t 7→ et sont de classe C1 sur [A, 0] donc par intégration
par parties on obtient :∫ 0

A

|tf(t)|dt = −1

2

∫ 0

A

tetdt

= −1

2

(
[tet]0A −

∫ 0

A

etdt

)
=

1

2
(AeA + 1− eA).

Par croissance comparée, on a : lim
A→−∞

∫ 0

A

|tf(t)|dt = 1

2
.

Ainsi
∫ 0

−∞
|tf(t)|dt converge et vaut 1

2
.

� Par parité de t 7→ |tf(t)|, on déduit que
∫ +∞

0

|tf(t)|dt converge et vaut 1

2
.

� Les intégrales
∫ 0

−∞
|tf(t)|dt et

∫ +∞

0

|tf(t)|dt convergent donc
∫ +∞

−∞
|tf(t)|dt

converge. Ainsi X possède une espérance. De plus on a :

E(X) =

∫ +∞

−∞
tf(t)dt =

∫ 0

−∞
tf(t)dt+

∫ +∞

0

tf(t)dt

= −1

2

∫ 0

−∞
|tet|dt+ 1

2

∫ +∞

0

|te−t|dt

= −1

2
+

1

2
= 0.
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4. Comme la variable aléatoire X possède une espérance, d'après la formule de Koenig-

Huygens elle admet une variance si et seulement si l'intégrale
∫ +∞

−∞
t2f(t)dt converge

absolument.
Or la fonction t 7→ |t2f(t)| est continue sur R donc cette intégrale est généralisée en
−∞ et +∞.

� Étude de
∫ 0

−∞
|t2f(t)|dt. Soit A ∈]−∞, 0]. On a alors :

∫ 0

A

|t2f(t)|dt = 1

2

∫ 0

A

t2etdt.

Les fonctions t 7→ t2 et t 7→ et sont de classe C1 sur [A, 0] donc par intégration
par parties on obtient :∫ 0

A

|tf(t)|dt = 1

2

∫ 0

A

t2etdt

=
1

2

(
[t2et]0A −

∫ 0

A

2tetdt

)
= −1

2
A2eA −

∫ 0

A

tetdt

= −1

2
A2eA + AeA + 1− eA d'après les calculs de 1.

Par croissance comparée, on a : lim
A→−∞

∫ 0

A

|t2f(t)|dt = 1.

Ainsi
∫ 0

−∞
|t2f(t)|dt converge et vaut 1.

� Par parité de t 7→ |t2f(t)|, on déduit que
∫ +∞

0

|t2f(t)|dt converge aussi et vaut
1.

� Les intégrales
∫ 0

−∞
|t2f(t)|dt et

∫ +∞

0

|t2f(t)|dt convergent donc
∫ +∞

−∞
|t2f(t)|dt

converge. Ainsi X possède un moment d'ordre deux donc une variance. De plus
on a :

E(X2) =

∫ +∞

−∞
t2f(t)dt =

∫ 0

−∞
t2f(t)dt+

∫ +∞

0

t2f(t)dt

= 2.

Par la formule de Koenig-Huygens, on a donc :

V(X) = E(X2)− E(X)2 = 2.

Correction de l'exercice 3. Soit c une constante réelle et f la fonction de variable réelle
dé�nie par

f = c.

(
1

2
1[0, 1

3
[ + 1[ 1

3
, 2
3
] + 21] 2

3
,1]

)
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1. Il est conseillé de tracer la représentation graphique de f ! On voit alors facilement
(calcul d'aires de rectangles) que l'intégrale suivante converge et :∫ +∞

−∞
f(x) dx =

7

6
x.

Donc, si c =
6

7
et seulement dans ce cas, f est positive, continue (sauf peut être aux

points 0,
1

3
,
2

3
et 1) et par ailleurs,

∫ +∞

−∞
f(x) dx = 1 et donc f est une densité de

probabilité.

2. Il s'agit de primitiver la fonction f . Sachant que f est constante par intervalle,
F , la fonction de répartition associée est continue, a�ne par intervalle (mêmes
intervalles) :

∀x ∈ R, F (x) =



0 si x < 0
c

2
x si 0 ≤ x < 1/3

c

6
+ c

(
x− 1

3

)
si 1/3 ≤ x < 2/3

c

2
+ 2c

(
x− 2

3

)
si 2/3 ≤ x < 1

1 si ≥ 1

3. On a donc :

P(X ≤ 2

3
) = F

(
2

3

)
=

c

2
=

3

7

et

P(X >
2

3
) = 1− F

(
2

3

)
=

4

7
.

Ainsi le nombre X tiré au hasard suivant cette loi a plus de chances d'être >
2

3
que

d'être ≤ 2

3
.

Correction de l'exercice 4.

1. La fonction f est positive et continue sur R∗. Étudions
∫ +∞

−∞
f(x)dx généralisée en

−∞, 0 et +∞.

� Étude de
∫ 0

−∞
f(x)dx généralisée en −∞ et 0. Comme f est nulle sur ]−∞, 0[

alors l'intégrale converge et vaut 0.

� Étude de
∫ +∞

0

f(x)dx. La fonction f est continue sur [0,+∞[ donc l'intégrale

n'est généralisée qu'en +∞. Soit A ∈ [0,+∞[. On a :∫ +∞

0

f(x)dx =

∫ +∞

0

2

(1 + x)3
dx

= 2

[
1

−2(1 + x)2

]A
0

= 1− 1

(1 + A)2
.
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Ainsi : lim
A→+∞

∫ A

0

f(x)dx = 1.

L'intégrale
∫ +∞

0

f(x)dx converge donc et vaut 1.

� Les intégrales
∫ 0

−∞
f(x)dx et

∫ +∞

0

f(x)dx convergent donc
∫ +∞

−∞
f(x)dx converge

et de plus : ∫ +∞

−∞
f(x)dx =

∫ +∞

0

f(x)dx

∫ +∞

−∞
f(x)dx = 0 + 1 = 1.

