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La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la préci-

sion des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les résultats, étapes importantes, . . .doivent être mis en valeurs.

Exercice 1 - Autour des séries exponentielles

Partie 1 - Un équivalent pour n!

Pour tout n ∈ N∗, on pose :

wn =
n!√
n

( e
n

)n
, vn = ln(wn) et un = vn+1 − vn.

1. Soit n ∈ N∗. D'après les propriétés du logarithme on a :

vn = ln

(
n!√
n

( e
n

)n)
= ln(n!)− 1

2
ln(n) + n− n ln(n)

et

vn+1 = ln((n+ 1)!)− 1

2
ln(n+ 1) + n+ 1− (n+ 1) ln(n+ 1)

= ln(n+ 1) + ln(n!)− 1

2
ln(n+ 1) + n+ 1− (n+ 1) ln(n+ 1)

= ln(n!)− 1

2
ln(n+ 1) + n+ 1− n ln(n+ 1).

Ainsi :

un = ln(n!)− 1

2
ln(n+ 1) + n+ 1− n ln(n+ 1)− ln(n!) +

1

2
ln(n)− n+ n ln(n)

= −
(
n+

1

2

)
ln(n+ 1) + 1 +

(
n+

1

2

)
ln(n)

= −
(
n+

1

2

)
(ln(n+ 1)− ln(n)) + 1

= −
(
n+

1

2

)
ln

(
n+ 1

n

)
+ 1.

2. (a) ln(1 + x) = x− x2

2
+

x3

3
+ o

x→0
(x3).

(b) Avec les questions précédentes :

un = −
(
n+

1

2

)
ln

(
1 +

1

n

)
+ 1

= −
(
n+

1

2

)(
1

n
− 1

2n2
+

1

3n3
+ o

n→+∞

(
1

n3

))
+ 1.
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Avec ceci, on peut obtenir un développement de un à la précision
1

n2
(pour

obtenir une précision
1

n2
, il faudrait le DL à l'ordre 4 de x 7→ ln(1+ x) à cause

de la multiplication par n) :

un = −
(
n+

1

2

)(
1

n
− 1

2n2
+

1

3n3
+ o

n→+∞

(
1

n3

))
+ 1

= −
(
1 +

(
1

2
− 1

2

)
1

n
+

(
1

3
− 1

4

)
1

n2
+ o

n→+∞

(
1

n2

))
+ 1

=
−1

12n2
+ o

n→+∞

(
1

n2

)
∼

n→+∞

−1

12n2

(c) D'après ce qui précède : |un| ∼
n→+∞

1

12n2
.

Or les séries
∑
n≥1

|un| et
∑
n≥1

1

12n2
sont à termes positifs et la série

∑
n≥1

1

12n2
est

convergente.
D'après le théorème d'équivalence pour les séries à termes positifs, la série∑
n≥1

|un| est donc aussi convergente.

En particulier,
∑
n≥1

un est absolument convergente donc convergente.

3. (a) Soit n ∈ N∗.

n∑
k=1

uk =
n∑

k=1

(vk+1 − vk).

Ainsi, par télescopage :

n∑
k=1

uk =
n∑

k=1

(vk+1 − vk) = vn+1 − v1 = vn+1 − 1.

Ainsi, on a bien : vn+1 = 1 +
n∑

k=1

uk.

(b) Comme la série
∑
n≥1

un converge alors la suite

(
n∑

k=1

uk

)
n≥1

est convergente.

La question précédente permet de conclure que (vn)n∈N∗ converge et

ℓ = lim
n→+∞

vn = 1 +
+∞∑
n=1

un.

4. (a) Pour tout n ∈ N∗, wn = evn donc par continuité de la fonction exponentielle
en ℓ, (wn)n∈N∗ converge vers eℓ.
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(b) Comme C = eℓ > 0, on a par la question précédente :

wn ∼
n→+∞

C

puis par compatibilité des équivalents avec le produit :

n! ∼
n→+∞

C
√
n
(n
e

)n
.

5. Soit x ∈ R. Avec la question précédente, on obtient l'équivalent suivant :

xn

n!
∼

n→+∞

(ex
n

)n 1

C
√
n
.

