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Lycée Pierre-Gilles de Gennes 2025-2026
Mathématiques — TD10

APPLICATIONS LINEAIRES

1 Applications linéaires, noyau, image

Correction de ’exercice 1. 1. Notons f; cette application. Elle n’est pas linéaire
car :

fi(2-1)=8#2- fi(1) =4.
2. Notons f, cette application. Elle n’est pas linéaire car fo(0) # 0.

3. Notons f3 cette application. Soit (z,y), (z/,y’) deux éléments de R* et A € R un
scalaire.

On a :

fs((zy) + M@, y) = fa(z + A,y + Ay
=(y+ N,z + M)
= (y,2) + Ay, 2)
= fz3((z,y)) + M((2',¢)).

Ainsi f3 est linéaire.
Déterminons son noyau. Soit (x,7) € R?; on a :

(z,y) € ker(f3) <= f3((x,y)) = (0,0) == (z,y) = (0,0).

Donc ker(f3) = {(0,0)} (f3 est donc injective).
De plus :
Im(f;) = {(y,2) ; (z,y) e R’} =R
(donc f3 est surjective).
4. Notons ¢ cette application. Soit f,g € C(R,R) et A € R.
Alors ¢(f + Ag) est définie par :
vieRr o+ g0 =100 L TO IO ) 4,

Ainsi : o(f + Ag) = ©(f) + Ap(g). Donc ¢ est linéaire.
Déterminons son noyau : soit f € C(R,R). On a :

t
[ eker(p) = o(f) = Ocrpr) <= Vt € R, 1‘]:5 22 =0<«<=VteR, f(t)=0.
Ainsi ker(p) = {Ocrr)} ( ¢ est donc injective).

Déterminons son image. Soit g € C(R, R).

g € Im(p) <= 3f € C(R,R)Vt € R, n = g(t).

Or, en notant f : ¢t +— (1+t*)g(t) on a bien :

feCR,R) et o(f)=g
Ainsi : Im(p) = C(R,R) (¢ est donc surjective).
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5. Notons f5 cette application. Soit (z,y), (z/,7’) deux éléments de R? et A € R un
scalaire.

On a :

fsl(z,y) + MA@, y) = fs(x + A,y + M)
=3(z+ M\') +5(y + \y)
= 3z + 52" + (32" + 5y)
= f5((z,y)) + Afs((2", ).

Ainsi f3 est linéaire.
Déterminons son noyau. Soit (x,y) € R?; on a :

(2,9) € ker(fs) = fo((#.9)) = (0,0) <= 3w + 5y =0 4= 2=~y

Donc ker(fs) = Vect((—g, 1)).
De plus :

Im(f5) = {3z + 5y ; (v,y) € R*} =R.
(donc f5 est surjective).

6. Notons fg cette application. Soit (z,y), (z/,y') deux éléments de R? et A € R un
scalaire.

On a:

fol(z,y) + M@, y) = fslz + A2',y + Ay
=(—z =X,y + \)
= (—z,y) + AM(=2,¢)
= fo((z,y)) + Ms((2',9).

Ainsi fg est linéaire.
Déterminons son noyau. Soit (x,7) € R?; on a :

(ZE,y) S ker(f6) — fﬁ((x7y)) = (070) — (l‘,y) = <070>

Donc ker(fs) = {(0,0)} (fs est donc injective).
De plus :

Im(fe) = {(~2,y) ; (v,y) € R*} =R?
(donc f3 est surjective).

7. Notons fg cette application. Elle n’est pas linéaire car :

Jo((1,0) +(0,1)) = 1 # f6((1,0)) + f6((0,1)) = 0.

Correction de I’exercice 2.
1. (a) Montrons que h est linéaire. Soient (P, Q) € Ry[X] X Ry[X] et A€ R. On a :

h(P+AQ) = X(P+A\Q)(X +1) — (X + 1)(P + \Q)(X)
= XP(X +1)— (X + D)P(X) + M XQ(X +1) — (X + DQ(X))
— h(P) + Ah(Q).
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(c)

Ainsi :
V(P,Q) € Ry[X]| x Ry[X], VAER, h(P+ Q) = h(P)+ A\(Q).

L’application h est donc linéaire.
Noyau de h. Soit P = aX?+bX +c € Ry[X]. On a :

P e ker(h) <~ h(P) = OIR{Q[X]
= XaX +1)*+b0X +1)+c) - (X +1D(aX?*+bX +¢)=0
= aX’+aX+c=0
< a=c=0.
Ainsi :
ker(h) = Vect(X).
La famille (X) est donc une base de ker(h).
Déterminons I'image de h. Soit (1, X, X?) la base canonique de Ry[X]. Alors :

Im(h) = Vect(h(1), h(X), h(X?))
= Vect(—1,0, X? + X)
= Vect(1, X? + X).
La famille (1, X* + X) est donc une famille génératrice de Im(h). De plus elle

est échelonnée et formée de polynomes non nuls donc elle est libre. Ainsi, ¢’est
une base de Im(h).

