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BCPST2 — Mathématiques

DM 3

La présentation, la lisibilité, 'orthographe, la qualité de la rédaction, la clarté et la préci-
ston des raisonnements entreront pour une part importante dans [’appréciation des copies.
Les résultats, étapes importantes, . ..doivent étre mis en valeurs.

Exercice 1 - Autour des séries exponentielles

Partie 1 - Un équivalent pour n!

Pour tout n € N*, on pose :

n! se\n
Wy = ——= (—) . Up=In(w,) et u, = Upy — Uy

Vvn \n

1. Soit n € N*. D’aprés les propriétés du logarithme on a :

on=In [ (YY) = m(nd) = Lin(n) + 1 — ninn)
(G (2)) =miet

Vvn \n
et
Upt1 = In((n + 1)!) — %ln(n—i— )+n+1—(n+1)ln(n+1)
— In(n + 1) + In(n!) — %ln(n+1)+n+1— (n+1)In(n+1)
= In(n!) — %ln(n+ )+n+1—-nln(n+1).
Ainsi :

u, = In(n!) — %ln(n +1)+n+1—-nln(n+1)—In(n!) + %ln(n) —n+nln(n)
S (n—i—%) In(n+1)+1+ (n-ir%) In(n)
=~ (e 3 ) o+ 1) = o) + 1

2 3

_._ ¥z 3
2. (&) n(l+2)==x ) + 3 +xgo(x ).

(b) Avec les questions précédentes :




Arnaud Stocker

1

Avec ceci, on peut obtenir un développement de u, a la précision 3 (pour

1
obtenir une précision —, il faudrait le DL a I'ordre 4 de z — In(1 + ) a cause
n

de la multiplication par n) :

1 1 1 1 1
“":_<”+§)(E_z_m+%+nf+oo($)>+l
NG FRCGHERN )R
2 2/ n 3 4)n? notoo \ n?

_ 1 1
©12n2 n—>0+00 n?

—1
n—+oo 12n2

1
D7 R . A \d . n ~ .
(C) apres ce qul precede |u | n—+oo 1202
1

12n2

1
Or les séries Z |un| et Z o2 sont a termes positifs et la série Z
n

n>1 n>1 n>1
convergente.
D’aprés le théoréme d’équivalence pour les séries a termes positifs, la série
Z |u,,| est donc aussi convergente.
n>1
En particulier, Z u, est absolument convergente donc convergente.
n>1

(a) Soit n € N*.

Alinsi, par télescopage :

n

n
E up = E (Vkg1 — V) = Upy1 — V1 = Vpg1 — L.
k=1

k=1

n
Ainsi, on a bien : v, =1+ g U
k=1

M=

(b) Comme la série Z u, converge alors la suite (

n>1 1

uk> est convergente.
n>1

—_

La question précédente permet de conclure que (v,,)nen+ converge et

+o0o
(= lim v, = 1+Zun.
n=1

n—-+4o0o

(a) Pour tout n € N*, w,, = e’ donc par continuité de la fonction exponentielle

en £, (wy)nen+ converge vers e'.
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(b) Comme C = ¢’ > 0, on a par la question précédente :

w, ~ C
n—-+4o0o

puis par compatibilité des équivalents avec le produit :

0 00 ()

n—-+oo

n

5. Soit x € R. Avec la question précédente, on obtient ’équivalent suivant :

n

T (ex)n 1
n! n—+o0 \ n Cyn’

Il existe un rang ng tel que :
ex
Vn > ng, ’—‘ <1.
n

On en déduit donc

- n/ Cyn|~ Cyn
En particulier, par encadrement lim <@>n L =0.
n—+oo \ N C\/ﬁ
Ainsi, lim — =0.
n—+oo nl

6. Faire une petite pause.

Partie 2 - Convergence des séries exponentielles

Soit x € R.
7. Soit n € N. On note f,, la fonction définie pour tout s € R :

