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Mathématiques � TD10

Applications linéaires

1 Applications linéaires, noyau, image

Correction de l'exercice 1. 1. Notons f1 cette application. Elle n'est pas linéaire
car :

f1(2 · 1) = 8 ̸= 2 · f1(1) = 4.

2. Notons f2 cette application. Elle n'est pas linéaire car f2(0) ̸= 0.

3. Notons f3 cette application. Soit (x, y), (x′, y′) deux éléments de R2 et λ ∈ R un
scalaire.
On a :

f3((x, y) + λ(x′, y′)) = f3(x+ λx′, y + λy′)

= (y + λy′, x+ λx′)

= (y, x) + λ(y′, x′)

= f3((x, y)) + λf3((x
′, y′)).

Ainsi f3 est linéaire.
Déterminons son noyau. Soit (x, y) ∈ R2 ; on a :

(x, y) ∈ ker(f3) ⇐⇒ f3((x, y)) = (0, 0) ⇐⇒ (x, y) = (0, 0).

Donc ker(f3) = {(0, 0)} (f3 est donc injective).
De plus :

Im(f3) = {(y, x) ; (x, y) ∈ R2} = R2

(donc f3 est surjective).

4. Notons φ cette application. Soit f, g ∈ C(R,R) et λ ∈ R.
Alors φ(f + λg) est dé�nie par :

∀t ∈ R, φ(f + λg)(t) =
f(t) + λg(t)

1 + t2
=

f(t)

1 + t2
+ λ

g(t)

1 + t2
= φ(f)(t) + λφ(g)(t).

Ainsi : φ(f + λg) = φ(f) + λφ(g). Donc φ est linéaire.
Déterminons son noyau : soit f ∈ C(R,R). On a :

f ∈ ker(φ) = φ(f) = 0C(R,R) ⇐⇒ ∀t ∈ R,
f(t)

1 + t2
= 0 ⇐⇒ ∀t ∈ R, f(t) = 0.

Ainsi ker(φ) = {0C(R,R)} ( φ est donc injective).
Déterminons son image. Soit g ∈ C(R,R).

g ∈ Im(φ) ⇐⇒ ∃f ∈ C(R,R)∀t ∈ R,
f(t)

1 + t2
= g(t).

Or, en notant f : t 7→ (1 + t2)g(t) on a bien :

f ∈ C(R,R) et φ(f) = g.

Ainsi : Im(φ) = C(R,R) (φ est donc surjective).
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5. Notons f5 cette application. Soit (x, y), (x′, y′) deux éléments de R2 et λ ∈ R un
scalaire.
On a :

f5((x, y) + λ(x′, y′)) = f5(x+ λx′, y + λy′)

= 3(x+ λx′) + 5(y + λy′)

= 3x+ 5x′ + λ(3x′ + 5y′)

= f5((x, y)) + λf5((x
′, y′)).

Ainsi f3 est linéaire.
Déterminons son noyau. Soit (x, y) ∈ R2 ; on a :

(x, y) ∈ ker(f5) ⇐⇒ f5((x, y)) = (0, 0) ⇐⇒ 3x+ 5y = 0 ⇐⇒ x = −5

3
y.

Donc ker(f5) = Vect((−5

3
, 1)).

De plus :
Im(f5) = {3x+ 5y ; (x, y) ∈ R2} = R.

(donc f5 est surjective).

6. Notons f6 cette application. Soit (x, y), (x′, y′) deux éléments de R2 et λ ∈ R un
scalaire.
On a :

f6((x, y) + λ(x′, y′)) = f3(x+ λx′, y + λy′)

= (−x− λx′, y + λy′)

= (−x, y) + λ(−x′, y′)
= f6((x, y)) + λf6((x

′, y′)).

Ainsi f6 est linéaire.
Déterminons son noyau. Soit (x, y) ∈ R2 ; on a :

(x, y) ∈ ker(f6) ⇐⇒ f6((x, y)) = (0, 0) ⇐⇒ (x, y) = (0, 0).

Donc ker(f6) = {(0, 0)} (f6 est donc injective).
De plus :

Im(f6) = {(−x, y) ; (x, y) ∈ R2} = R2

(donc f3 est surjective).

7. Notons f6 cette application. Elle n'est pas linéaire car :

f6((1, 0) + (0, 1)) = 1 ̸= f6((1, 0)) + f6((0, 1)) = 0.

Correction de l'exercice 2.

1. (a) Montrons que h est linéaire. Soient (P,Q) ∈ R2[X]× R2[X] et λ ∈ R. On a :

h(P + λQ) = X(P + λQ)(X + 1)− (X + 1)(P + λQ)(X)

= XP (X + 1)− (X + 1)P (X) + λ (XQ(X + 1)− (X + 1)Q(X))

= h(P ) + λh(Q).
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Ainsi :

∀(P,Q) ∈ R2[X]× R2[X], ∀λ ∈ R, h(P + λQ) = h(P ) + λh(Q).

L'application h est donc linéaire.
(b) Noyau de h. Soit P = aX2 + bX + c ∈ R2[X]. On a :

P ∈ ker(h) ⇐⇒ h(P ) = 0R2[X]

⇐⇒ X(a(X + 1)2 + b(X + 1) + c)− (X + 1)(aX2 + bX + c) = 0

⇐⇒ aX2 + aX + c = 0

⇐⇒ a = c = 0.

Ainsi :
ker(h) = Vect(X).

La famille (X) est donc une base de ker(h).
(c) Déterminons l'image de h. Soit (1, X,X2) la base canonique de R2[X]. Alors :

Im(h) = Vect(h(1), h(X), h(X2))

= Vect(−1, 0, X2 +X)

= Vect(1, X2 +X).

La famille
(
1, X2 +X

)
est donc une famille génératrice de Im(h). De plus elle

est échelonnée et formée de polynômes non nuls donc elle est libre. Ainsi, c'est
une base de Im(h).

2. (a) Montrons que ψ est linéaire. Soient (X, Y ) ∈ M2(R) ×M2(R) et λ ∈ R. On
a :

ψ(X + λY ) = A(X + λY )− (X + λY )B

= AX + λAY −XB − λY B

= AX −XB + λ(AY − Y B)

= ψ(X) + λψ(Y ).