Montrons que 1 est linéaire. Soient (X,Y) € My(R) x My(R) et A € R. On
a:

V(X +AY)=AX+NY) - (X +AY)B
=AX 4+ Y - XB-)\YB
=AX — XB+ ANAY —YB)
= (X)) + (Y.
Ainsi :
V(X,Y) € Ma(R) x My(R), VAR, (X +AY)=¢(X)+ M(Y).
L’application v est donc linéaire.

Noyau de . Soit X = (i Z) € My(R). On a:

X € ker(v)) = (X) = (8 8) s AX = XB

— 2a+c 2b+d\ (b O
—c —d ~\d 0
< a=b=c=0.

Ainsi ker(y)) = {Op,mr) }. L'application h est injective.
Image de .
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— Meéthode 1 : on sait que :

ey =i (» (5. 5)) (6 0)) (0 5)) -+ (6 1))
(o) (0 8) (B 0) (5 4)
i (100 (2 2) (00 0)- (5 1))t it i

trice de Im(%)) et on vérifie qu’elle est bien libre. Il s’agit donc d’une base
de Im(%).
Or Im(7)) est un sous-espace vectoriel de My (R) et

dim(M3(R)) = 4 = dim(Im(z))).

Donc Im(¢) = Mo (R).
— Méthode 1 : d’aprés le théoréme du rang :

dim(Im(¢)) + 0 = dim(Im(¢))) + dim(ker(¢))) = dim(Mz(R)).
Donc Im(t)) est un sous-espace vectoriel de Ms(R) et
dim(M3(R)) = 4 = dim(Im(v))).
Ainsi Im(¢)) = My (R).

En particulier ¢ est surjectif.
Finalement 1) est un automorphisme de Mj(R).

Correction de I’exercice 3. Tout d’abord 'application u est bien définie. En effet, si
f est une fonction de classe C*sur R alors, sa dérivée existe.

1. Montrons que u est linéaire. Soient f,g € E, A\, u € R. Alors, la fonction u(Af + pg)
est définie par :

Vo € R, w(Af+pg)(x) = (Af + pg)'(z) — cos(x)(Af + pg)(z)

= M'(x) + pg' () — cos(x) (A f () + pg(x))

= Af () — cos(x) A f(x) + pg'(x) — cos(x)pug(x)
A(f'(z) = cos(x) f(x)) + pu (¢'(x) — cos(x)g())
= M(f)(-%’) + pu(g) ().

Ainsi on a bien :

w(Af + pg) = du(f) + pu(g).
Donc u est linéaire.
Si f est une fonction de classe C* sur R alors, sa dérivée f’ existe et est une fonction
de classe C*™ sur R. Comme il en est de méme pour la fonction cos, par les théorémes
de stabilité par opérations algébriques (somme, produit) de I’ensemble des fonctions
de classe C*, la fonction x — f'(x) — cos(z) f(x) est bien une fonction de classe C*,
sur R, & valeurs réelles, c’est-a-dire un élément de F.
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2. On a
ker(u) = {f € E, u(f) = 0}.
Une fonction f est dans le noyau de u si et seulement si elle est de classe C* sur R

et
Vo e R, f'(x) — cos(x)f(x) = 0.
Le noyau de u est donc ’ensemble des fonction de classe C*° sur R vérifiant cette
équation différentielle linéaire homogéne du premier ordre.
On a donc (en utilisant la technique de résolution standard de telles équations)

ker(u) = {f € E, IN € R, Yz € R, f(z) = A\.e""} = Vect(f,)

sin x

ol I'on a posé f1:x+—e

3. Pour montrer que u : F — FE est surjective, il suffit de montrer que pour toute
g € E, il existe f € E telle que

u(f) =g
¢’est-a-dire
Vz € R, f'(z) — cos(z) f(z) = g(x) (Ey)

Soit g € E. 1l s’agit de montrer que cette équation différentielle linéaire du premier
ordre (non homogéne si g n’est pas la fonction nulle) admet au moins une solution
f de classe C* sur R.

Il s’agit de mettre en ceuvre la méthode de la variation de la constante et de vérifier
que la solution obtenue est bien de classe C* sur R.

A une fonction f, de classe C* sur R, on associe la fonction \ définie par
f(z)
fi(z)

Cette fonction A est bien définie, de classe C*™ sur R car f et f; le sont et f; ne
s’annule pas sur R. On a

Ve e R, MN(z) =

f=A1 et ff=Nfi+ M.

La fonction f est solution de Fj si et seulement si

Vr € R, f'(x) — cos(z) f(z) = g(x)

¢’est-a-dire
Vo € R, N(2)fi(z) = g(z)

ou encore
Vr € R, N(z) = 9(x)
fi(z)
La résolution de I’équation (£,) est donc équivalente a la résolution de cette équa-
tion, donc a I'existence d’une primitive de la fonction apparaissant dans le membre
de droite.
g(x)

fi()

le dénominateur ne s’annulant pas), cette équation admet une solution, A, de classe

Comme la fonction = — est de classe C* sur R (quotient de telles fonctions,
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C*> sur R. Cette fonction A permet, en posant f = A\f;, de construire une solution
C* sur R de I'équation (E,).