Il existe un rang n0 tel que :

∀n ≥ n0,
∣∣∣ex
n

∣∣∣ ≤ 1.

On en déduit donc

∀n ≥ n0,

∣∣∣∣(exn )n 1

C
√
n

∣∣∣∣ ≤ 1

C
√
n
.

En particulier, par encadrement lim
n→+∞

(ex
n

)n 1

C
√
n
= 0.

Ainsi, lim
n→+∞

xn

n!
= 0.

6. Faire une petite pause.

Partie 2 - Convergence des séries exponentielles

Soit x ∈ R.

7. Soit n ∈ N. On note fn la fonction dé�nie pour tout s ∈ R :

fn(s) =
n∑

k=0

sk

k!
+ es

∫ s

0

e−t

n!
tndt.

(a) La fonction s 7→
n∑

k=0

sk

k!
est polynomiale donc dérivable.

La fonction t 7→ e−t

n!
tn est continue sur R donc possède une primitive F sur R

qui est donc dérivable. La fonction s 7→ es
∫ s

0

e−t

n!
tndt = es(F (s) − F (0)) est

donc dérivable en tant que produit de fonctions dérivable.
De plus, pour tout s ∈ R, on a :
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f ′
n(s) =

n∑
k=1

k
sk−1

k!
+ es(F (s)− F (0)) + esF ′(s)

=
n∑

k=1

sk−1

(k − 1)!
+ es

∫ s

0

e−t

n!
tndt+ es

e−s

n!
sn

=
n−1∑
i=0

si

i!
+ es

∫ s

0

e−t

n!
tndt+

sn

n!

=
n∑

i=0

si

i!
+ es

∫ s

0

e−t

n!
tndt.

Ainsi, f ′
n = fn.

(b) La fonction fn est donc solution de l'équation y′ = y. Il existe donc une constant
λ telle que :

∀s ∈ R, f(s) = λes.

De plus, comme fn(0) = 1 on déduit que λ = 1.
Ainsi :∀s ∈ R, fn(s) = es.

8. Soit n ∈ N et x ∈ R. D'après la question précédente :

ex −
n∑

k=0

xk

k!
= fn(x)−

n∑
k=0

xk

k!
= ex

∫ x

0

e−t

n!
tndt.

Donc : ∣∣∣∣∣ex −
n∑

k=0

xk

k!

∣∣∣∣∣ =
∣∣∣∣ex ∫ x

0

e−t

n!
tndt

∣∣∣∣ .
� Cas où x ≥ 0. On a pour tout t ∈ [0, x] : 0 ≤ e−t

n!
tn ≤ tn

n!
donc par croissance

de l'intégrale (les bornes sont rangées dans l'ordre croissant) :

0 ≤ ex
∫ x

0

e−t

n!
tndt ≤ ex

∫ x

0

tn

n!
dt =

exxn+1

(n+ 1)!
.

Ainsi : ∣∣∣∣∣ex −
n∑

k=0

xk

k!

∣∣∣∣∣ =
∣∣∣∣ex ∫ x

0

e−t

n!
tndt

∣∣∣∣ ≤ exxn+1

(n+ 1)!
.

� Cas où x ≤ 0. Par l'inégalité triangulaire (attention à bien remettre les bornes
dans l'ordre) : ∣∣∣∣ex ∫ x

0

e−t

n!
tndt

∣∣∣∣ ≤ ex
∫ 0

x

e−t

n!
|t|ndt ≤

∫ 0

x

e−t

n!
|t|ndt

car ex ≤ 1. En majorant e−t par e−x sur [x, 0] on obtient alors∣∣∣∣ex ∫ x

0

e−t

n!
tndt

∣∣∣∣ ≤ e−x

∫ 0

x

|t|n

n!
dt = e−x (|x|)n+1

(n+ 1)!
.
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Ainsi, dans les deux cas ∣∣∣∣∣ex −
n∑

k=0

xk

k!

∣∣∣∣∣ ≤ e|x|
(|x|)n+1

(n+ 1)!
.