Ainsi :

∀(X, Y ) ∈ M2(R)×M2(R), ∀λ ∈ R, ψ(X + λY ) = ψ(X) + λψ(Y ).

L'application ψ est donc linéaire.

(b) Noyau de ψ. Soit X =

(
a b
c d

)
∈ M2(R). On a :

X ∈ ker(ψ) ⇐⇒ ψ(X) =

(
0 0
0 0

)
⇐⇒ AX = XB

⇐⇒
(
2a+ c 2b+ d
−c −d

)
=

(
b 0
d 0

)
⇐⇒ a = b = c = 0.

Ainsi ker(ψ) = {0M2(R)}. L'application h est injective.
(c) Image de ψ.
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� Méthode 1 : on sait que :

Im(ψ) = Vect

(
ψ

((
1 0
0 0

))
, ψ

((
0 1
0 0

))
, ψ

((
0 0
1 0

))
, ψ

((
0 0
0 1

)))
= Vect

((
1 0
0 0

)
,

(
−1 2
0 0

) (
1 0
−1 0

)
,

(
0 1
−1 −1

))
.

Ainsi

((
1 0
0 0

)
,

(
−1 2
0 0

) (
1 0
−1 0

)
,

(
0 1
−1 −1

))
est une famille généra-

trice de Im(ψ) et on véri�e qu'elle est bien libre. Il s'agit donc d'une base
de Im(ψ).
Or Im(ψ) est un sous-espace vectoriel de M2(R) et

dim(M2(R)) = 4 = dim(Im(ψ)).

Donc Im(ψ) = M2(R).
� Méthode 1 : d'après le théorème du rang :

dim(Im(ψ)) + 0 = dim(Im(ψ)) + dim(ker(ψ)) = dim(M2(R)).

Donc Im(ψ) est un sous-espace vectoriel de M2(R) et

dim(M2(R)) = 4 = dim(Im(ψ)).

Ainsi Im(ψ) = M2(R).
En particulier ψ est surjectif.
Finalement ψ est un automorphisme de M2(R).

Correction de l'exercice 3. Tout d'abord l'application u est bien dé�nie. En e�et, si
f est une fonction de classe C∞sur R alors, sa dérivée existe.

1. Montrons que u est linéaire. Soient f, g ∈ E, λ, µ ∈ R. Alors, la fonction u(λf +µg)
est dé�nie par :

∀x ∈ R, u(λf + µg)(x) = (λf + µg)′(x)− cos(x)(λf + µg)(x)

= λf ′(x) + µg′(x)− cos(x)(λf(x) + µg(x))

= λf ′(x)− cos(x)λf(x) + µg′(x)− cos(x)µg(x)

= λ (f ′(x)− cos(x)f(x)) + µ (g′(x)− cos(x)g(x))

= λu(f)(x) + µu(g)(x).

Ainsi on a bien :
u(λf + µg) = λu(f) + µu(g).

Donc u est linéaire.
Si f est une fonction de classe C∞ sur R alors, sa dérivée f ′ existe et est une fonction
de classe C∞ sur R. Comme il en est de même pour la fonction cos, par les théorèmes
de stabilité par opérations algébriques (somme, produit) de l'ensemble des fonctions
de classe C∞, la fonction x 7→ f ′(x)− cos(x)f(x) est bien une fonction de classe C∞,
sur R, à valeurs réelles, c'est-à-dire un élément de E.
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2. On a
ker(u) = {f ∈ E, u(f) = 0}.

Une fonction f est dans le noyau de u si et seulement si elle est de classe C∞ sur R
et

∀x ∈ R, f ′(x)− cos(x)f(x) = 0.

Le noyau de u est donc l'ensemble des fonction de classe C∞ sur R véri�ant cette
équation di�érentielle linéaire homogène du premier ordre.
On a donc (en utilisant la technique de résolution standard de telles équations)

ker(u) = {f ∈ E, ∃λ ∈ R, ∀x ∈ R, f(x) = λ.esinx} = Vect(f1)

où l'on a posé f1 : x 7→ esinx.

3. Pour montrer que u : E → E est surjective, il su�t de montrer que pour toute
g ∈ E, il existe f ∈ E telle que

u(f) = g

c'est-à-dire
∀x ∈ R, f ′(x)− cos(x)f(x) = g(x) (Eg)

Soit g ∈ E. Il s'agit de montrer que cette équation di�érentielle linéaire du premier
ordre (non homogène si g n'est pas la fonction nulle) admet au moins une solution
f de classe C∞ sur R.
Il s'agit de mettre en ÷uvre la méthode de la variation de la constante et de véri�er
que la solution obtenue est bien de classe C∞ sur R.
À une fonction f , de classe C∞ sur R, on associe la fonction λ dé�nie par

∀x ∈ R, λ(x) =
f(x)

f1(x)

Cette fonction λ est bien dé�nie, de classe C∞ sur R car f et f1 le sont et f1 ne
s'annule pas sur R. On a

f = λf1 et f ′ = λ′f1 + λf ′
1.

La fonction f est solution de Eg si et seulement si

∀x ∈ R, f ′(x)− cos(x)f(x) = g(x)

c'est-à-dire
∀x ∈ R, λ′(x)f1(x) = g(x)

ou encore

∀x ∈ R, λ′(x) =
g(x)

f1(x)
.

La résolution de l'équation (Eg) est donc équivalente à la résolution de cette équa-
tion, donc à l'existence d'une primitive de la fonction apparaissant dans le membre
de droite.

Comme la fonction x 7→ g(x)

f1(x)
est de classe C∞ sur R (quotient de telles fonctions,

le dénominateur ne s'annulant pas), cette équation admet une solution, λ, de classe
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C∞ sur R. Cette fonction λ permet, en posant f = λf1, de construire une solution
C∞ sur R de l'équation (Eg).
Une remarque �nale : l'endomorphisme u est surjectif, non injectif (son noyau est
de dimension 1). Ce phénomène ne peut se produire si E est de dimension �nie.
L'espace E de toutes les fonctions de classe C∞ sur R n'est pas de dimension �nie.