Finalement, f est bien une densité de probabilité. Soit X une variable de densité f
et notons F sa fonction de répartition. Alors, pour tout réel x on a :

F (x) =

∫ x

−∞
f(t)dt =

 0 si x < 0∫ x

0

f(t)dt si x ≥ 0

=

 0 si x < 0

1− 1

(1 + x)2
si x ≥ 0

.

2. La fonction f est nulle en dehors de [0,+∞[ donc d'après le théorème de transfert

X possède une espérance si et seulement si
∫ +∞

0

xf(x)dx converge absolument.

La fonction x 7→ |xf(x)| est continue sur [0,+∞[ donc l'intégrale
∫ +∞

0

xf(x)dx est

impropre en +∞. Soit A ∈ [0,+∞[. Les fonctions x 7→ x et x 7→ −1

(1 + x)2
étant de

classe C1 sur [0, A] on a par intégration par parties :∫ A

0

2x

(1 + x)3
dx =

[
−x

(1 + x)2

]A
0

−
∫ A

0

−1

(1 + x)2
dx

= − A

(1 + A)2
+

[
− 1

1 + x

]A
0

= − A

(1 + A)2
− 1

1 + A
+ 1.

Ainsi lim
A→+∞

∫ A

0

|xf(x)|dx = 1. La variable X possède donc une espérance et :

E(X) =

∫ +∞

0

xf(x)dx =

∫ +∞

0

2x

(1 + x)3
dx = 1.

Comme X possède une espérance, d'après la formule de Koenig-Huygens et le

théorème de transfert X possède une espérance si et seulement si
∫ +∞

0

x2f(x)dx

converge absolument.
Or :

|x2f(x)| = 2x2

(1 + x)3
∼

x→+∞

2

x
.
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Les fonctions x 7→ |x2f(x)| et x 7→ 2

x
étant continues et positives sur [c,+∞[ pour

tout c > 0, d'après le théorème de comparaison pour les intégrales de fonctions

continues positives on en déduit que pour tout c > 0 les intégrales
∫ +∞

c

|x2f(x)|dx

et
∫ +∞

c

2

x
dx sont de même nature. Ainsi, pour tout c > 0

∫ +∞

c

|x2f(x)|dx diverge.

Finalement l'intégrale
∫ +∞

0

|x2f(x)|dx diverge et X ne possède donc pas de va-

riance.

Correction de l'exercice 5. Soit f la fonction dé�nie sur R par :

∀x ∈ R, f(x) =
1

π(1 + x2)
.

1. La fonction f est continue. Pour tout A < B on a :∫ B

A

f(x)dx =

[
arctan(x)

π

]B
A

=
arctan(B)− arctan(A)

π
.

Comme arctan(x) a pour limite ±π

2
quand x tend vers ±∞, on en déduit que

l'intégrale doublement généralisé
∫ +∞

−∞
f(x)dx converge et :

∫ +∞

−∞
f(x)dx =

1

π

(
π

2
− −π

2

)
= 1.

Ainsi f est une densité de probabilité.

2. D'après ce qui précède :

∀x ∈ R, FX(x) =

∫ x

−∞
f(x)dx =

arctan(x)

π
+

1

2
.

La variable aléatoireX admet une espérance si et seulement l'intégrale
∫ +∞

−∞
xf(x)dx

converge absolument.
Or :

|xf(x)| ∼
x→±∞

1

π|x|

et pour tout c > 0,
∫ +∞

c

1

x
dx et

∫ −c

−∞

1

−x
dx divergent. On en déduit, par le

théorème de d'équivalence pour les intégrales de fonctions continues positives, que∫ +∞

−∞
|xf(x)|dx diverge.

Ainsi, X ne possède pas d'espérance.

3. Soit U de loi uniforme sur ]0, 1[.

(a) La fonction FX est continue et strictement croissante sur R. D'après le théorème
de la bijection, FX réalise une bijection de R dans ]0, 1[ (FX est une fonction
de répartition donc la limite en −∞ est 0 et en +∞ est 1).
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De plus, pour tout x ∈ R et y ∈]0, 1[ on a :

FX(x) = y ⇐⇒ arctan(x)

π
+

1

2
= y ⇐⇒ arctan(x) = π

(
y − 1

2

)
⇐⇒ x = tan

(
π

(
y − 1

2

))

car π

(
y − 1

2

)
∈
]
−π

2
;
π

2

[
. Ainsi :

∀y ∈]0, 1[, F−1
X (y) = tan

(
π

(
y − 1

2

))
.

(b) On note Y = F−1
X (U). Soit x ∈ R.

FY (x) = P(Y ≤ x) = P(F−1
X (U) ≤ x) = P(U ≤ FX(x))

car FX est strictement croissante et bijection réciproque de F−1
X .

Comme U suit la loi uniforme sur ]0, 1[ et que FX(x) ∈]0, 1[ alors :

FY (x) = P(U ≤ FX(x)) = FX(x).

Comme la fonction de répartition caractérise la loi, on en déduit que Y suit la
même loi que X.

(c) La fonction rd.rand du module numpy.random (importé sous le label rd) simule
une loi uniforme sur ]0, 1[. D'après la question précédente :

def simuleX ():

return np.tan(np.pi*(rd.rand () -0.5))

simule la variable aléatoire X.

Correction de l'exercice 6.

1. Soit x ∈ R.
� Si x ∈

[
0,

π

2

]
alors f(x) = cos(x) ≥ 0 .

� Sinon, f(x) = 0.

Ainsi f est positive.

De plus f étant nulle en dehors de
[
0,

π

2

]
, l'intégrale

∫
R
f(x)dx converge et :

∫
R
f(x)dx =

∫ π
2

0

cos(x)dx = [sin(x)]
π
2
0 = 1.

Ainsi, f est bien une densité de probabilité.

2. Soit x ∈ R. On a :

FX(x) = P(X ≤ x) =


0 si x < 0∫ x

0

cos(t)dt si 0 ≤ x ≤ π

2
1 sinon

=


0 si x < 0

sin(x) si 0 ≤ x ≤ π

2
1 sinon
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3. On remarque que X ∈
[
0,

π

2

]
presque sûrement.