Une remarque finale : Pendomorphisme u est surjectif, non injectif (son noyau est
de dimension 1). Ce phénoméne ne peut se produire si E est de dimension finie.
L’espace E de toutes les fonctions de classe C* sur R n’est pas de dimension finie.

Correction de ’exercice 4. 1. Soit

¢ C(R,R) — C'(R,R)

fr— (x > /Ox f(t)dt)

(a) Remarquons d’abord que ¢ est bien définie car, pour f € C(R,R), p(f) est la
primitive de f s’annulant en 0 donc est bien de classe C'.

Soit f,g € C(R,R) et A € R. On a, pour tout =z € R :
o(f + Ag)(x) = / "+ ) (0)de

—/x(f()JrAg( >>

)

dt
(t)dt par linéarité de l'intégrale

/ f)dt + X

(f)(@) + Ap(g) ().

Ainsi : o(f 4+ Ag) = varphi(f) + Ap(g).
Donc ¢ est linéaire.

(b) Soit f € ker(p). Alors ¢(f), qui est une primitive de f, est la fonction nulle.
Donc f est la fonction nulle. Ainsi ker(y) C {O¢rr)} et U'inclusion réciproque
étant évidente :

ker(p) = {Ocr k) }-

D’aprés la remarque du début de la question précédente, p(f) est la primitive
de f s’annulant en 0. Ainsi :

Im(p) C {g € C'(R,R) | g(0) = 0}.

Montrons l'inclusion réciproque : soit gC'(R,R) telle que g(0) = 0. Alors, pour
tout x € R :

Ainsi g = p(¢').
Par conséquent g € Im(p) et on a finalement montré :

Im(p) = {g € C'(R,R) | g(0) = 0}.

(c) D’aprés la question précédente ¢ est injective donc ¢ : C(R,R) — Im(yp) est
injective et surjective donc c¢’est un isomorphisme.
De plus, la question précédente donne :

¢ ' {g € C(R,R) | g(0) =0} — C(R,R)
gr— 4
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2. Soit

o RY — RN
(un)nEN — (unJrl)nGN

(a) Soit u = (up)nen €t v = (v, )nen deux suites et A € R.

(u+Av) = ©((Un + An)nen)) = (Unt1 + Any1)nen = p(u) + Ap(v).

Donc ¢ est linéaire.
(b) Soit u = (tp)nen. On a :

u € ker(p) <= p(u) =0gn <= Vn €N, v, 1 =0<=VYneN", u,=0.
Soit e = (e,), la suite définie par :
ep=1 et ¥Yn>1 wu,=0.
Alors :
u € ker(p) <= u = ype.
Donc ker(¢) = Vect(e). De plus pour tout v = (vy,),, si on pose u la suite

définie par :
up=0 et VneN', wu,=wv,1

alors on a :
p(u) =v.
Donc ¢ est surjective.
Correction de ’exercice 5. 1. Par récurrence :

e Initialisation : le cas k = 0 est évident.

e Heérédité : supposons que u* o v = v o u* pour un certain k& € N et montrons

que
uF oy = vouft
On a
u Tl ov=wuoufov=wuovou® parhypothése de récurrence,
=vououf caruetv commutent,
=vouftt

Ainsi la propriété est vraie au rang k + 1.

e Conclusion : par le principe de récurrence, on a montré que

VkeN, ufov=uvout

2. Par récurrence :

e Initialisation : le cas n = 0 est évident.
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e Hérédité : supposons la propriété vraie pour un certain n € N et montrons
qu’elle est vraie au rang n + 1. On a

(u+v)"" = (u+v) o (u+v)"

(u+v) < uf o v™ k) par hypothése de récurrence,
k=0

( > (Z)“ 0" ) +vo (; (Z) uF o v"‘k> par définition de u + v,

n
n
= ()uou ov"” k—i—Z( )vou o™ * par linéarité de u et de v.
k=0 k

En utilisant la question précédente dans la deuxiéme somme, on obtient :

(u+v)”+l:§(z> nk+z<)u ovov™h

B Z ( 1)u 0" Z ( )u ov"7F en faisant le changement de va

=1

:(Z) Loy +Z(_1>uovn+1z+z(>u Ovn+1—k+(g)uoovn+l

_ ,n+l 0 n n i o ontl—i 0 ) ntl
U ov +;<(2_1>+<Z))u ov +u ovw

" /n+1
— un—f—l o ’UO + E < ‘ )uz o Un—i—l—z 4 uO o vn—i—l
- 7

n+1
_ Z (” JF 1>ui o "1
7

=0

Alinsi la propriété est vraie au rang n + 1.
e Conclusion : par le principe de récurrence, on a montré que

Vn € N, Z()u ov" F =vouF

2 Avec le théoréme du rang

Correction de ’exercice 6.
1. Soit P € R,[X]. Alors deg(P’) <n — 1 donc :

deg((P)) < max(deg((X — b)(P' = P'(5))). deg(P — P(5))) = .

Ainsi ¢ est bien définie.
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Soit P,Q € R,[X] et A€ R. On a:

p(P+AQ) = (X = b)(P+ Q) — (P + AQ)'(b)) —2(P+2Q — (P+2AQ)(b)

= (X =0)(P'+AQ" = P'(b) = AQ'(b)) — 2(P + AQ — P(b) — AQ(b))

= (X =b) (P + P(b)) —2(P — P(b)) AX = b)(Q+Q'(b) —2(Q — Q(b))
= @(P) + Ap(Q).