R = e [
n(s) = — +€° —t"dt.
k:()k! o nl

n_ ok
s

(a) La fonction s +— E 7l est polynomiale donc dérivable.
k=0

—t

. € . N c
La fonction t +— —'t" est continue sur R donc posséde une primitive F' sur R

n
s

—t
qui est donc dérivable. La fonction s — e* €—|t”dt = e*(F(s) — F(0)) est
n!

donc dérivable en tant que produit de fonctions dérivable.
De plus, pour tout s € R, on a:
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n k—1
) =3 k= + '(F(s) = F(0) + 'F(s)
n Skfl s t s
— S _t’ndt S n
;(k_vae - —|—ens
n—1 gt s eft n
=Z—+e3/ —rdt + —
— 7! 0 n! n!
nooi s t
=S % e | St
— 7! n!

Ainsi, f] = f,.
(b) La fonction f,, est donc solution de 'équation 3 = y. Il existe donc une constant

A telle que :
Vs e R, f(s) = Ae’.

De plus, comme f,(0) = 1 on déduit que A = 1.
Ainsi Vs € R, f,(s) = €°.
8. Soit n € N et x € R. D’aprés la question précédente :

e’ _Z k;l_fn Zkl_ Ftndt

0

x _—t
" / e—t”dt‘.
o n!
—t

e t
— Cas ot x > 0. On a pour tout ¢t € [0,z] : 0 < —‘t” < - donc par croissance
n n

Donc :

e p— —
Z k!
k=0

n

de Pintégrale (les bornes sont rangées dans Pordre croissant) :

T 4n T .n+1

0<e | Sprdi < et —dt = e
o n!

Ainsi :

n k
P il
k!
k=0

— Cas ot z < 0. Par I'inégalité triangulaire (attention & bien remettre les bornes

dans lordre) :
T —t 0 _—t 0 —t
ex/ S gex/ e—]t\"dtg/ Etat
o nl L nl . nl

car ¢* < 1. En majorant e * par e sur [z,0] on obtient alors

T —t 0 n n+1
ex/ € _par| < e—x/ " g — e (D™
o n! - (n+1)!
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Alinsi, dans les deux cas

n k (|x|>n+1

(n+ 1)l

9. D’aprés la question 5., on sait que lim e'“h)w1 = 0.
n—too  (n+1)!

n k
sy
k!
k=0

nok
x

Autrement dit, lim E i e’.
k=0

Tl < lal
k|~
k=0

On en déduit donc que lim = 0.

n—-+0o00

n—-+o0o

n

x
Cela signifie exactement que Z — converge et que sa limite est e”.
n!

n>0
Partie 3 - La fonction Gamma

Pour tout réel x > 0, on définit 'intégrale généralisée :

+o00
[(z) = / t" e L.
0

10. Soit z > 0.

(a) La fonction ¢ + t" e~ est continue sur ]0,1] (et méme sur [0,1] si x > 1).
L’intégrale est donc généralisée en 0.

t

Par continuité de la fonction exponentielle en 0 et comme e’ =1 #£0: e o 1.
*>

Par compatibilité des équivalents avec le quotient : t* e o 7L
_)

Les fonctions ¢ — t“ ‘e~ et t — ! sont continues et positives sur ]0, 1] donc

1 1
par le théoréme d’équivalence, les intégrales / t*te7tdt et / t*~Ldt sont de
0 0
méme nature.

Soit A €]0,1]; on a :

1 1
te 1A
/ "t = {—} e
A T, = T

1
1
Comme z > 0 alors lim / gt = —.

1 1
Ainsi / t*"1dt converge et donc / t*le~'dt converge aussi.
0 0
(b) On admet qu’il existe une constante D > 0 telle que : V¢ > 1, t*tle™* < D.