4. En�n, f étant nulle en dehors de
[
0,

π

2

]
, l'intégrale

∫
R
xf(x)dx converge absolument

donc X possède une espérance et on a :

E(X) =

∫
R
xf(x)dx =

∫ π
2

0

xcos(x)dx

En e�ectuant une intégration par parties (x 7→ x et x 7→ sin(x) sont de classe C1)
on trouve :

E(X) =

∫ π
2

0

x cos(x)dx = [x sin(x)]
π
2
0 −

∫ π
2

0

sin(x)dx

=
π

2
− [− cos(x)]

π
2
0

=
π

2
− 1

Correction de l'exercice 7.

1. On rappelle que la fonction de répartition FX de X est dé�nie par :

∀x ∈ R, FX(x) =

{
0 si x ≤ 0

1− e−λx si x > 0.

(a) Soit y ∈ R. On a :

FY (y) = P(
√
X ≤ y) =

{
0 si y < 0

P(X ≤ y2) si y ≥ 0

=

{
0 si y < 0

1− e−λy2 si y ≥ 0
.

La fonction FY est de classe C1 (donc continue) sur R∗ et :

lim
y→0−

FY (y) = lim
y→0+

FY (y) = FY (0) = 0

donc FY est aussi continue en 0.
Finalement, FY est de classe C1 sur R∗ et continue sur R donc Y est à densité.
Pour tout y ̸= 0 on a :

F ′
Y (y) =

{
0 si y < 0

2λye−λy2 si y > 0
.

donc la fonction f dé�nie sur R par :

f(y) =

{
0 si y ≤ 0

2λye−λy2 si y > 0

est une densité de Y .
La variable aléatoire Y possède une densité nulle en dehors de [0,+∞[, elle

possède donc une espérance si et seulement si
∫ +∞

0

xfY (x)dx converge abso-

lument.
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Soit A > 0. Par intégration par parties :∫ A

0

|xfY (x)|dx =

∫ A

0

x× 2λxe−λx2

dx = [−xe−λx2

]A0 +

∫ A

0

e−λx2

dx

= Ae−λA2

+

∫ A

0

e−λx2

dx.

En e�ectuant le changement de variable y =
√
λx on trouve :∫ A

0

|xfY (x)|dx = Ae−λA2

+

∫ A

0

eλx
2

dx

= Ae−λA2

+
1√
λ

∫ √
λA

0

e−y2dy

Or on sait que
∫ +∞

0

e−y2dy converge et vaut

√
π

2
(penser à une densité d'une

loi N
(
0,

1√
2

)
). Finalement :

lim
A→+∞

∫ A

0

|xfY (x)|dx =
1√
λ

√
π

2
.

Ainsi Y possède une espérance et :

E(Y ) =

∫ +∞

0

xfY (x)dx =
1

2

√
π

λ
.

(b) Soit y ∈ R. On a :

FY (y) = P(X3 ≤ y) = P(X ≤ 3
√
y) =

{
0 si y < 0

1− e−λ 3
√
y si y ≥ 0

.

La fonction FY est de classe C1 (donc continue) sur R∗ et :

lim
y→0−

FY (y) = lim
y→0+

FY (y) = FY (0) = 0

donc FY est aussi continue en 0.
Finalement, FY est de classe C1 sur R∗ et continue sur R donc Y est à densité.
Pour tout y ̸= 0 on a :

F ′
Y (y) =

{
0 si y < 0

1

3
λy−

2
3 e−λ 3

√
y si y > 0

.

donc la fonction f dé�nie sur R par :

f(y) =

{
0 si y ≥ 0

1

3
λy−

2
3 e−λ 3

√
y si y > 0

est une densité de Y .
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La variable aléatoire X possède une densité nulle en dehors de [0,+∞[ et la
fonction cube est continue sur [0,+∞[. D'après le théorème de transfert, la

variable X3 possède donc une espérance si et seulement si
∫ +∞

0

λx3e−λxdx

converge absolument.
La fonction x 7→ λx3e−λx est continue et positive sur [0,+∞[ donc l'intégrale
est impropre en +∞ et il su�t de montrer la convergence.
Soit A > 0. Par intégration par parties :∫ A

0

λx3e−λxdx =

[
x3e−λx

−λ

]A
0

+
3

λ

∫ A

0

x2e−λxdx.

Comme X possède un moment d'ordre 2, on en déduit :

lim
A→+∞

∫ A

0

λx3e−λxdx =
3

λ
E(X2).

Ainsi X3 possède une espérance et :

E(X3) =
2

λ
E(X2) =

3

λ
(V(X) + E(X)2) =

6

λ3
.

(c) Notons FY la fonction de répartition de Y et soit y ∈ R. On a :

FY (y) = P(Y ≤ y) =

 P
([

1

X
≤ y

])
si y ≤ 0

P([Y ≤ y] ∩ [X ̸= 0]) + P([Y ≤ y] ∩ [X = 0]) si y > 0

=


P
([

1

y
≤ X < 0

])
si y < 0

P(X ≤ 0) si x = 0
P([Y ≤ y] ∩ [X ̸= 0]) si y > 0

car P(X = 0) = 0

=

 0 si y ≤ 0

P
([

1

X
≤ y

]
∩ [X ̸= 0]

)
si y > 0

=

 0 si y ≤ 0

P
([

1

y
≤ X

])
si y > 0

=

 0 si y ≤ 0

1− P
([

X <
1

y

])
si y > 0

=

 0 si y ≤ 0

1− P
([

X ≤ 1

y

])
si y > 0

car X est à densité

=

{
0 si y ≤ 0

e−
λ
y si y > 0

.

La fonction FY est de classe C1 sur R∗ donc a fortiori continue sur R∗.
Étudions la continuité en 0. Par limite usuelle, on a :

lim
y→0+

FY (y) = 0 = FY (0) = lim
y→0−

FY (y).

11
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Ainsi FY est continue en 0 et �nalement FY est continue sur R.
On en déduit donc que Y est à densité. De plus, on a pour tout y ∈ R∗ :

F ′
Y (y) =

 0 si y < 0
λ

y2
e−

λ
y si y > 0

.