Ainsi ¢ est linéaire et est donc un endomorphisme de R,,[X].
2. (a) Test clair que {P € R,[X] | 3Q € R, 3[X] P=(X-0)°’Q}CF.
Réciproquement, soit P € F. Alors il existe @ € R, [X] tel que :

P=(X-b)?Q.
En regardant les degrés on obtient :
n > deg(P) = deg((X — b)?) + deg(Q) = 3 + deg(Q).

Donc deg(Q) < n—3 et Q € R, 3[X]. Ainsi P € {P € R,[X] | 3Q €
R s[X] P = (X - bQ}

Cela montre que F C {P € R,[X] | 3Q € R, 3[X] P = (X —b)>Q} et
finalement :

F={PeR,[X]|3Q R, 4[X] P=(X—b)>Q}

F={PeR,X]|3QcR,3[X] P=(X-0b7°Q}
_ {(X—b)B(ao—f—"‘"i_an*?)Xnig) ; agy ..., Qp_3 GR}
= Vect((X — b)>X* | k € [0,n — 3]).

La famille (X —b)*X*)1co.n—3) est génératrice de F. Par ailleurs elle est formée
de polyndémes non nuls de degrés échelonnés donc elle est libre.

Il s’agit par conséquent d’une base de F' et dim(F) =n — 2.
(c) Soit P € R,[X]. Alors :

@(P) = P + P'(b) + (X — b)P" — 2P’
et
g0<P)// — P// _|_ P// + (X _ b)P/// _ 2P”.

On veut montrer que ¢(P) appartient a F' ¢’est-a-dire que la multiplicité de b
comme racine de ¢ est au moins égale & 3. On peut déja remarquer avec les
calculs ci-dessus que b est bien racine de p(P), o(P) et o(P)". 1l existe donc
U € R, [X] tel que :

o(P) = (X — b)U.

En dérivant deux fois on obtient :

o(P) =U + (X = b)U’
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et comme o(P)(b) = 0 on en déduit que U(b) = 0. Il existe donc V' € R, [X]
tel que :
U=(X -0V cad ¢(P)=(X —b?V.

En dérivant une deux fois, on a :
o(P)" = 2(X —=b)V + (X =02V =2V 4+2(X)V' +2(X —b)V'+ (X —b)*V”

et comme ¢(P)"(b) = 0 on en déduit V(b) = 0. Il existe donc W € R,,[X] tel
que :
V=(X-bW cad o(P)=(X—b>W.

Ainsi p(P) € F.
Cela montre que Im(P) C F.

Soit P € R,,[X] et supposons deg(P) > 3. Alors il existe k > 3 et a; # 0 tels
que :
P = a; X" + termes de degré inférieur.

Alors :

©(P) = (X — b)(kay X" + termes de deg inférieur) — 2(ax X"~ + termes de deg inférieur)
= (k — 2)ap X" + termes de deg inférieur.

Comme k > 3, on en déduit que deg(p(P)) = k et en particulier, ¢(P) # 0.
Par contraposition, si ¢(P) = 0 alors deg(P) < 2.
D’aprés le théoréme du rang, on sait que :

dim(Im(p)) + dim(ker(¢)) = dim(R,[X]) =n + 1.
Or d’apres les questions précédentes :
dim(Im(¢)) <n—2 et dim(ker(y)) < 3.
Si 'une des deux inégalités est stricte alors on aurait :
dim(Im(yp)) + dim(ker(¢)) <n—-2+3=n+1

en contradiction avec le théoréme du rang.

Par conséquent, les deux inégalités sont des égalités :
dim(Im(p)) =n —2 et dim(ker(p)) = 3.
Puis un argument de dimension permet de conclure que :

Im(p) =F et ker(p) = Ro[X].

Correction de ’exercice 7.

1. Soient A € R et (A, A") € M3(R) x M3(R) ou

a b c a v
A=|d e f , A= |d & f
g h i g hn 7

10
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On a :

JA+XMA) = (a+Ad +e+ X +i+Ni'e+ M +e+ A + g+ A\,
a+Ad +c+ A +g+ N +i+ M)
=(at+et+i,ctet+g,at+c+g+i)+ANd +e+i',d+e+4g,d++4g +7)
= [(A) + Af(A).

Ainsi pour tout (A, A") € M3(R) x M3(R), pour tout A € R :
FA+ XA = f(A) +Mf(A).

Donc f est linéaire.