9. D'après la question 5., on sait que lim
n→+∞

e|x|
(|x|)n+1

(n+ 1)!
= 0.

On en déduit donc que lim
n→+∞

∣∣∣∣∣ex −
n∑

k=0

xk

k!

∣∣∣∣∣ = 0.

Autrement dit, lim
n→+∞

n∑
k=0

xk

k!
= ex.

Cela signi�e exactement que
∑
n≥0

xn

n!
converge et que sa limite est ex.

Partie 3 - La fonction Gamma

Pour tout réel x > 0, on dé�nit l'intégrale généralisée :

Γ(x) =

∫ +∞

0

tx−1e−tdt.

10. Soit x > 0.

(a) La fonction t 7→ tx−1e−t est continue sur ]0, 1] (et même sur [0, 1] si x ≥ 1).
L'intégrale est donc généralisée en 0.
Par continuité de la fonction exponentielle en 0 et comme e0 = 1 ̸= 0 : e−t ∼

t→0
1.

Par compatibilité des équivalents avec le quotient : tx−1e−t ∼
t→0

tx−1.

Les fonctions t 7→ tx−1e−t et t 7→ tx−1 sont continues et positives sur ]0, 1] donc

par le théorème d'équivalence, les intégrales
∫ 1

0

tx−1e−tdt et
∫ 1

0

tx−1dt sont de

même nature.
Soit A ∈]0, 1] ; on a : ∫ 1

A

tx−1dt =

[
tx

x

]1
A

=
1

x
− Ax

x
.

Comme x > 0 alors lim
A→0

∫ 1

A

tx−1dt =
1

x
.

Ainsi
∫ 1

0

tx−1dt converge et donc
∫ 1

0

tx−1e−tdt converge aussi.

(b) On admet qu'il existe une constante D > 0 telle que : ∀t ≥ 1, tx+1e−t ≤ D.

La fonction t 7→ tx−1e−t est continue sur [1,+∞[ donc est
∫ +∞

0

tx−1e−tdt gé-

néralisée en +∞.
En divisant par t2 dans l'inégalité admise on obtient :

∀t ≥ 1, 0 ≤ tx−1e−t ≤ D

t2
.
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D'après le théorème de comparaison pour les intégrales de fonctions continues

et positives, si
∫ +∞

1

1

t2
dt converge alors

∫ +∞

1

tx−1e−tdt converge aussi Étudions

la nature de
∫ +∞

1

1

t2
dt : soit A ≥ 1.∫ A

1

1

t2
dt =

[
−1

t

]A
1

= 1− 1

A
−−−−→
A→+∞

1.

Ainsi,
∫ +∞

1

1

t2
dt converge et donc

∫ +∞

1

tx−1e−tdt converge.

(c) Soit x > 0. D'après les questions précédentes,
∫ 1

0

tx−1e−tdt et
∫ +∞

1

tx−1e−tdt

convergent donc l'intégrale
∫ +∞

0

tx−1e−tdt est convergente.

11. Encore une petite pause !

12. Soit x > 0.

� Les fonctions u : t 7→ tx et v : t 7→ −e−t sont de classe C1 sur ]0,+∞[.

� L'intégrale
∫ +∞

0

u′(t)v(t)dt converge (et vaut −xΓ(x)) d'après la question pré-

cédente.
� t 7→ u(t)v(t) possède une limite �nie en 0 (qui vaut 0) et en +∞ (qui vaut 0

aussi par croissance comparée).

D'après le théorème d'intégration par parties, l'intégrale
∫ +∞

0

u(t)v′(t)dt converge

et

Γ(x+ 1) =

∫ +∞

0

u(t)v′(t)dt = lim
t→+∞

u(t)v(t)− lim
t→0

u(t)v(t)−
∫ +∞

0

u′(t)v(t)dt

= xΓ(x).

13. (a) Γ(1) =

∫ +∞

0

e−tdt = 1.

(b) Montrons par récurrence que pour tout n ∈ N, Γ(n+ 1) = n!.

� Initialisation : c'est la question précédente.
� Hérédité : soit n ∈ N et supposons que Γ(n+ 1) = n!.