Ainsi la fonction f dé�nie sur R par :

∀ ∈ R, f(y) =

 0 si y ≤ 0
λ

y2
e−

λ
y si y > 0

est une densité de Y .
2. (a) On remarque que comme X est à valeurs dans [0, 1] alors Y = X2 est aussi à

valeurs dans [0, 1]. Soit y ∈ R.
� Comme Y est presque sûrement à valeurs dans [0, 1], on a

P(Y ≤ y) =

{
0 si y < 0

1 si y ≥ 1
.

� Pour y ∈ [0, 1], on a

P(Y ≤ y) = P(X2 ≤ y)

= P(X ≤ √
y) (car X est p.s. ≥ 0)

=
√
y (f.r. d'une v.a. de loi uniforme sur [0, 1], car 0 ≤ y ≤ 1)

On a donc, en notant FY la fonction de répartition de Y , pour y ∈ R,

FY (y) = P(Y ≤ y) =


0 si y < 0
√
y si 0 ≤ y ≤ 1

1 si y ≥ 1

La fonction FY est une fonction de répartition, elle est de classe C1 sur chacun
des intervalles ]−∞, 0[, [0, 1], ]1,+∞[ et est de plus continue sur R (observer
limite à droite et à gauche aux points 0 et 1). La variable Y est donc une v.a
à densité dont une densité est donnée par

∀y ∈ R, fY (y) =

{
F ′
Y (y) si y ̸= 0 et y ̸= 1

0 si y = 0 ou y = 1

c'est-à-dire

∀y ∈ R, fY (y) =


0 si y ≤ 0
1

2
√
y

si 0 ≤ y < 1

0 si y ≥ 1

L'espérance de Y est donc donnée par la formule de transfert pour X :

E(Y ) = E(X2) =

∫ 1

0

x2 dx =
1

3

car l'intégrale est bien absolument convergente (ce n'est pas une intégrale gé-
néralisée).

12
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(b) On remarque que Y est à valeurs dans [0,+∞[. Soit y ∈ R.
� Comme Y est presque sûrement à valeurs dans [0,+∞[, on a

∀y < 0, P(Y ≤ y) = 0.

� Pour y ∈ [0,+∞[, on a

P(Y ≤ y) = P(X2 ≤ y)

= P(−√
y ≤ X ≤ √

y)

= FX(
√
y)− FX(−

√
y)

On a donc, en notant FY la fonction de répartition de Y , pour y ∈ R,

FY (y) = P(Y ≤ y) =

{
0 si y < 0

FX(
√
y)− FX(−

√
y) si 0 ≤ y

Noter qu'on ne connait pas de formule pour FX en termes de fonctions élémen-
taires. Cependant, on sait que

i. FX de classe C∞ sur R

ii. ∀x ∈ R, F ′
X(x) =

1√
2π

e−
x2

2 .

Par les arguments usuels de composition, on obtient que FY est continue sur
R (observer le bon recollement en 0) et qu'elle est de classe C1 sur chacun des
intervalles ]−∞, 0[ et ]0,+∞[.
La fonction FY est une fonction de répartition, elle est de classe C1 sur chacun
des intervalles ]−∞, 0[ et ]0,+∞[ et est de plus continue sur R. La variable Y
est donc une v.a à densité dont une densité est donnée par

∀y ∈ R, fY (y) =

{
F ′
Y (y) si y ̸= 0

0 si y = 0

c'est-à-dire

∀y ∈ R, fY (y) =

0 si y ≤ 0
1

2
√
y
(F ′

X(
√
y) + F ′

X(−
√
y)) si 0 < y

=

0 si y ≤ 0
1
√
y

1√
2π

e−
y

2σ2 si 0 < y

L'espérance de Y est donc donnée, en cas de CVA de l'intégrale en jeu, par la
formule

E(Y ) =

∫ +∞

0

y.
1
√
y

1√
2π

e−
y
2 dy =

∫ +∞

0

√
y

1√
2π

e−
y
2 dy

On peut e�ectuer ce calcul en e�ectuant le changement de variable x =
√
y

mais on peut aussi accélérer ce calcul en utilisant directement nos connaissances
sur les variables gaussiennes :

E(Y ) = E(X2) = V(X) + E(X)2 = 1.
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Correction de l'exercice 8.

1. On remarque dans un premier temps que E est à valeurs dans [0,+∞[.
Soit y ∈ R.
� si y ≤ 0 alors P(E ≤ y) = 0.
� si y > 0 alors :

P(E ≤ y) = P(− ln(U) ≤ y) = P(U ≥ e−y) = 1− e−y

car e−y ∈ [0, 1].

Finalement :

∀y ∈ R, FE(y) =

{
0 si y ≤ 0

1− e−y sinon

On reconnaît une loi exponentielle de paramètre 1.

2. Notons Y = −X. Soit x ∈ R :

FY (x) = P(−X ≤ x) = P(X ≥ −x) =

∫ +∞

−x

1

σ
√
2π

e−
t2

2σ2 dt.

En e�ectuant le changement de variable u = −t dans cette intégrale (qui est bien
convergente), on obtient :

FY (x) =

∫ +∞

−x

1

σ
√
2π

e−
t2

2σ2 dt = −
∫ −∞

x

1

σ
√
2π

e−
(−u)2

2σ2 du =

∫ x

−∞

1

σ
√
2π

e−
u2

2σ2 du.

On reconnaît alors que −X suit la loi N (0, σ2).

3. Notons Y = −X. Soit x ∈ R :

FY (x) = P(−X ≤ x) = P(X ≥ −x) =


1 si x ≥ 0∫ +∞

−x

λe−λtdt si x < 0
=

{
1 si x ≥ 0
eλx si x < 0

On remarque que FY est continue sur R et de classe C1 sur R∗. Donc −X est une
variable à densité dont une densité est donnée par :

∀x ∈ R, fY (x) =

{
0 si x ≥ 0

λeλx si x < 0

Correction de l'exercice 9.