. Comme dim (M3(R)) = 9 > dim(R?) alors f n’est pas injective.

a b ¢
Soit A= |d e f| e M;3R). Alors :
g h i
a + e + 1 = 0
Ae€ker(f) <= f(A)=(0,0,0) <=« ¢ + e + ¢ =0
a + ¢ + g + 1 =0
a + e + 1 = 0
— c + e + g 0
— e + ¢ + g =0
a = —i
=< c = —g
= 0.
Ainsi :
—1 b —g
ker(f) = d 0 f|,0b.dfghi)ecR?
g h 1
-1 0 0 0 0 —1 010 0 00 000 0 00
= Vect 0 00,10 0 01,10 O},{1 0 0},{0 0 1],10 O O
0 01 10 0 000 00 0 0 010
Ainsi, la famille F définie par :
-1 00 0 0 —1 010 000 0 00 000
F=1(0 O0O0}),{00 O},{OO0O0])],{2 OO0O),{0 0 1},{0 0 O
0 01 10 0 0 00 000 000 010

est génératrice de ker(f).
Montrons qu’elle est libre. Soit (b, d, f, g, h,i) € R*. Alors

11
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-1 0 0 00 —1 010
1 0 0 0)+g(0 0 O |+b6]10 0 O
0 01 10 O 0 00
0 00 0 00 000
+d[1 0 o0)+fl00 1|+n[0 0 0] =0pm
000 000 010
-1 b —g
| d 0 f|=0m
g h 1

Ainsi F est libre et génératrice de ker(f). C’est donc F une base de ker(f). En
particulier, dim(ker(f)) = 6.

4. D’aprés le théoréeme du rang, on déduit :
9 = dim(M;3(R)) = dim(ker(f)) + dim(Im(f)) = 6 4+ dim(Im(f)).

Ainsi dim(Im(f)) = 3. Or Im(f) est un sous-espace vectoriel de R®. Donc, comme
dim(Im(f)) = dim(R?), alors Im(f) = R®. Ainsi f est surjective.
Correction de ’exercice 8.
1. Soit y € Im(f). I existe x € E tel que : y = f(x). Par conséquent :

fly) = f(f(@)) = fi(z) =0
car % =0z (p).

Ainsi y € ker(f). Cela montre : Im(f) C ker(f).

2. D’apres le théoréme du rang :
3 = dim(F) = dim(ker(f)) + rg(f).

Or, on déduit de la question précédente que rg(f) = dim(Im(f)) < dim(ker(f)).
D’ou
3 = dim(ker(f)) + rg(f) < 2dim(ker(f)).

Ainsi 3 < dim(ker(f)) et comme la dimension d’un espace vectoriel est un entier
alors on en déduit bien :

2 < dim(ker(f)).
Comme ker(f) est un sous-espace vectoriel de E et que dim(E) = 3 alors la dimen-
sion de ker(f) est soit égale a 2 soit égale a 3.
Or, si dim(ker(f)) = 3 alors ker(f) = R* ce qui implique que f est nulle. Cela
contredit I’énoncé.
Donc dim(ker(f)) = 2.

Correction de P’exercice 9. On a H = Vect((1,1,1,1)) donc H est de dimension 1.

12
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Supposons qu’il existe une application linéaire f de E dans I’ dont H est le noyau. D’apreés
le théoréme du rang on a donc :

dim(ker(f)) + dim(Im(f)) = dim(FE)
c’est-a-dire :
1 + dim(Im(f)) = 4.

Ainsi, on devrait avoir dim(Im(f)) = 3. Mais comme Im(f) est un sous-espace vectoriel
de F', sa dimension est inférieur ou égale & dim(F') = 2.
Donc un tel f ne saurait exister.

Correction de ’exercice 10. Soit F un espace vectoriel de dimension finie.

— Supposons que la dimension de E est paire : dim(E) = 2k avec k € N*. Soit
B = (e1,...,eq) une base de F. On définit un unique endomorphisme f de E en
posant :

Vie [L,k], fle:)=0

et

Alors il est clair que :
ker(f) = Vect(ey,...,er) et Im(f)= Vect(exs1,---,exn)

et alnsi :

dim(ker(f)) = k = dim(Im(f)).

— Réciproquement supposons qu’il existe un endomorphisme f de E tel que ker(f) =
Im(f) = k. D’aprés le théoréme du rang on a :

dim(F) = dim(ker(f)) + dim(Im(f)) = 2k.
Ainsi dim(F) est paire.
Correction de ’exercice 11. On définit :

[ R, [X] — R, [X]

Q3"

k=0

On remarque que f est bien définie car deg(z Q™M) < max(deg(Q™), k € [0,n]) < n.
k=0
On montre de plus sans difficulté (linéarité de la dérivation et de la somme) que f est

linéaire.
Montrons que f est injective. Soit ) € ker(f) et supposons ¢ non nul. On note alors
p € N son degré et a, son coefficient dominant. Alors pour tout & € [1,n] on a :

deg(Q™®) < deg(Q) = p.

Ainsi
n

fQ)=Q+ Z Q™ = a,X? + terme de degré inférieur.
k=1

13
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En particulier, f(Q) est de degré p et non nul! Cela montre que ker(f) = {0}.

Donc f est en endomorphisme injectif de I'espace vectoriel de dimension fine R, [X].
D’apres I'un des corollaires du théoréme du rang, c’est donc un isomorphisme. En parti-
culier f est surjectif donc pour tout P € R, [X] il existe un unique @ € R,[X] tel que
f(Q) = P c’est-a-dire :

pP= zn: Q™.
k=0

3 Représentation matricielle

Correction de I’exercice 12. 1. Soit A\1,..., s € R tels que

)\1]? + )\2(] —+ )\37" + )\45 =0
¢’est-a-dire :

Ve e R, Ap(x)+ daq(x) + Asr(z) + Ags(z) = 0.