Correction de l'exercice 4. 1. Soit

φ :C(R,R) −→ C1(R,R)

f 7−→
(
x 7→

∫ x

0

f(t)dt

)
(a) Remarquons d'abord que φ est bien dé�nie car, pour f ∈ C(R,R), φ(f) est la

primitive de f s'annulant en 0 donc est bien de classe C1.
Soit f, g ∈ C(R,R) et λ ∈ R. On a, pour tout x ∈ R :

φ(f + λg)(x) =

∫ x

0

(f + λg)(t)dt

=

∫ x

0

(f(t) + λg(t))dt

=

∫ x

0

f(t)dt+ λ

∫ x

0

g(t)dt par linéarité de l'intégrale

= φ(f)(x) + λφ(g)(x).

Ainsi : φ(f + λg) = varphi(f) + λφ(g).

Donc φ est linéaire.
(b) Soit f ∈ ker(φ). Alors φ(f), qui est une primitive de f , est la fonction nulle.

Donc f est la fonction nulle. Ainsi ker(φ) ⊂ {0C(R,R)} et l'inclusion réciproque
étant évidente :

ker(φ) = {0C(R,R)}.

D'après la remarque du début de la question précédente, φ(f) est la primitive
de f s'annulant en 0. Ainsi :

Im(φ) ⊂ {g ∈ C1(R,R) | g(0) = 0}.

Montrons l'inclusion réciproque : soit gC1(R,R) telle que g(0) = 0. Alors, pour
tout x ∈ R :

φ(g′)(x) =

∫ x

0

g′(t)dt = g(x)− g(0) = g(x).

Ainsi g = φ(g′).
Par conséquent g ∈ Im(φ) et on a �nalement montré :

Im(φ) = {g ∈ C1(R,R) | g(0) = 0}.

(c) D'après la question précédente φ est injective donc φ : C(R,R) −→ Im(φ) est
injective et surjective donc c'est un isomorphisme.
De plus, la question précédente donne :

φ−1 :{g ∈ C1(R,R) | g(0) = 0} −→ C(R,R)
g 7−→ g′

6



Arnaud Stocker

2. Soit

φ :RN −→ RN

(un)n∈N 7−→ (un+1)n∈N

(a) Soit u = (un)n∈N et v = (vn)n∈N deux suites et λ ∈ R.

φ(u+ λv) = φ((un + λvn)n∈N)) = (un+1 + λvn+1)n∈N = φ(u) + λφ(v).

Donc φ est linéaire.
(b) Soit u = (un)n∈N. On a :

u ∈ ker(φ) ⇐⇒ φ(u) = 0RN ⇐⇒ ∀n ∈ N, un+1 = 0 ⇐⇒ ∀n ∈ N∗, un = 0.

Soit e = (en)n la suite dé�nie par :

e0 = 1 et ∀n ≥ 1 un = 0.

Alors :

u ∈ ker(φ) ⇐⇒ u = u0e.

Donc ker(φ) = Vect(e). De plus pour tout v = (vn)n, si on pose u la suite
dé�nie par :

u0 = 0 et ∀n ∈ N∗, un = vn−1

alors on a :
φ(u) = v.

Donc φ est surjective.

Correction de l'exercice 5. 1. Par récurrence :

� Initialisation : le cas k = 0 est évident.
� Hérédité : supposons que uk ◦ v = v ◦ uk pour un certain k ∈ N et montrons
que

uk+1 ◦ v = v ◦ uk+1.

On a

uk+1 ◦ v = u ◦ uk ◦ v = u ◦ v ◦ uk par hypothèse de récurrence,

= v ◦ u ◦ uk car u et v commutent,

= v ◦ uk+1.

Ainsi la propriété est vraie au rang k + 1.
� Conclusion : par le principe de récurrence, on a montré que

∀k ∈ N, uk ◦ v = v ◦ uk.

2. Par récurrence :

� Initialisation : le cas n = 0 est évident.
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� Hérédité : supposons la propriété vraie pour un certain n ∈ N et montrons
qu'elle est vraie au rang n+ 1. On a

(u+ v)n+1 = (u+ v) ◦ (u+ v)n

= (u+ v) ◦

(
n∑

k=0

(
n

k

)
uk ◦ vn−k

)
par hypothèse de récurrence,

= u ◦

(
n∑

k=0

(
n

k

)
uk ◦ vn−k

)
+ v ◦

(
n∑

k=0

(
n

k

)
uk ◦ vn−k

)
par dé�nition de u+ v,

=
n∑

k=0

(
n

k

)
u ◦ uk ◦ vn−k +

n∑
k=0

(
n

k

)
v ◦ uk ◦ vn−k par linéarité de u et de v.

En utilisant la question précédente dans la deuxième somme, on obtient :

(u+ v)n+1 =
n∑

k=0

(
n

k

)
uk+1 ◦ vn−k +

n∑
k=0

(
n

k

)
uk ◦ v ◦ vn−k

=
n+1∑
i=1

(
n

i− 1

)
ui ◦ vn+1−i +

n∑
k=0

(
n

k

)
uk ◦ vn+1−k en faisant le changement de variable i = k + 1,

=

(
n

n

)
un+1 ◦ v0 +

n∑
i=1

(
n

i− 1

)
ui ◦ vn+1−i +

n∑
k=1

(
n

k

)
uk ◦ vn+1−k +

(
n

0

)
u0 ◦ vn+1

= un+1 ◦ v0 +
n∑

i=1

((
n

i− 1

)
+

(
n

i

))
ui ◦ vn+1−i + u0 ◦ vn+1

= un+1 ◦ v0 +
n∑

i=1

(
n+ 1

i

)
ui ◦ vn+1−i + u0 ◦ vn+1

=
n+1∑
i=0

(
n+ 1

i

)
ui ◦ vn+1−i.

Ainsi la propriété est vraie au rang n+ 1.
� Conclusion : par le principe de récurrence, on a montré que

∀n ∈ N,
n∑

k=0

(
n

k

)
uk ◦ vn−k = v ◦ uk.

2 Avec le théorème du rang

Correction de l'exercice 6.