1. (a) C'est immédiat car la fonction partie entière est à valeurs dans N.
(b) Soit k ∈ N∗. Alors, par dé�nition de la partie entière et compte tenu que k et

k − 1 sont positifs on a :

P(Y = k − 1) = P(k − 1 ≤ X < k) = FX(k)− FX(k − 1)

= 1− e−λk − (1− e−λ(k−1))

= e−λ(k−1) − e−λk.

14
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(c) Soit k ∈ N∗. On a donc :

P(Y+1 = k) = P (Y = k−1) = e−λ(k−1)−e−λk = e−λ(k−1)(1−e−λ) = (e−λ)k−1(1−e−λ).

Ainsi Y + 1 suit la loi géométrique de paramètre 1− e−λ.
(d) Puisque la variable aléatoire Y +1 suit la loi géométrique de paramètre 1−e−λ,

elle possède une espérance et une variance :

E(Y + 1) =
1

1− e−λ
; V(Y + 1) =

e−λ

(1− e−λ)2
.

On en déduit que Y possède une espérance et une variance :

E(Y ) = E(Y )−1 =
1

1− e−λ
−1 =

1

eλ − 1
; V(Y ) = V(Y +1) =

e−λ

(1− e−λ)2
.

2. (a) La fonction x 7→ x − ⌊x⌋ est à valeurs dans [0, 1[ donc Z = X − ⌊X⌋ est à
valeurs dans [0, 1[.

(b) Soit x ∈ [0, 1[. D'après la formule des probabilités totales appliquée avec le
système complet d'événements ([Y = k])k∈N on a :

P (Z ≤ x) =
+∞∑
k=0

P ([Z ≤ x] ∩ [Y = k]) =
+∞∑
k=0

P ([X − k ≤ x] ∩ [k ≤ X < k + 1])

=
+∞∑
k=0

P ([X ≤ x+ k] ∩ [k ≤ X < k + 1])

=
+∞∑
k=0

P (k ≤ X ≤ x+ k]) car x ∈ [0, 1[

=
+∞∑
k=0

FX(x+ k)− FX(k) car X à densité

=
+∞∑
k=0

(e−λk − e−λ(k+x))

= (1− e−λx)
+∞∑
k=0

e−λk

=
1− e−λx

1− e−λ
.

(c) En particulier, on déduit des questions précédentes que la fonction de réparti-
tion FZ de Z est la fonction dé�nie sur R par :

∀x ∈ R FZ(x) =


0 si x < 0

1− e−λx

1− e−λ
si x ∈ [0, 1[

1 si x ≥ 1

.

La fonction FZ est de classe C1 (a fortiori continue) sur R\{0, 1}. On véri�e
facilement qu'elle est continue en 0 et en 1.
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Ainsi Z est bien à densité. De plus pour tout x ∈ R\{0, 1} on a :

F ′
Z(x) =


0 si x < 0

λe−λx

1− e−λ
si x ∈]0, 1[

0 si x > 1

.

Donc la fonction f dé�nie sur R par :

∀x ∈ R f(x) =


0 si x ≤ 0

λe−λx

1− e−λ
si x ∈]0, 1[

0 si x ≥ 1

est une densité de Z.
(d) Comme X et Y possèdent une espérance alors par linéarité Z aussi et on a :

E(Z) = E(X)− E(Y ) =
1

λ
− 1

eλ − 1
.

Correction de l'exercice 10.

1. La fonction g est dérivable sur ]−∞, 0[ (fonction constante) et sur ]0,+∞[ (produit
de fonctions dérivables sur ]0,+∞[). On a

lim
x→0+

g(x) = lim
x→0+

xe−x = 0 = g(0) = lim
x→0−

g(x).

Ainsi g est continue en 0. En revanche

lim
x→0+

g(x)− g(0)

x
= lim

x→0+

xe−x

x
= lim

x→0+
e−x = 1

et

lim
x→0−

g(x)− g(0)

x
= lim

x→0−
0 = 0.

Donc g n'est pas dérivable en 0.

2. (a) La fonction g est continue et positive sur R. De plus, si X est une variable
aléatoire de loi E(1), on remarque que :∫ +∞

−∞
g(t)dt = E(X) = 1.

Donc g est une densité de probabilité.
(b) La fonction g est continue sur R donc G est de classe C1 sur R.
(c) Soit x ∈ R.

� Si x < 0 :

G(x) = P(Y ≤ x) =

∫ x

−∞
g(t)dt = 0

car g(t) = 0 pour tout t < 0.
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� Si x ≥ 0 :

G(x) = P(Y ≤ x) =

∫ x

−∞
g(t)dt =

∫ x

0

te−tdt.

En faisant une intégration par parties, on trouve :

G(x) =
[
−te−t

]x
0
+

∫ x

0

e−tdt = −xe−x − e−x + 1 = 1− e−x(1 + x).

Ainsi

∀x ∈ R, G(x) =

{
0 si x < 0,
1− e−x(1 + x) si x ⩾ 0.

(d) La fonction g étant nulle en dehors de [0,+∞[ la variable aléatoire Y admet une

espérance si et seulement si
∫ +∞

0

tg(t)dt convergence absolument. Soit A > 0.

Par intégration par parties, on a :∫ A

0

|tg(t)|dt =
∫ A

0

t2e−tdt = [−t2e−t]A0 −
∫ A

0

2t×(−e−t)dt = −A2e−A+2

∫ A

0

g(t)dt.

Or on sait que :

lim
A→+∞

−A2e−A = 0 et lim
A→+∞

∫ A

0

g(t)dt =

∫ +∞

−∞
g(t)dt = 1.

Donc :

lim
A→+∞

∫ A

0

|tg(t)|dt = 2.

Ainsi, Y possède une espérance et comme t 7→ tg(t) est positive on a :

E(Y ) =

∫ +∞

0

tg(t)dt =

∫ +∞

0

|tg(t)|dt = 2.

3. (a) Soit t ∈ R. Comme la fonction exponentielle réalise une bijection croissante de
R sur R∗

+ on a :

[Z ≤ t] = [eY ≤ t] =

{
[Y ≤ ln (t)] si t > 0

∅ si t ≤ 0
.