™ .
Alors, avec © = 5 il vient :

eg/\g + e_g)\4 =0 1ie /\4 = —671—)\2;

avec x = ) :
—6_%)\2 — Gg)\4 =0 1ie /\4 = —6_7r/\2.
On en déduit alors Ay = Ay = 0.

De méme, avec x = 0 il vient
/\1 —|— )\3 = 0

donc A= — Az et avec z = 7 :
—Ae" —e A3 =0.

On déduit que \; = A3 = 0.
Ainsi la famille (p, g, r, s) est libre.

. L’application D est linéaire. La seule chose a faire est de montrer que D(F') C F.

Pour cela il suffit de vérifier que D(p), D(q), D(r) et D(s) sont bien dans F. Or on
vérifie en dérivant que :

Dip)=p—q ; D(@=p+q ; Dr)=-r—s ; D(s)=—s+r

Ainsi on a bien D(F) C F.

3. D’apreés ce qui précéde :

e}

O O = =
|
—_

14



Arnaud Stocker

4. On a :
1 =1 0 0
1{1 1 0 o0
_1__
M 210 0 -1 -1
0 0 1 -1

Comme M est inversible alors en restriction & F' I'application D est bijective : il y
a une unique primitive de f dans F'. Comme les coordonnées de f dans (p,q,r,s)
sont (2,1,1, —1) les coordonnes de D™'(f) dans (p, q,r, s) sont :

Mt =

2
1 1
1

N O W

—1

Ainsi : )
D7Y(f) = 5(17 + 3¢ + 2s).

Une primitive de f est donc
1 . -
T §<€x(COS(fIJ> + 3sin(x)) + 2e “sin(x)).
Correction de ’exercice 13.
1. Montrons que ¢ est linéaire : soient (M, N) € (M3(R))> et A€ R. On a :

©(M + AN) = A(M + AN) — (M + AN)A
— AM 4+ MAN — MA - ANA
=AM — MA+ A\(AN — NA)
= (M) + Ap(N).
Ainsi :
V(M,N) € (My(R))* YA€ R, @M +AN) = (M) + \p(N).

[’application ¢ est donc linéaire. Comme elle est définie sur My(R) et a valeurs
dans My (R) il s’agit d’un endomorphisme de My (R).

2. Soit B = (Ey 1, E12, Ea1, Ey2) la base canonique de My(R). Alors :

1
2

0 2 0
-2 0 0 2
2 0 0 2

0 —2 —2 0

15
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0
M € ker(p) <= CMatg(M) = 8
0
a 0
b 0
<—C =10
d 0
2b 4+ 2¢ =0
PN —2a + 2d = 0
—2a + 2d = 0
—-2b — 2¢ = 0
P -
a = d

Ainsi:ker(gp):\/ect(<(1) (1))(? _01)).

D’apres le théoréme du rang on a :

dim(Msz(R)) = dim(ker(p)) + rg(y).

Or, on a vu que la famille (((1) (1)> , (2 _01)> est une famille génératrice de

ker(y). Comme elle est formée de deux vecteurs non colinéaires, c¢’est une famille
libre. Par conséquent c’est une base de ker(y) et dim(ker(¢)) = 2. On en déduit
donc :

4 =2+ rg(p)
c’est-a~dire : rg(yp) = 2.
4. (a) L’ensemble C des matrices qui commutent avec A est le noyau de ¢. Donc c’est

un sous-espace vectoriel de Mo(R) donc un espace vectoriel.

(b) D’aprés les questions précédentes, la famille <((1) ?) , ((1) _01)) est une base
de C.

Correction de D’exercice 14.

On note B = (1, X, X?) la base canonique de Ry[X]. On rappelle que M = Matg(f)
signifie que :

e la premiére colonne de M donne les coordonnées de f(1) dans la base B
e la deuxiéme colonne de M donne les coordonnées de f(X) dans la base B

e la troisiéme colonne de M donne les coordonnées de f(X?) dans la base B.

16
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2.

e Noyau de f : soit P = aX? + bX + ¢ € Ry[X]. Alors on a :

0
P € ker(f) <= M x Matg(P)= {0
0

c 0
<~ M|b] =10
a 0
2c — a = 0
<— b = 0 << a=b=c=0

Ainsi ker(f) = {0}.

e Image de f : f est un endomorphisme de R,[X] injectif. Comme Ry[X]
est de dimension finie tout endomorphisme injectif de Ry[X] est bijectif (donc
surjectif). Ainsi f est surjectif d’ou :

Im(f) = Ry[X].

(a) On a:

rg(X, X2 +1,X> 1) =1g(X, X+ 1, X> =1+ X2 +1)
rg(X, X2 +1,2X?)

rg(X, X2 +1,X?)

rg(X, X2+ 1— X% X?)

g(X,1,X?)

1 | | I (|
—

I
w

Ainsi Vect(X, X?+1, X?—1) est un sous-espace vectoriel de Ry[X] de dimension
3. Or dim(Ry[X]) = 3 donc :

Vect(X, X2 + 1, X? — 1) = Ry[X].