1. Soit P ∈ Rn[X]. Alors deg(P ′) ≤ n− 1 donc :

deg(φ(P )) ≤ max(deg((X − b)(P ′ − P ′(b))), deg(P − P (b))) = n.

Ainsi φ est bien dé�nie.
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Soit P,Q ∈ Rn[X] et λ ∈ R. On a :

φ(P + λQ) = (X − b)((P + λQ)′ − (P + λQ)′(b))− 2(P + λQ− (P + λQ)(b)

= (X − b)(P ′ + λQ′ − P ′(b)− λQ′(b))− 2(P + λQ− P (b)− λQ(b))

= (X − b)(P ′ + P ′(b))− 2(P − P (b)) + λ(X − b)(Q′ +Q′(b))− 2(Q−Q(b))

= φ(P ) + λφ(Q).

Ainsi φ est linéaire et est donc un endomorphisme de Rn[X].

2. (a) Il est clair que {P ∈ Rn[X] | ∃Q ∈ Rn−3[X] P = (X − b)3Q} ⊂ F .
Réciproquement, soit P ∈ F . Alors il existe Q ∈ Rn[X] tel que :

P = (X − b)3Q.

En regardant les degrés on obtient :

n ≥ deg(P ) = deg((X − b)2) + deg(Q) = 3 + deg(Q).

Donc deg(Q) ≤ n − 3 et Q ∈ Rn−3[X]. Ainsi P ∈ {P ∈ Rn[X] | ∃Q ∈
Rn−3[X] P = (X − b)3Q}.
Cela montre que F ⊂ {P ∈ Rn[X] | ∃Q ∈ Rn−3[X] P = (X − b)3Q} et
�nalement :

F = {P ∈ Rn[X] | ∃Q ∈ Rn−3[X] P = (X − b)3Q}.

(b) On a :

F = {P ∈ Rn[X] | ∃Q ∈ Rn−3[X] P = (X − b)3Q}
= {(X − b)3(a0 + · · ·+ an−3X

n−3) ; a0, . . . , an−3 ∈ R}
= Vect((X − b)3Xk , k ∈ J0, n− 3K).

La famille ((X−b)3Xk)k∈J0,n−3K est génératrice de F . Par ailleurs elle est formée
de polynômes non nuls de degrés échelonnés donc elle est libre.
Il s'agit par conséquent d'une base de F et dim(F ) = n− 2.

(c) Soit P ∈ Rn[X]. Alors :

φ(P )′ = P ′ + P ′(b) + (X − b)P ′′ − 2P ′

et
φ(P )′′ = P ′′ + P ′′ + (X − b)P ′′′ − 2P ′′.

On veut montrer que φ(P ) appartient à F c'est-à-dire que la multiplicité de b
comme racine de φ est au moins égale à 3. On peut déjà remarquer avec les
calculs ci-dessus que b est bien racine de φ(P ), φ(P )′ et φ(P )′′. Il existe donc
U ∈ Rn[X] tel que :

φ(P ) = (X − b)U.

En dérivant deux fois on obtient :

φ(P )′ = U + (X − b)U ′
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et comme φ(P )′(b) = 0 on en déduit que U(b) = 0. Il existe donc V ∈ Rn[X]
tel que :

U = (X − b)V càd φ(P ) = (X − b)2V.

En dérivant une deux fois, on a :

φ(P )′′ = (2(X− b)V +(X− b)2V ′)′ = 2V +2(Xb)V
′+2(X− b)V ′+(X− b)2V ′′

et comme φ(P )′′(b) = 0 on en déduit V (b) = 0. Il existe donc W ∈ Rn[X] tel
que :

V = (X − b)W càd φ(P ) = (X − b)3W.

Ainsi φ(P ) ∈ F .
Cela montre que Im(P ) ⊂ F .

(d) Soit P ∈ Rn[X] et supposons deg(P ) ≥ 3. Alors il existe k ≥ 3 et ak ̸= 0 tels
que :

P = akX
k + termes de degré inférieur.

Alors :

φ(P ) = (X − b)(kakX
k−1 + termes de deg inférieur)− 2(akX

k−1 + termes de deg inférieur)

= (k − 2)akX
k + termes de deg inférieur.

Comme k ≥ 3, on en déduit que deg(φ(P )) = k et en particulier, φ(P ) ̸= 0.
Par contraposition, si φ(P ) = 0 alors deg(P ) ≤ 2.

(e) D'après le théorème du rang, on sait que :

dim(Im(φ)) + dim(ker(φ)) = dim(Rn[X]) = n+ 1.

Or d'après les questions précédentes :

dim(Im(φ)) ≤ n− 2 et dim(ker(φ)) ≤ 3.

Si l'une des deux inégalités est stricte alors on aurait :

dim(Im(φ)) + dim(ker(φ)) < n− 2 + 3 = n+ 1

en contradiction avec le théorème du rang.
Par conséquent, les deux inégalités sont des égalités :

dim(Im(φ)) = n− 2 et dim(ker(φ)) = 3.

Puis un argument de dimension permet de conclure que :

Im(φ) = F et ker(φ) = R2[X].

Correction de l'exercice 7.

1. Soient λ ∈ R et (A,A′) ∈ M3(R)×M3(R) où

A =

a b c
d e f
g h i

 , A′ =

a′ b′ c′

d′ e′ f ′

g′ h′ i′

 .
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On a :

f(A+ λA′) = (a+ λa′ + e+ λe′ + i+ λi′, c+ λc′ + e+ λe′ + g + λg′,

a+ λa′ + c+ λc′ + g + λg′ + i+ λi′)

= (a+ e+ i, c+ e+ g, a+ c+ g + i) + λ(a′ + e′ + i′, c′ + e′ + g′, a′ + c′ + g′ + i′)

= f(A) + λf(A′).

Ainsi pour tout (A,A′) ∈ M3(R)×M3(R), pour tout λ ∈ R :

f (A+ λA′) = f (A) + λf (A′) .

Donc f est linéaire.