On obtient alors :

∀t ∈ R, H(t) =

{
G (ln (t)) si t > 0

0 si t ≤ 0
=

{
0 si t < 1

1− 1

t
(1 + ln (t)) si t ≥ 1

.

(b) La fonction H est de classe C1 sur R\{1} donc a fortiori continue sur R\{1}.
Étudions la continuité en 1. Par opérations sur les limites on a :

lim
t→1+

H(t) = 0 = H(1) = lim
t→1−

H(t).

Ainsi H est continue en 1 et �nalement sur R.
Ainsi, Z est à densité. De plus, pour tout t ̸= 1 on a :

H ′(t) =


0 si t < 1

ln (t)

t2
si t ≤ 1

.
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Au �nal, la fonction h dé�nie sur R par :

∀t ∈ R, h(t) =


0 si t < 1

ln (t)

t2
si t ≤ 1

est une densité de Z.

Correction de l'exercice 11. Soit n ∈ N∗, on considère la fonction fn : R → R dé�nie
par

fn(x) =

{
cn

(
1− x

n

)n

si x ∈ [0, n[

0 sinon

1. On a :
∀x ∈ [0, n[, 1− x

n
≥ 0

et donc il est clair que la fonction fn, manifestement continue sur R à l'exception,
peut-être des points 0 et n, est positive sur R, non identiquement nulle, si et seule-
ment si cn > 0.
On a par ailleurs, en e�ectuent le changement de variable a�ne

y = 1− x

n
, , dy = − 1

n
.dx, ,

{
y → 0 si x → n

y → 1 si x → 0

que ∫ +∞

−∞
fn(x) dx =

∫ n

0

cn

(
1− x

n

)n

dx

= cnn

∫ 1

0

yn dy

= cn
n

n+ 1
.

Pour cn > 0, de ce qui a été dit auparavant, fn soit une densité de probabilité si et

seulement si
∫ +∞

−∞
fn(x) dx = 1, c'est-à-dire

cn =
n+ 1

n
.

2. Soit Xn une variable aléatoire ayant pour densité fn.
Soit k ∈ N, du fait du caractère classique de l'intégrale écrite à la première ligne, le
moment d'ordre k de Xn existe et, avec le changement de variables linéaire,

y =
x

n
, , dy =

1

n
dx, ,

{
y → 0 si x → 0

y → 1 si x → n
,
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on obtient,

E(Xk
n) =

∫ +∞

−∞
xkfn(x) dx =

n+ 1

n

∫ n

0

xk
(
1− x

n

)n

dx

= (n+ 1)

∫ 1

0

nkyk(1− y)n dy

= nk(n+ 1)

∫ 1

0

yk(1− y)n dy

On reconnait dans cette dernière intégrale le sujet de nombre d'exercices sur les
intégrations par parties et les formules de récurrence et on obtient le résultat attendu
en faisant cet exercice de calcul. On obtient, tous calculs repris,

E(Xk
n) = nk(n+ 1)

∫ 1

0

yk(1− y)n dy =
nk(

n+k+1
k

)
3. La v.a Xn est à valeurs dans [0, n[, sa fonction de répartition, Fn est donc

� nulle sur ]−∞, 0[,
� 1 sur [n,+∞[,

Pour x ∈ [0, n[, on a (avec le même changement de variable a�ne que dans la
première question)

Fn(x) = P(Xn ≤ x) =
n+ 1

n

∫ x

0

(1− t

n
)n dt = (n+ 1)

∫ 1

1− x
n

yn dy = 1− (1− x

n
)n+1

En résumé, on a

Fn(x) =


1 si x > n

1− (1− x

n
)n+1 si n > x ≥ 0

0 si x ≤ 0

4. Soit x ∈ R.
� Pour x < 0,

∀n ∈ N, Fn(x) = 0

et donc
Fn(x) −−−−→

n→+∞
0

� Pour x > 0,
∀n ∈ N, n > x ⇒ Fn(x) = 1− (1− x

n
)n+1

et donc (après passage au ln, développement limité de ln(1 − x

n
) = −x

n
+

o
n→+∞

(
1

n

)
),

Fn(x) −−−−→
n→+∞

e−x

La limite F (x) de Fn(x) lorsque n → +∞ est

F (x) =

{
1− e−x si x ≥ 0

0 si x ≤ 0
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5. On reconnait en F la fonction de répartition d'une variable aléatoire réelle de loi
E(1), à densité donc.

Correction de l'exercice 12.

1. Notons Y = max(X1, X2) et soit t ∈ R. Alors on a :

FY (t) = P (Y ≤ t) = P ([X1 ≤ t] ∩ [X2 ≤ t])

= P (X1 ≤ t)P (X2 ≤ t) par indépendance

= FX1(t)FX2(t)

=


0 si t < 0
t2 si t ∈ [0, 1]
1 si t > 1.

2. Notons Y = min(X1, . . . , Xn) et soit t ∈ R. Alors on a :

FY (t) = 1− P (Y > t) = 1− P ([X1 > t] ∩ · · · ∩ [Xn > t])

= 1− P (X1 > t)× · · · × P (Xn > t) par indépendance mutuelle

= 1− P (X1 > t)n car elles suivent toutes la même loi que X1

= 1− (1− FX1(t))
n

=

{
0 si t < 0

1− e−nλt si t ≥ 0.

Ainsi Y suit la loi E(nλ).

Correction de l'exercice 13. Une densité de X est donnée par la formule

∀x ∈ R, fX(x) = λe−λx1R+(x)

et une densité de Y est donnée par la formule

∀y ∈ R, fY (y) = λe−λy1R+(y).

Comme X et Y sont indépendantes, une densité de Z = X + Y est donc donnée par

∀z ∈ R, fZ(z) =

∫
R
fX(x)fY (z − x) dx

On a, pour z ∈ R, x ∈ R,

fX(x)fY (z − x) = λe−λx1R+(x)λe
−λ(z−x)1R+(z − x)

= λ2e−λz1R+(x)1R+(z − x).