Par conséquent, (X, X? — 1, X? + 1) est une famille génératrice de Ry[X]. De
plus son cardinal est égal & la dimension de Ry[X], c’est donc une base de
Ry[X].

(b) On note B la base de la question précédente. La matrice M’ est alors définie

par :
M/ = Matlg/(f) = Mat[g/ﬁ/(f) = Matgl<f(X>, f(X2 + 1), f(X2 — 1))

Déterminons les coordonnées de f(X), f(X?+1) et f(X*?—1) dans la base B'.
Remarquons que, d’aprés la remarque en début d’exercice, on a :

F)=2-X? ; f(X)=X ; f(X?)=-1+2X"

Ainsi :
e f(X)= X donc les coordonnées de f(X) dans B’ sont (1,0,0);

17
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o f(X?+1)=f(XH+ f(1) =1+ X? donc les coordonnées de f(X? + 1)
dans la base B’ sont (0,1,0);

o f(X?—1)=f(X?— f(1) = 3(X*—1) donc les coordonnées de f(X*—1)
dans la base B’ sont (0,0, 3).

Finalement, on obtient :

M =

S O =
O = O
w o O

(c) D’apres les formule de changement de bases on a :
M'= Pz MPgp.

En notant P = Py on a donc bien 1’égalité souhaitée. Enfin :
P =Matg(X,X*+1,X*—1) =

Correction de ’exercice 15.
1. A est triangulaire et ses coefficients diagonaux sont non nuls donc A est inversible.
2. (a) Pour tout j € [0,n] on a :
()
X)) =(X+1) = X
o) =+ =32 ()
Ainsi, la matrice de f est A (attention au décalage d’indice : les colonnes de A
sont numérotées de 1 a n 4 1 alors que les éléments de la base canonique sont
numérotées de 0 a n).
(b) Comme A est inversible, f est bijective. De plus, en notant g : P — P(X — 1)
on a:

VP eR,[X], fog(P)=f(P(X—-1)=PX+1-1)=P
et
VP eR,[X], gof(P)=g(P(X+1)=P(X—-1+1)=P.
Ainsi g = f1.
(¢) On en déduit que A™! est la matrice de g dans la base canonique. Or pour tout
j€[0,n] ona:

g(XT) = (X — 1)) = Z (7)o

donc

o
o
—_
—~
|
—_
S~—
i
Do
VRS
o3
N————

18



Arnaud Stocker

Correction de I’exercice 16. Soient (aq, ..., a,) € K" deux a deux distincts. On note
@ l'application :
¢ : R,[X] — R™!
P+—— (P(ag),...,P(ay,)).

1. (a) Soit P,Q € R,[X] et A€ R. On a

P(P+2Q) = (P +AQ)(ao), - .., (P +AQ)(an))
= (P(ag),-.-,Pla,)) + M(Q(ap), - .., Qan))

Donc ¢ est linéaire.
(b) Soit P € ker(p). Alors ¢(P) = (0,...,0) donc

Vi e [0,n], P(a;)=0.

Ainsi P est un polyndéme de degré inférieur ou égal & n possédant n+ 1 racines.
C’est donc le polynome nul.

D’ou :

ker(¢) = {0}.
Ainsi ¢ est injective. Or dim(R,[X]) = n + 1 = dim(R"") donc d’aprés un
corollaire du théoréme du rang, on en déduit que ¢ est bijective. C’est donc ¢
est un isomorphisme.

2. On a pour tout i € [0,n] :
P(X") = (ap, -- -, ap).

Donc la matrice M; de ¢ dans les bases canoniques de R, [X] et R"! est :

1 ay ... aj
1 a; ... CL111
1 a, ... a,

3. On considére la famille suivante (voir TD6 exercice 5) :

n X_
vielonl, Lix)=]]>— Z’“.
’?;0 7 k

(a) Voir TD6 exercice b.
(b) D’aprés l'exercice 5 du TD6 on a :

. . 1 sii=3y
vielal vielal L)-{g %o
Donc la matrice de ¢ dans la base (Lo, ..., L,) et la base canonique de R™**

est la matrice identité I,,.
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(¢) Soit (zg,...,z,) € R™. On cherche un polynéome P tel que

()O(P) = ([E07...,$n)

Zo
[nMat(LO ..... Ln)(P) = .
Tp
Il suffit donc de prendre P tel que :
To
Mat(L() ----- LVL)<P) =
xn

donc :

Correction de I’exercice 17. Soit f I’endomorphisme de Ry[X] dont la matrice dans
la base canonique est

1 4 2
M={0 -3 =2
0 4 4

On note Mpc(g) la matrice d’une application g relativement a la base B de l'espace de
départ et la base C de I'espace d’arrivée.

1. Pour montrer que la famille C = (1, X —2X? 1 —2X + X?) est une base de Ry[X] il
suffit de montrer que la matrice, contenant dans chaque colonne les coordonnées des
vecteurs de la famille C relativement & la base canonique B, de Ry[X] est inversible.