2. Comme dim (M3(R)) = 9 > dim(R3) alors f n'est pas injective.

3. Soit A =

a b c
d e f
g h i

 ∈ M3(R). Alors :

A ∈ ker(f) ⇐⇒ f(A) = (0, 0, 0) ⇐⇒


a + e + i = 0
c + e + g = 0
a + c + g + i = 0

⇐⇒


a + e + i = 0
c + e + g = 0
− e + c + g = 0

⇐⇒


a = −i
c = −g
e = 0.

Ainsi :

ker(f) =


−i b −g
d 0 f
g h i

 , (b, d, f, g, h, i) ∈ R4


= Vect

−1 0 0
0 0 0
0 0 1

 ,

0 0 −1
0 0 0
1 0 0

 ,

0 1 0
0 0 0
0 0 0

 ,

0 0 0
1 0 0
0 0 0

 ,

0 0 0
0 0 1
0 0 0

 ,

0 0 0
0 0 0
0 1 0

 .

Ainsi, la famille F dé�nie par :

F =

−1 0 0
0 0 0
0 0 1

 ,

0 0 −1
0 0 0
1 0 0

 ,

0 1 0
0 0 0
0 0 0

 ,

0 0 0
1 0 0
0 0 0

 ,

0 0 0
0 0 1
0 0 0

 ,

0 0 0
0 0 0
0 1 0


est génératrice de ker(f).
Montrons qu'elle est libre. Soit (b, d, f, g, h, i) ∈ R4. Alors
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i

−1 0 0
0 0 0
0 0 1

+ g

0 0 −1
0 0 0
1 0 0

+ b

0 1 0
0 0 0
0 0 0


+ d

0 0 0
1 0 0
0 0 0

+ f

0 0 0
0 0 1
0 0 0

+ h

0 0 0
0 0 0
0 1 0

 = 0M3(R)

⇐⇒

−i b −g
d 0 f
g h i

 = 0M3(R)

⇐⇒ b = d = f = g = h = i = 0.

Ainsi F est libre et génératrice de ker(f). C'est donc F une base de ker(f). En
particulier, dim(ker(f)) = 6.

4. D'après le théorème du rang, on déduit :

9 = dim(M3(R)) = dim(ker(f)) + dim(Im(f)) = 6 + dim(Im(f)).

Ainsi dim(Im(f)) = 3. Or Im(f) est un sous-espace vectoriel de R3. Donc, comme
dim(Im(f)) = dim(R3), alors Im(f) = R3. Ainsi f est surjective.

Correction de l'exercice 8.

1. Soit y ∈ Im(f). Il existe x ∈ E tel que : y = f(x). Par conséquent :

f(y) = f(f(x)) = f 2(x) = 0

car f 2 = 0L(E).
Ainsi y ∈ ker(f). Cela montre : Im(f) ⊂ ker(f).

2. D'après le théorème du rang :

3 = dim(E) = dim(ker(f)) + rg(f).

Or, on déduit de la question précédente que rg(f) = dim(Im(f)) ≤ dim(ker(f)).
D'où

3 = dim(ker(f)) + rg(f) ≤ 2 dim(ker(f)).

Ainsi
3

2
≤ dim(ker(f)) et comme la dimension d'un espace vectoriel est un entier

alors on en déduit bien :
2 ≤ dim(ker(f)).

Comme ker(f) est un sous-espace vectoriel de E et que dim(E) = 3 alors la dimen-
sion de ker(f) est soit égale à 2 soit égale à 3.
Or, si dim(ker(f)) = 3 alors ker(f) = R3 ce qui implique que f est nulle. Cela
contredit l'énoncé.
Donc dim(ker(f)) = 2.

Correction de l'exercice 9. On a H = Vect((1, 1, 1, 1)) donc H est de dimension 1.
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Supposons qu'il existe une application linéaire f de E dans F dont H est le noyau. D'après
le théorème du rang on a donc :

dim(ker(f)) + dim(Im(f)) = dim(E)

c'est-à-dire :
1 + dim(Im(f)) = 4.

Ainsi, on devrait avoir dim(Im(f)) = 3. Mais comme Im(f) est un sous-espace vectoriel
de F , sa dimension est inférieur ou égale à dim(F ) = 2.
Donc un tel f ne saurait exister.

Correction de l'exercice 10. Soit E un espace vectoriel de dimension �nie.

� Supposons que la dimension de E est paire : dim(E) = 2k avec k ∈ N∗. Soit
B = (e1, . . . , e2k) une base de E. On dé�nit un unique endomorphisme f de E en
posant :

∀i ∈ J1, kK, f(ei) = 0

et
∀i ∈ Jk + 1, 2kK, f(ei) = ei.

Alors il est clair que :

ker(f) = Vect(e1, . . . , ek) et Im(f) = Vect(ek+1, . . . , e2k)

et ainsi :
dim(ker(f)) = k = dim(Im(f)).

� Réciproquement supposons qu'il existe un endomorphisme f de E tel que ker(f) =
Im(f) = k. D'après le théorème du rang on a :

dim(E) = dim(ker(f)) + dim(Im(f)) = 2k.

Ainsi dim(E) est paire.

Correction de l'exercice 11. On dé�nit :

f : Rn[X] −→ Rn[X]

Q 7−→
n∑

k=0

Q(k).

On remarque que f est bien dé�nie car deg(
n∑

k=0

Q(k)) ≤ max(deg(Q(k)), k ∈ J0, nK) ≤ n.

On montre de plus sans di�culté (linéarité de la dérivation et de la somme) que f est
linéaire.
Montrons que f est injective. Soit Q ∈ ker(f) et supposons Q non nul. On note alors
p ∈ N son degré et ap son coe�cient dominant. Alors pour tout k ∈ J1, nK on a :

deg(Q(k)) < deg(Q) = p.

Ainsi

f(Q) = Q+
n∑

k=1

Q(k) = apX
p + terme de degré inférieur.
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En particulier, f(Q) est de degré p et non nul ! Cela montre que ker(f) = {0}.
Donc f est en endomorphisme injectif de l'espace vectoriel de dimension �ne Rn[X].
D'après l'un des corollaires du théorème du rang, c'est donc un isomorphisme. En parti-
culier f est surjectif donc pour tout P ∈ Rn[X] il existe un unique Q ∈ Rn[X] tel que
f(Q) = P c'est-à-dire :

P =
n∑

k=0

Q(k).