+o0
La fonction t +— t“"'e™" est continue sur [1,4o0[ donc est / t"letdt ge-
0

néralisée en +oo.
En divisant par ¢t* dans l'inégalité admise on obtient :

Vi>1, 0<t"let< ?2.
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D’aprés le théoréeme de comparaison pour les intégrales de fonctions continues

“+o0o +oo
et positives, si / — dt converge alors / t*le~'dt converge aussi Etudions
1 1

+o0 1
la nature de / t_zdt :soit A > 1.
1
A

41 1 1
—dt=|--| =1—-= ——1

+oo +oo
1
Alinsi, / t_th converge et donc / t*le~'dt converge.
1 1
1 400
c) Soit x > 0. D’aprés les questions précédentes, e e e
Soit 0. D’aprés 1 ti scédent t"le7tdt et e dt
0 1

+oo
convergent donc l'intégrale / t*Le~tdt est convergente.
0

11. Encore une petite pause!
12. Soit = > 0.

— Les fonctions u : t — t" et v : t — —e " sont de classe C' sur ]0, +oo|.

+oo
— L’intégrale / o' (t)v(t)dt converge (et vaut —zT'(x)) d’aprés la question pré-
0
cédente.

— t +— u(t)v(t) posséde une limite finie en 0 (qui vaut 0) et en +oo (qui vaut 0
aussi par croissance comparée).

+oo

D’aprés le théoréme d’intégration par parties, 'intégrale / u(t)v'(t)dt converge
0

et

t——+o00 t—0

= zl'(x).

M(z+1) = /0 Tt (dt = Tim u()o(t) — lim u(t)o(t) — /0 T ()t

13. (a) T(1) :/O+Ooetdt:1.

(b) Montrons par récurrence que pour tout n € N, I'(n 4+ 1) = nl.

— Initialisation : c’est la question précédente.
— Heérédité : soit n € N et supposons que I'(n + 1) = nl.
D’aprés la question 12 on a :

'n+2)=Mn+1)I'n+1)=Mn+1)n!=Mn+1)L

— Conclusion : par principe de récurrence, on a montré : Vn € N, I'(n+1) =
nl.

14. La fonction u : t + V2t est de classe C' et strictement croissante sur |0, +oo].

1 “+o00 1, +o00 , _u(t>2
ri=)= tT2etdt = /2 u'(t)e 2 dt.
2 0 0

Or, on a :
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Ainsi, par le théoréme de changement de variable (comme la converge des intégrales
a déja été prouvée) on a :

1 limy oo v 2 +o00 2
T (5) =2 e 2du= \/5/ e 2 du.
0

limg u

2

+eo z? oo z
Comme V271 = / e 2dr = 2/ e~ 2 dx, on en déduit :
—00 0
1 V2

Partie 3 - Les lois Gamma

Soit > 0, A > 0 et f, » la fonction définie sur R par :

Sxfl s )
Vs R, foa(s) = F(x))\_xe X sis>0 ‘
0 sinon

15. La fonction f, )\ est clairement positive et continue sur R*.
+o0
Montrons que fax(s)ds converge et vaut 1.
o0

s
La fonction ¢ : s +— X est de classe C' sur R et strictement croissante. D’aprés

+o00
le théoréme de changement de variable, comme l'intégrale / t*le~'dt converge
+o0 o
alors I'intégrale / t(s)* te "¢/ (s)ds converge et vaut I'(z).
Or
+00 +oco _x—1 +oo x—1
a—1 —t(s) _ 5 Y s s
/_OO t(s)" e t(s)ds—/_oo et A)\ds—/_oo € Nds
+o0 1 o0 S:pfl .
En particulier N fer(s)ds = m /_OO Ve_ids converge et :
+oo 1 ot ['(z)
a(s)ds = —— [ e Rds= D =1,
[t [ St

Donc f, » est une densité de probabilité.

On dira qu'une variable aléatoire X suit la loi Gamma de paramétres x et A si X est a
densité et admet f, ) pour densité.

1
16. (a) Une densité de la loi Gamma de paramétres (z, \) = (1, —) est donnée par :

A
S ot >0 Ae™ sis>0
e si s e si s
Vs € R, fl,i(s) =q¢ T(1)x - { 0 sinon
0 sinon

On reconnait donc une loi exponentielle de paramétre .
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(b) Voir cours.