D'après la question 12 on a :

Γ(n+ 2) = (n+ 1)Γ(n+ 1) = (n+ 1)n! = (n+ 1)!.

� Conclusion : par principe de récurrence, on a montré : ∀n ∈ N, Γ(n+1) =
n!.

14. La fonction u : t 7→
√
2t est de classe C1 et strictement croissante sur ]0,+∞[.

Or, on a :

Γ

(
1

2

)
=

∫ +∞

0

t−
1
2 e−tdt =

√
2

∫ +∞

0

u′(t)e−
u(t)2

2 dt.
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Ainsi, par le théorème de changement de variable (comme la converge des intégrales
a déjà été prouvée) on a :

Γ

(
1

2

)
=

√
2

∫ lim+∞ u

lim0 u

e−
u2

2 du =
√
2

∫ +∞

0

e−
u2

2 du.

Comme
√
2π =

∫ +∞

−∞
e−

x2

2 dx = 2

∫ +∞

0

e−
x2

2 dx, on en déduit :

Γ

(
1

2

)
=

√
2

√
2π

2
=

√
π.

Partie 3 - Les lois Gamma

Soit x > 0, λ > 0 et fx,λ la fonction dé�nie sur R par :

∀s ∈ R, fx,λ(s) =


sx−1

Γ(x)λx
e−

s
λ si s > 0

0 sinon
.

15. La fonction fx,λ est clairement positive et continue sur R∗.

Montrons que
∫ +∞

−∞
fx,λ(s)ds converge et vaut 1.

La fonction t : s 7→ s

λ
est de classe C1 sur R et strictement croissante. D'après

le théorème de changement de variable, comme l'intégrale
∫ +∞

−∞
tx−1e−tdt converge

alors l'intégrale
∫ +∞

−∞
t(s)x−1e−t(s)t′(s)ds converge et vaut Γ(x).

Or

∫ +∞

−∞
t(s)x−1e−t(s)t′(s)ds =

∫ +∞

−∞

sx−1

λx−1
e−

s
λ
1

λ
ds =

∫ +∞

−∞

sx−1

λx
e−

s
λds

En particulier
∫ +∞

−∞
fx,λ(s)ds =

1

Γ(x)

∫ +∞

−∞

sx−1

λx
e−

s
λds converge et :

∫ +∞

−∞
fx,λ(s)ds =

1

Γ(x)

∫ +∞

−∞

sx−1

λx
e−

s
λds =

Γ(x)

Γ(x)
= 1.

Donc fx,λ est une densité de probabilité.

On dira qu'une variable aléatoire X suit la loi Gamma de paramètres x et λ si X est à
densité et admet fx,,λ pour densité.

16. (a) Une densité de la loi Gamma de paramètres (x, λ) =

(
1,

1

λ

)
est donnée par :

∀s ∈ R, f1, 1
λ
(s) =


s0

Γ(1) 1
λ

e
− s

1
λ si s > 0

0 sinon
=

{
λe−λs si s > 0
0 sinon

.

On reconnait donc une loi exponentielle de paramètre λ.
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(b) Voir cours.

17. Soit X suivant la loi Gamma de paramètres x et λ.

La variable X possède une espérance si et seulement si
∫ +∞

−∞
sfx,λ(s)ds converge

absolument.

L'intégrale
∫ +∞

−∞
|sfx,λ(s)|ds est égale à

λΓ(x+ 1)

Γ(x)

∫ +∞

−∞
fx+1,λ(s)ds donc converge

d'après la question 15.
Ainsi X possède une espérance et d'après la question 12 :

E(X) =

∫ +∞

−∞
sfx,λ(s)ds =

λΓ(x+ 1)

Γ(x)
= λx.

18. La variable X possède une variance si et seulement si
∫ +∞

−∞
s2fx,λ(s)ds converge

absolument.

L'intégrale
∫ +∞

−∞
|s2fx,λ(s)|ds est égale à

λ2Γ(x+ 2)

Γ(x)

∫ +∞

−∞
fx+2,λ(s)ds donc converge

d'après la question 15.
Ainsi X possède un moment d'ordre 2 donc une variance et d'après la question 12 :

E(X2) =

∫ +∞

−∞
s2fx,λ(s)ds =

λ2Γ(x+ 2)

Γ(x)
= λ2x(x+ 1).