3 Représentation matricielle

Correction de l'exercice 12. 1. Soit λ1, . . . , λ4 ∈ R tels que

λ1p+ λ2q + λ3r + λ4s = 0

c'est-à-dire :

∀x ∈ R, λ1p(x) + λ2q(x) + λ3r(x) + λ4s(x) = 0.

Alors, avec x =
π

2
il vient :

e
π
2 λ2 + e−

π
2 λ4 = 0 i.e λ4 = −eπλ2;

avec x = −π
2
:

−e−
π
2 λ2 − e

π
2 λ4 = 0 i.e λ4 = −e−πλ2.

On en déduit alors λ2 = λ4 = 0.
De même, avec x = 0 il vient

λ1 + λ3 = 0

donc λ= − λ3 et avec x = π :

−λ1eπ − e−πλ3 = 0.

On déduit que λ1 = λ3 = 0.
Ainsi la famille (p, q, r, s) est libre.

2. L'application D est linéaire. La seule chose à faire est de montrer que D(F ) ⊂ F .
Pour cela il su�t de véri�er que D(p), D(q), D(r) et D(s) sont bien dans F . Or on
véri�e en dérivant que :

D(p) = p− q ; D(q) = p+ q ; D(r) = −r − s ; D(s) = −s+ r.

Ainsi on a bien D(F ) ⊂ F .

3. D'après ce qui précède :

M =


1 1 0 0
−1 1 0 0
0 0 −1 1
0 0 −1 −1

 .
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4. On a :

M−1 =
1

2


1 −1 0 0
1 1 0 0
0 0 −1 −1
0 0 1 −1

 .

Comme M est inversible alors en restriction à F l'application D est bijective : il y
a une unique primitive de f dans F . Comme les coordonnées de f dans (p, q, r, s)
sont (2, 1, 1,−1) les coordonnes de D−1(f) dans (p, q, r, s) sont :

M−1


2
1
1
−1

 =
1

2


1
3
0
2

 .

Ainsi :

D−1(f) =
1

2
(p+ 3q + 2s).

Une primitive de f est donc

x 7→ 1

2
(ex(cos(x) + 3 sin(x)) + 2e−x sin(x)).

Correction de l'exercice 13.

1. Montrons que φ est linéaire : soient (M,N) ∈ (M2(R))2 et λ ∈ R. On a :

φ(M + λN) = A(M + λN)− (M + λN)A

= AM + λAN −MA− λNA

= AM −MA+ λ(AN −NA)

= φ(M) + λφ(N).

Ainsi :

∀(M,N) ∈ (M2(R))2 ∀λ ∈ R, φ(M + λN) = φ(M) + λφ(N).

L'application φ est donc linéaire. Comme elle est dé�nie sur M2(R) et à valeurs
dans M2(R) il s'agit d'un endomorphisme de M2(R).

2. Soit B = (E1,1, E1,2, E2,1, E2,2) la base canonique de M2(R). Alors :

C = MatB(φ) = MatB(φ(E1,1), φ(E1,2), φ(E2,1), φ(E2,2))

= MatB

((
0 −2
−2 0

)
,

(
2 0
0 −2

)
,

(
2 0
0 −2

)
,

(
0 2
2 0

))

=


0 2 2 0
−2 0 0 2
−2 0 0 2
0 −2 −2 0

 .
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3. Soit M =

(
a b
c d

)
∈ M2(R).

M ∈ ker(φ) ⇐⇒ CMatB(M) =


0
0
0
0



⇐⇒ C


a
b
c
d

 =


0
0
0
0



⇐⇒


2b + 2c = 0
−2a + 2d = 0
−2a + 2d = 0
−2b − 2c = 0

⇐⇒
{
b = −c
a = d

.

Ainsi : ker(φ) = Vect

((
1 0
0 1

)
,

(
0 −1
1 0

))
.

D'après le théorème du rang on a :

dim(M2(R)) = dim(ker(φ)) + rg(φ).

Or, on a vu que la famille

((
1 0
0 1

)
,

(
0 −1
1 0

))
est une famille génératrice de

ker(φ). Comme elle est formée de deux vecteurs non colinéaires, c'est une famille
libre. Par conséquent c'est une base de ker(φ) et dim(ker(φ)) = 2. On en déduit
donc :

4 = 2 + rg(φ)

c'est-à-dire : rg(φ) = 2.

4. (a) L'ensemble C des matrices qui commutent avec A est le noyau de φ. Donc c'est
un sous-espace vectoriel de M2(R) donc un espace vectoriel.

(b) D'après les questions précédentes, la famille

((
1 0
0 1

)
,

(
0 −1
1 0

))
est une base

de C.

Correction de l'exercice 14.

On note B = (1, X,X2) la base canonique de R2[X]. On rappelle que M = MatB(f)
signi�e que :

� la première colonne de M donne les coordonnées de f(1) dans la base B ;

� la deuxième colonne de M donne les coordonnées de f(X) dans la base B ;

� la troisième colonne de M donne les coordonnées de f(X2) dans la base B.
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1. � Noyau de f : soit P = aX2 + bX + c ∈ R2[X]. Alors on a :

P ∈ ker(f) ⇐⇒M ×MatB(P ) =

0
0
0


⇐⇒M

cb
a

 =

0
0
0


⇐⇒


2c − a = 0

b = 0
3a = 0

⇐⇒ a = b = c = 0.

Ainsi ker(f) = {0}.
� Image de f : f est un endomorphisme de R2[X] injectif. Comme R2[X]
est de dimension �nie tout endomorphisme injectif de R2[X] est bijectif (donc
surjectif). Ainsi f est surjectif d'où :

Im(f) = R2[X].

2. (a) On a :

rg(X,X2 + 1, X2 − 1) = rg(X,X2 + 1, X2 − 1 +X2 + 1)

= rg(X,X2 + 1, 2X2)

= rg(X,X2 + 1, X2)

= rg(X,X2 + 1−X2, X2)

= rg(X, 1, X2)

= 3.

Ainsi Vect(X,X2+1, X2−1) est un sous-espace vectoriel de R2[X] de dimension
3. Or dim(R2[X]) = 3 donc :

Vect(X,X2 + 1, X2 − 1) = R2[X].