Il est alors clair que si z < 0, ∀x ∈ R, fX(x)fY (z − x) = 0 et donc fZ(z) = 0.
Si z ≥ 0, on a ∫

R
fX(x)fY (z − x) dx =

∫ z

0

λ2e−λ.z dx

= λ2ze−λz

et en résumé, une densité fZ de Z est donnée par

∀z ∈ R, fZ(z) = λ2ze−λz1R+(z).
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Correction de l'exercice 14. La formule de convolution, donne que X + Y est une
variable aléatoire à densité dont une densité fX+Y est calculable par la formule :

∀s ∈ R, fX+Y (s) =
1

π2

∫ +∞

−∞

1

1 + x2

1

1 + (s− x)2
dx.

Calculons cette intégrale généralisée en utilisant la décomposition proposée (et dont la
véri�cation est laissée à la sagacité des lecteurs et lectrices).
Attention, les intégrales qui vont apparaître via cette décomposition sont divergentes ! Il
est donc impératif de raisonner avec des bornes �nies puis de passer à la limite !
Soit A,B deux nombres destinés à tendre vers +∞ et −∞.
On a, pour s ∈ R, s ̸= 0,∫ A

B

1

1 + x2

1

1 + (s− x)2
dx =

1

s(s2 + 4)

∫ A

B

2x+ s

1 + x2
dx+

1

s(s2 + 4)

∫ A

B

2(s− x) + s

1 + (s− x)2
dx

=
1

(s2 + 4)

(∫ A

B

1

1 + x2
dx+

∫ A

B

1

1 + (s− x)2
dx

)
+

1

s(s2 + 4)

(∫ A

B

2x

1 + x2
dx+

∫ A

B

2(s− x)

1 + (s− x)2
dx

)

Dans cette somme, la limite lorsque A,B → ±∞ du premier terme est
1

(s2 + 4)
.2π (on

reconnait une primitive en arctan).

Intéressons nous au deuxième terme (on oublie le terme
1

s.(s2 + 4)
en facteur) que l'on

note R(B,A). On a

R(B,A) =

(∫ A

B

2x

1 + x2
dx+

∫ A

B

2(s− x)

1 + (s− x)2
dx

)
=

(∫ A

B

2x

1 + x2
dx−

∫ s−A

s−B

2x

1 + x2
dx

)
=

[
ln(1 + x2)

]A
B
−

[
ln(1 + x2)

]s−A

s−B

= ln
1 + A2

1 + (s− A)2
− ln

1 +B2

1 + (s−B)2

et, lorsque A,B → ±∞, on a donc R(B,A) → 0 .
En reprenant notre calcul, on vient donc d'obtenir après ce passage à la limite que

∀s ∈ R, s ̸= 0, fX+Y (s) =
2

π

1

(s2 + 4)
.

Un changement de variable linéaire, basé sur le fait que Z =
X + Y

2
montre que Z est à

densité et que f est une densité de Z.

Correction de l'exercice 15.

� Initialisation : pour n = 2. On rappelle que pour tout i, une densité de Xi est
donnée par

∀x ∈ R, f(x) = e−x1R+(x).
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Par indépendance, une densité de S2 est donc donnée par

∀z ∈ R, f2(z) =

∫
R
f(x)f(z − x) dx

On a, pour z ∈ R, x ∈ R,

f(x)f(z − x) = e−x1R+(x)e
−(z−x)1R+(z − x)

= e−z1R+(x)1R+(z − x).

Il est alors clair que si z < 0, ∀x ∈ R, f(x)f(z − x) = 0 et donc f2(z) = 0.
Si z ≥ 0, on a ∫

R
f(x)f(z − x) dx =

∫ z

0

e−z dx

= ze−z

et en résumé, une densité f2 de S2 est donnée par

∀z ∈ R, f2(z) = ze−z1R+(z).

� Hérédité : soit n ≥ 2. On suppose que Sn est à densité et que fn est une densité
de Sn.
Par lemme des coalitions, Sn et Xn+1 sont indépendantes donc Sn+1 = Sn + Xn+1

est à densité.
Par indépendance, une densité de Sn+1 est donc donnée par

∀z ∈ R, fn+1(z) =

∫
R
fn(x)f(z − x) dx.

On a, pour z ∈ R, x ∈ R,

fn(x)f(z − x) =
1

(n− 1)!
xn−1e−x1R+(x)e

−(z−x)1R+(z − x)

=
1

(n− 1)!
xn−1e−z1R+(x)1R+(z − x).

Il est alors clair que si z < 0, ∀x ∈ R, fn(x)f(z − x) = 0 et donc fn+1(z) = 0.
Si z ≥ 0, on a ∫

R
fn(x)f(z − x) dx =

∫ z

0

1

(n− 1)!
xn−1e−zdx

=
e−z

(n− 1)!

[
xn

n

]z
0

=
zne−z

n!

et en résumé, fn+1 est une densité de Sn+1.

� Conclusion : par principe de récurrence, la propriété est vraie pour tout n ∈ N∗.
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Par linéarité de l'espérance, comme X1, . . . , Xn ont une espérance alors Sn possède une
espérance et :

E(Sn) =
n∑

k=1

E(Xk) = n.

De même, les X1, . . . , Xn sont indépendantes et possèdent une variance. Donc Sn possède
une variance :

V(Sn) =
n∑

k=1

V(Xk) = n.

Correction de l'exercice 16. Comme X et Y sont indépendantes, une densité de S est
donc donnée par

∀z ∈ R, fS(z) =

∫
R
fX(x)fY (z − x) dx

1. Dans ce cas, on a pour tout z ∈ R :

fX(x)fY (z − x) =
1

2
1[−1,1](x)

1

2
1[−1,1](z − x).

On en déduit que si z < −2 ou z > 2 alors fX(x)fY (z − x) est nul pour tout réel x
et donc fS(z) = 0.
Soit z ∈ [−2, 2]. On a :

1[−1,1](x)1[−1,1](z − x) ̸= 0 ⇐⇒ −1 ≤ x ≤ 1 et − 1 ≤ z − x ≤ 1

⇐⇒ −1 ≤ x ≤ 1 et z − 1 ≤ x ≤ z + 1

⇐⇒ max(z − 1,−1) ≤ x ≤ min(z + 1, 1).