Un calcul (qu’on laisse au lecteur) basé sur I'algorithme de Gauss montre que c’est
le cas et que

3 2 1
P—lzg 0 —1 —2
0 -2 -1

La matrice P est finalement la matrice de changement de la base B, vers la base C
c¢’est-a-dire :
P = M. (id)
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2. En écrivant f = idg,[x] o f oidg,[x] en termes de produit matriciel, on a
Meel(f) = M. c(id) M, 5. () Me.s,(id) = P~ MP

Le calcul donne

1 3 =2 —-11
Mee(f) = 3 0o 7 4
0 2 —4

Correction de ’exercice 18. Dans tout 'exercice, on considére que les lignes et colonnes
des matrices sont numérotées de 0 & n — 1.

1. Sous réserve que F soit une base, la matrice de passage de la base canonique de C"

A la base F est
ikl2m

F= (6 " )ogf,kgn—l

Cette matrice est symétrique. La conjuguée de sa transposée (en fait la transposition

est inutile) est
— _ike2m
'F = (6 n )ogkz,égn—l
Soit k, k' € [0,n — 1] et d 4 I'élément en position (K, k) dans la matrice 'FF.

Par la formule générale du produit matriciel, on a

n—1 n—1 , ¢
_ike2w +ik’é2ﬂ' i(k' —k)e2m
51(:,]9’ = E e n e n = E e n
£=0 =0
On reconnait 1a la somme de n termes consécutifs d’une suite géométrique et on a
donc
i(k' —k)2m
n sie” n = . ,
ik’ —k)2m \ ™ n sik=k
Ok =1 <6 ’ ) R TCETO o sik#£K
i(k!—k)2m 51 € " 7& 1
l—e =

Quelques précisions sur ce calcul :
i(k'—k)2m \ T o
o (ein > _ <€z(k R2m _

i(k!—k)2m

— la condition e= = # 1 équivaut a k # k' lorsque k, k" € [0,n — 1]. En effet,
on remarque d’abord que :

—(n—1)<K-k<n-1.

.- ik’ —k)2m . . . . . .
La condition e- = = 1 équivaut au fait qu’il existe un entier relatif a tel
k' —k)2m
que % = a2m, simplifié, cela signifie que

K —k=an.

On a donc : —(n —1) <an <n —1 c’est-a-dire montre que —1 < a < 1.
Le seul entier relatif vérifiant cela est a = 0 et donc k = &'
Finalement, cela montre que :
'FF =n.l,

1t
et donc F est inversible, d'inverse F~! = = F.

n
Cela montre au passage que la famille F est une base et que I’ est la matrice de
passage de la base canonique de C" vers F .
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2. On se donne un vecteur a € C" et on considére une matrice A carrée d’ordre n dont
le coefficient a la place (k, /) est ax_, lorsque k > £ et a, r—¢ lorsque k < ¢ (avec
k.l € [0,n—1]).

()

Donnons des exemples pour n = 3 et n = 4.

— Pour n =3 et a = (ag, a1, as), on a

Qp az ai
A= a; Qap as
G2 a1 Qg

— Pour n =4 et a = (ag, a1, a9, a3), on a

ap asz ao aip
ay Qagp as Qo
o a1 Qg as
as a9 a1 Qo

On voit que la premiére colonne est formée du vecteur a et que pour passer
d’une colonne a la suivante, on "fait tourner" les coefficients en les décalant
vers le bas et en faisant remonter le dernier en premiére position. D’ot, proba-
blement, le nom de "matrice cyclique"

On considére 'endomorphisme de E dont la matrice par rapport a la base
canonique est A. Calculons, pour chaque vecteur e, le produit Ae, que nous
noterons fj.

Le coefficient d’indice ¢ de f, est

n—1 n—1
ijk2m 2]k27r 'ij?ﬂ' 1ke2T
(fede =Y Avjlen); =D Arge™ E :Am + E : Agjem +Agee
§=0 §=0 §=0 j=+1

On a donc, en utilisant la formule pour A, ; (attention, les noms des indices
sont changés par rapport a 1’énonceé),

(-1 n—1

ijk2m ijk2m ike2m

(fk)g: E Qg€ ™ + E Qpio—5€ ™ + ag.e n
j=0 j=0+1

Dans le premiére somme, effectuons le changement d’indice j' = ¢ — j (on a
donc j' varie de 1 a £) et dans la deuxiéme j' =n + ¢ — j (on donc j' varie de
n—1a ¢+ 1) pour obtenir

i(L—j" ) k2w i(nt+l—j )k27r ik02m
fk f e E a]/€ n —|— E a]/e n —|— ao e n

§'=t+1

i(n+L—j" ) k2m i(L—j" ) k2m
comime on remarque que e n =e n ,onaalors (on change tous les
. k2T
5" en j), puis en factorisant e n» |

n—1

n—1
i(L—g)k2m —ijk2m k27
(0= Do = (e )
§=0
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n—1
—ijk2w

En posant A\, = Zaje n

=0
donc

La matrice cherchée est donc

D

(c) On a

c’est-a-dire

(noter Pabsence de ¢ dans cette expression), on a

A.ek = fk = )\k.ek

= diag(/\o, ey )\n—l)-
F'AF=D
1, —
—'FFAF =D
n
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