Par conséquent, (X,X2 − 1, X2 + 1) est une famille génératrice de R2[X]. De
plus son cardinal est égal à la dimension de R2[X], c'est donc une base de
R2[X].

(b) On note B′ la base de la question précédente. La matrice M ′ est alors dé�nie
par :

M ′ = MatB′(f) = MatB′,B′(f) = MatB′(f(X), f(X2 + 1), f(X2 − 1)).

Déterminons les coordonnées de f(X), f(X2+1) et f(X2−1) dans la base B′.
Remarquons que, d'après la remarque en début d'exercice, on a :

f(1) = 2−X2 ; f(X) = X ; f(X2) = −1 + 2X2.

Ainsi :

� f(X) = X donc les coordonnées de f(X) dans B′ sont (1, 0, 0) ;
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� f(X2 + 1) = f(X2) + f(1) = 1 + X2 donc les coordonnées de f(X2 + 1)
dans la base B′ sont (0, 1, 0) ;

� f(X2− 1) = f(X2)− f(1) = 3(X2− 1) donc les coordonnées de f(X2− 1)
dans la base B′ sont (0, 0, 3).

Finalement, on obtient :

M ′ =

1 0 0
0 1 0
0 0 3

 .

(c) D'après les formule de changement de bases on a :

M ′ = P−1
B,B′MPB,B′ .

En notant P = PB,B′ on a donc bien l'égalité souhaitée. En�n :

P = MatB(X,X
2 + 1, X2 − 1) =

0 1 −1
1 0 0
0 1 1

 .

Correction de l'exercice 15.

1. A est triangulaire et ses coe�cients diagonaux sont non nuls donc A est inversible.

2. (a) Pour tout j ∈ J0, nK on a :

f(Xj) = (X + 1)j =

j∑
i=0

(
j

i

)
X i.

Ainsi, la matrice de f est A (attention au décalage d'indice : les colonnes de A
sont numérotées de 1 à n+ 1 alors que les éléments de la base canonique sont
numérotées de 0 à n).

(b) Comme A est inversible, f est bijective. De plus, en notant g : P 7→ P (X − 1)
on a :

∀P ∈ Rn[X], f ◦ g(P ) = f(P (X − 1)) = P (X + 1− 1) = P

et
∀P ∈ Rn[X], g ◦ f(P ) = g(P (X + 1)) = P (X − 1 + 1) = P.

Ainsi g = f−1.
(c) On en déduit que A−1 est la matrice de g dans la base canonique. Or pour tout

j ∈ J0, nK on a :

g(Xj) = (X − 1)j =

j∑
i=0

(
j

i

)
(−1)j−iX i.

donc

A−1 =



1 −1 1 · · · · · · (−1)n

0 1 −2 · · · · · · (−1)n−1n

0 0 1 · · · · · · (−1)n−2

(
n

2

)
...

. . . . . . (−1)i−j

(
j − 1

i− 1

)
...

...
. . . . . .

...
0 · · · · · · · · · 0 1


.
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Correction de l'exercice 16. Soient (a0, . . . , an) ∈ Kn+1 deux à deux distincts. On note
φ l'application :

φ : Rn[X] −→ Rn+1

P 7−→ (P (a0), . . . ,P(an)).

1. (a) Soit P,Q ∈ Rn[X] et λ ∈ R. On a

φ(P + λQ) = ((P + λQ)(a0), . . . , (P + λQ)(an))

= (P (a0), . . . ,P(an)) + λ(Q(a0), . . . ,Q(an))

= φ(P ) + λφ(Q).

Donc φ est linéaire.
(b) Soit P ∈ ker(φ). Alors φ(P ) = (0, . . . , 0) donc

∀i ∈ J0, nK, P (ai) = 0.

Ainsi P est un polynôme de degré inférieur ou égal à n possédant n+1 racines.
C'est donc le polynôme nul.
D'où :

ker(φ) = {0}.

Ainsi φ est injective. Or dim(Rn[X]) = n + 1 = dim(Rn+1) donc d'après un
corollaire du théorème du rang, on en déduit que φ est bijective. C'est donc φ
est un isomorphisme.

2. On a pour tout i ∈ J0, nK :

φ(X i) = (ai0, . . . , a
i
n).

Donc la matrice M1 de φ dans les bases canoniques de Rn[X] et Rn+1 est :
1 a0 . . . an0
1 a1 . . . an1
...

... · · · ...
1 an . . . ann

 .

3. On considère la famille suivante (voir TD6 exercice 5) :

∀i ∈ J0, nK, Li(X) =
n∏

k=0
k ̸=i

X − ak
ai − ak

.

(a) Voir TD6 exercice 5.
(b) D'après l'exercice 5 du TD6 on a :

∀i ∈ J0, nK, ∀j ∈ J0, nK, Li(aj) =

{
1 si i = j
0 sinon

Donc la matrice de φ dans la base (L0, . . . , Ln) et la base canonique de Rn+1

est la matrice identité In.

19



Arnaud Stocker

(c) Soit (x0, . . . , xn) ∈ Rn+1. On cherche un polynôme P tel que

φ(P ) = (x0, . . . , xn)

c'est-à-dire tel que :

Mat(L0,...,Ln),Bc(φ)Mat(L0,...,Ln)(P ) =

x0...
xn


c'est-à-dire, d'après la question précédente, tel que :

InMat(L0,...,Ln)(P ) =

x0...
xn

 .

Il su�t donc de prendre P tel que :

Mat(L0,...,Ln)(P ) =

x0...
xn


donc :

P =
n∑

k=0

xkLk.

Correction de l'exercice 17. Soit f l'endomorphisme de R2[X] dont la matrice dans
la base canonique est

M =

1 4 2
0 −3 −2
0 4 4

 .

On note MB,C(g) la matrice d'une application g relativement à la base B de l'espace de
départ et la base C de l'espace d'arrivée.

1. Pour montrer que la famille C = (1, X− 2X2, 1− 2X+X2) est une base de R2[X] il
su�t de montrer que la matrice, contenant dans chaque colonne les coordonnées des
vecteurs de la famille C relativement à la base canonique Bc de R2[X] est inversible.