� Si z ∈ [−2, 0] alors max(z − 1,−1) = −1 et min(z + 1, 1) = z + 1 d'où :

fS(z) =

∫ z+1

−1

1

4
dx =

z + 2

4

� Si z ∈ [0, 2] alors max(z − 1,−1) = z − 1 et min(z + 1, 1) = 1 d'où :

fS(z) =

∫ 1

z−1

1

4
dx =

2− z

4

Ainsi :

∀z ∈ R, fS(z) =
z + 2

4
1[−2,0](z) +

2− z

4
1[2,2](z).

2. Dans un premier temps, on détermine une densité de Y . Pour tout y ∈ R :

P(Y ≤ y) = P(−Y ≥ −y) =

∫ +∞

−y

λe−λx1R+(x)dx =


∫ +∞

0

λe−λxdx si y ≥ 0∫ +∞

−y

λe−λxdx sinon

=

{
1 si y ≥ 0
eλy sinon
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puis
∀y ∈ R, fY (y) = λeλy1R−(y).

Dans ce cas, on a pour tout z ∈ R :

fX(x)fY (z − x) = λe−λx1R+(x)λe
λ(z−x)1R−(z − x) = λ2eλze−2λx1R+(x)1R−(z − x).

Soit z ∈ R. On a :

1R+(x)1R+(z − x) ̸= 0 ⇐⇒ x ≥ 0 et z − x ≤ 0

⇐⇒ max(z, 0) ≤ x.

Ainsi, pour tout z ∈ R :

fS(z) =

∫ +∞

max(0,z)

λ2eλze−2λxdx = λ2eλz
[
−e−2λx

2λ

]+∞

max(0,z)

=
λ

2
e−λ(2max(0,z)−z) =

λ

2
e−λ|z|.

3. Dans ce cas, on a pour tout z ∈ R :

fX(x)fY (z − x) =
1

(p− 1)!
xp−1e−x1R+(x)

1

(q − 1)!
(z − x)q−1e−(z−x)1R+(z − x)

=
1

(p− 1)!(q − 1)!
xp−1(z − x)q−1e−z1R+(x)1R+(z − x)

On en déduit que si z < 0 alors fX(x)fY (z − x) est nul pour tout réel x et donc
fS(z) = 0.
Pour z ≥ 0, on a :

1R+(x)1R+(z − x) ̸= 0 ⇐⇒ x ≥ 0 et z − x ≥ 0

⇐⇒ 0 ≤ x ≤ z.

Ainsi :

fS(z) =
1

(p− 1)!(q − 1)!
e−z

∫ z

0

xp−1(z − x)q−1dx

et en factorisant par z et e�ectuant le changement de variable t =
x

z
on a :

fS(z) =
1

(p− 1)!(q − 1)!
e−zzq−1

∫ z

0

xp−1(1− x

z
)q−1dx

=
1

(p− 1)!(q − 1)!
e−zzp+q−1

∫ 1

0

tp−1(1− t)q−1dt.

En e�ectuant des intégrations par parties successives, on obtient :

fS(z) =
1

(p− 1)!(q − 1)!
e−zzp+q−1 (p− 1)!(q − 1)!

(p+ q − 1)!
=

1

(p+ q − 1)!
e−zzp+q−1.
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Finalement, on obtient :

∀z ∈ R, fS(z) =
1

(p+ q − 1)!
e−zzp+q−11R+(z).

On peut, plus rapidement, utiliser l'exercice précédent en remarquant que X est la
loi de la somme de p variables indépendantes de loi E(1) et Y est la loi de la somme
de q variables indépendantes de loi E(1). Alors, S est la loi d'une somme de p + q
variables indépendantes de loi E(1).

Correction de l'exercice 17.

1. Soit A > 0. Comme f est continue par hypothèse, alors FX , primitive de f , est de
classe C1 sur R. Par intégration par parties, on a donc :

∫ A

0

tf(t)dt = [tFX(t)]
A
0 −

∫ A

0

FX(t)dt

= AFX(A)−
∫ A

0

P(X ≤ t)dt

= AFX(A)−
∫ A

0

(1− P(X > t))dt

= AFX(A)− A+

∫ A

0

P(X > t)dt.

2. Comme f est positive, elle possède une espérance si et seulement si
∫ +∞

0

tf(t)dt est

absolument convergente (le � absolument � est super�u car l'intégrande est positif).

� Supposons que
∫ +∞

0

P(X > t)dt converge. Alors pour tout A > 0 :

∫ A

0

tf(t)dt =

∫ A

0

P(X > t)dt+A(FX(A)−1) ≤
∫ A

0

P(X > t)dt ≤
∫ +∞

0

P(X > t)dt

où on a utilisé le fait que FX(A) ≤ 1.

La fonction A 7→
∫ A

0

tf(t)dt est donc croissante (intégrande positif) et majorée

donc possède une limite �nie en +∞. Cela signi�e exactement
∫ +∞

0

tf(t)dt

converge (absolument) donc que X possède une espérance.
On remarque aussi qu'alors :

E(X) ≤
∫ +∞

0

P(X > t)dt.
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� Supposons que X possède une espérance. Alors pour tout A > 0 :∫ A

0

P(X > t)dt =

∫ A

0

tf(t)dt+ A(1− FX(A)) =

∫ A

0

tf(t)dt+ AP(X > A)

=

∫ A

0

tf(t)dt+ A

∫ +∞

A

f(t)dt

≤
∫ A

0

tf(t)dt+

∫ +∞

A

tf(t)dt

≤
∫ +∞

0

tf(t)dt

≤ E(X)

La fonction A 7→
∫ A

0

P(X > t)dt est donc croissante (intégrande positif) et

majorée donc possède une limite �nie en +∞. Cela signi�e exactement que∫ +∞

0

P(X > t)dt converge et que :

∫ +∞

0

P(X > t)dt ≤ E(X).

� Conclusion : X possède une espérance si et seulement si
∫ +∞

0

P (X > t)dt

converge et on a

E(X) ≤
∫ +∞

0

P(X > t)dt ≤ E(X).
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