D'après la formule de Koenig-Huygens, on a :

V(X) = E(X2)− E(X)2 = λ2x(x+ 1)− (λx)2 = λ2x.

19. Soit n ∈ N∗et Fn : R → R dé�nie par :

∀s ∈ R, Fn(s) =

 1− e−s

n−1∑
k=0

sk

k!
si s > 0

0 sinon.

(a) � La fonction Fn est de classe C1 sur R∗
− car constante et sur R∗

+ en tant que
produit de fonctions usuelles de classe C1.
De plus pour tout s ∈ R :

F ′
n(s) =

 e−s

n−1∑
k=0

sk

k!
− e−s

n−1∑
k=1

ksk−1

k!
si s > 0

0 sinon.

=

 e−s

n−1∑
k=0

sk

k!
− e−s

n−1∑
k=1

sk−1

(k − 1)!
si s > 0

0 sinon.

=

 e−s sn−1

(n− 1)!
si s > 0

0 sinon.
.
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� En particulier, Fn est continue sur R∗ (car dérivable sur R∗) et comme

lim
s→0−

Fn(s) = lim
s→0+

Fn(s) = Fn(0) = 0,

alors Fn est continue en 0.
Ainsi Fn est continue sur R.

� De plus, F ′
n est positive sur R∗ donc Fn est croissante sur ] − ∞, 0[ et

]0,+∞[ et comme elle est continue, elle est �nalement croissante sur R.
� Il est clair que lim

s→−∞
Fn(s) = 0 et par croissance comparée lim

s→+∞
Fn(s) = 1.

Ainsi Fn est la fonction de répartition d'une variable aléatoire à densité.
(b) Soit Y une variable dont la fonction de répartition est Fn.

On a vu :

∀s ∈ R∗, F ′
n(s) =

 e−s sn−1

(n− 1)!
si s > 0

0 sinon.
.

Ainsi, la fonction f dé�nie par :

∀s ∈ R, f(s) =

 e−s sn−1

(n− 1)!
si s > 0

0 sinon.

est une densité de Y .
(c) On reconnaît la fonction fn,1 donc Y suit la loi Gamma de paramètres (n, 1).

20. Soit Z un variable aléatoire de loi N (0, 1).

(a) � Comme Z2 est positive, alors, pour tout s < 0, on a

FZ2(s) = P(Z2 ≤ s) = 0.

� Soit s ≥ 0. La fonction racine carrée étant strictement croissante sur R+

on a :

FZ2(s) = P(Z2 ≤ s) = P(|Z| ≤
√
s) = P(−

√
s ≤ Z ≤

√
s) = FZ(

√
s)− FZ(−

√
s).

Ainsi :

∀s ∈ R, FZ2(s) =

{
FZ(

√
s)− FZ(−

√
s) si s ≥ 0

0 sinon.

(b) La fonction FZ est de classe C1 sur R donc on en déduit par composition que
FZ2 est de classe C1 sur ]0,+∞[. Comme il est clair qu'elle l'est sur ] −∞, 0[
alors FZ2 est de classe C1 sur R∗.
En particulier, FZ2 est continue sur R∗. De plus, FZ étant continue sur R, on a

lim
s→0+

FZ2(s) = FZ(0)− FZ(0) = 0 = FZ2(0) = lim
s→0−

FZ2(s).

Ainsi FZ2 est aussi continue en 0.
Comme FZ2 est continue sur R et de classe C1 sur R∗, Z2 est à densité.
En�n, comme pour tout s ̸= 0 on a :
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F ′
Z2(s) =


1

2
√
s

(
F ′
Z(
√
s) + F ′

Z(−
√
s)
)

si s > 0

0 sinon.
=


2e−

s
2

2
√
2π

√
s

si s > 0

0 sinon.

=


s−

1
2 e−

s
2

2
1
2Γ
(
1
2

) si s > 0

0 sinon.

On reconnaît ainsi une loi Gamma de paramètres

(
1

2
, 2

)
.
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