P =

1 0 1
0 1 −2
0 −2 1

 .

Un calcul (qu'on laisse au lecteur) basé sur l'algorithme de Gauss montre que c'est
le cas et que

P−1 =
1

3

3 2 1
0 −1 −2
0 −2 −1

 .

La matrice P est �nalement la matrice de changement de la base Bc vers la base C
c'est-à-dire :

P = MC,Bc(id)
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2. En écrivant f = idR2[X] ◦ f ◦ idR2[X] en termes de produit matriciel, on a

MC,C(f) = MBc,C(id)MBc,Bc(f)MC,Bc(id) = P−1MP.

Le calcul donne

MC,C(f) =
1

3

3 −2 −11
0 7 4
0 2 −4

 .

Correction de l'exercice 18. Dans tout l'exercice, on considère que les lignes et colonnes
des matrices sont numérotées de 0 à n− 1.

1. Sous réserve que F soit une base, la matrice de passage de la base canonique de Cn

à la base F est
F = (e

ikℓ2π
n )0≤ℓ,k≤n−1

Cette matrice est symétrique. La conjuguée de sa transposée (en fait la transposition
est inutile) est

tF = (e−
ikℓ2π

n )0≤k,ℓ≤n−1

Soit k, k′ ∈ J0, n− 1K et δk,k′ l'élément en position (k′, k) dans la matrice tFF .
Par la formule générale du produit matriciel, on a

δk,k′ =
n−1∑
ℓ=0

e−
ikℓ2π

n e+
ik′ℓ2π

n =
n−1∑
ℓ=0

(
e

i(k′−k)ℓ2π
n

)ℓ
On reconnait là la somme de n termes consécutifs d'une suite géométrique et on a
donc

δk,k′ =


n si e

i(k′−k)2π
n = 1

1−
(
e

i(k′−k)2π
n

)n
1− e

i(k′−k)2π
n

si e
i(k′−k)2π

n ̸= 1
=

{
n si k = k′

0 si k ̸= k′

Quelques précisions sur ce calcul :

�
(
e

i(k′−k)2π
n

)n
= (ei(k

′−k)2π = 1 ;

� la condition e
i(k′−k)2π

n ̸= 1 équivaut à k ̸= k′ lorsque k, k′ ∈ J0, n− 1K. En e�et,
on remarque d'abord que :

−(n− 1) ≤ k′ − k ≤ n− 1.

La condition e
i(k′−k)2π

n = 1 équivaut au fait qu'il existe un entier relatif a tel

que
(k′ − k)2π

n
= a2π, simpli�é, cela signi�e que

k′ − k = an.

On a donc : −(n− 1) ≤ an ≤ n− 1 c'est-à-dire montre que −1 < a < 1.
Le seul entier relatif véri�ant cela est a = 0 et donc k = k′.

Finalement, cela montre que :
tFF = n.In

et donc F est inversible, d'inverse F−1 =
1

n

t

F .

Cela montre au passage que la famille F est une base et que F est la matrice de
passage de la base canonique de Cn vers F .

21



Arnaud Stocker

2. On se donne un vecteur a ∈ Cn et on considère une matrice A carrée d'ordre n dont
le coe�cient à la place (k, ℓ) est ak−ℓ lorsque k ≥ ℓ et an+k−ℓ lorsque k < ℓ (avec
k, ℓ ∈ J0, n− 1K).
(a) Donnons des exemples pour n = 3 et n = 4.

� Pour n = 3 et a = (a0, a1, a2), on a

A =

a0 a2 a1
a1 a0 a2
a2 a1 a0


� Pour n = 4 et a = (a0, a1, a2, a3), on a

A =


a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0


On voit que la première colonne est formée du vecteur a et que pour passer
d'une colonne à la suivante, on "fait tourner" les coe�cients en les décalant
vers le bas et en faisant remonter le dernier en première position. D'où, proba-
blement, le nom de "matrice cyclique".

(b) On considère l'endomorphisme de E dont la matrice par rapport à la base
canonique est A. Calculons, pour chaque vecteur ek le produit Aek que nous
noterons fk.
Le coe�cient d'indice ℓ de fk est

(fk)ℓ =
n−1∑
j=0

Aℓ,j(ek)j =
n−1∑
j=0

Aℓ,je
ijk2π

n =
ℓ−1∑
j=0

Aℓ,je
ijk2π

n +
n−1∑

j=ℓ+1

Aℓ,je
ijk2π

n +Aℓ,ℓe
ikℓ2π

n

On a donc, en utilisant la formule pour Aℓ,j (attention, les noms des indices
sont changés par rapport à l'énoncé),

(fk)ℓ =
ℓ−1∑
j=0

aℓ−je
ijk2π

n +
n−1∑

j=ℓ+1

an+ℓ−je
ijk2π

n + a0.e
ikℓ2π

n

Dans le première somme, e�ectuons le changement d'indice j′ = ℓ − j (on a
donc j′ varie de 1 à ℓ) et dans la deuxième j′ = n+ ℓ− j (on donc j′ varie de
n− 1 à ℓ+ 1) pour obtenir

(fk)ℓ =
ℓ∑

j′=1

aj′e
i(ℓ−j′)k2π

n +
n−1∑

j′=ℓ+1

aj′e
i(n+ℓ−j′)k2π

n + a0.e
ikℓ2π

n

comme on remarque que e
i(n+ℓ−j′)k2π

n = e
i(ℓ−j′)k2π

n , on a alors (on change tous les
j′ en j), puis en factorisant e

iℓk2π
n ,

(fk)ℓ =
n−1∑
j=0

aje
i(ℓ−j)k2π

n =

(
n−1∑
j=0

aje
−ijk2π

n

)
.e

iℓk2π
n
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En posant λk =
n−1∑
j=0

aje
−ijk2π

n (noter l'absence de ℓ dans cette expression), on a

donc
A.ek = fk = λk.ek

La matrice cherchée est donc

D = diag(λ0, . . . , λn−1).

(c) On a
F−1.A.F = D

c'est-à-dire
1

n
.tFFAF = D
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