17. Soit X suivant la loi Gamma de paramétres x et \.

18.

19.

+o00
La variable X possede une espérance si et seulement si / sfea(s)ds converge

—00

absolument.

oo Al(z+1) [
L’intégrale / |sfea(s)|ds est égale & %
x —00

fz+1.2(8)ds donc converge
—o0
d’aprés la question 15.

Ainsi X posséde une espérance et d’aprés la question 12 :

e Al(z+1
E(X) = /OO sfea(s)ds = I(jET—;) = A\zT.
+o0o
La variable X posséde une variance si et seulement si / s?f.a(s)ds converge

absolument. -
+oo M(x+2) [T

L’intégrale / |5% fon(s)|ds est égale & % fr+2.1(s)ds donc converge
oo z —0oQ

d’aprés la qu?astion 15.
Ainsi X posséde un moment d’ordre 2 donc une variance et d’aprés la question 12 :

+o0 2 T
E(X?) = / & for(s)ds = % — Nz 4+ 1),

[e.e]

D’apres la formule de Koenig-Huygens, on a :

V(X)=E(X?) —E(X)? = Na(z+1) - (\2)* = Nz,

Soit n € N*et F), : R — R définie par :
n—1 Sk
1—e* — i
Vs ER, Fy(s) = e %k! sis >0
0 sinon.
(a) — La fonction F, est de classe C' sur R* car constante et sur R’ en tant que
produit de fonctions usuelles de classe C'.
De plus pour tout s € R :
( n—l k n—l k*l
s 5 e ks .
, e — —e sis>0
= | |
F!(s) “— k! ~ k!
\ 0 sinon.
( n—1 L n—1 k—1
s 5
e’ — —e " sis>0
— Kl (k—1)!
k=0 k=1
L 0 sinon.
Snfl
e ® sis >0
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— En particulier, F,, est continue sur R* (car dérivable sur R*) et comme

lim F,(s) = lim F,(s) = F,(0) =0,
s—0~ s—07F

alors F;, est continue en 0.

Ainsi F}, est continue sur R.

— De plus, F] est positive sur R* donc F), est croissante sur | — oo, 0[ et
10, +00[ et comme elle est continue, elle est finalement croissante sur R.

— Tl est clair que lim F,(s) = 0 et par croissance comparée liIJZl F.(s) = 1.
§—>—00 §—+00

Ainsi F;, est la fonction de répartition d’une variable aléatoire a4 densité.
(b) Soit Y une variable dont la fonction de répartition est F,.

Onavu:
o, st .
Vs € R*, F'(s) = e —(n—l)! sis >0
0 sinon.
Ainsi, la fonction f définie par :
s is>0
VseR, f(s)= ¢ (n —1)! oLe
0 sinon.

est une densité de Y.
(c) On reconnait la fonction f,; donc Y suit la loi Gamma de parameétres (n, 1).

20. Soit Z un variable aléatoire de loi N'(0,1).

(a) — Comme Z2 est positive, alors, pour tout s < 0, on a
Fpa(s) =P(Z% < s) =0.

— Soit s > 0. La fonction racine carrée étant strictement croissante sur R
on a:

Fa(s) = P(Z° < 5) = P(|Z] < V) = P(—v/5 < Z < v/5) = F2(V3) — F#(—5).
Ainsi :

o 0 sinon.

Vs € R, Fzz(s)—{ FZ(\/E)_FZ(_\/E> sis>0

(b) La fonction F est de classe C" sur R donc on en déduit par composition que
Fz2 est de classe C* sur |0, +o00[. Comme il est clair qu’elle I'est sur | — oo, 0]
alors Fy est de classe O sur R*.

En particulier, Fz2 est continue sur R*. De plus, F; étant continue sur R, on a
lim FZ2(5> = Fz(O) - Fz(O) =0= FZ2(0) = lim F22(5).
s—0t s—0~
Ainsi Fz2 est aussi continue en 0.
Comme Fy2 est continue sur R et de classe C' sur R*, Z? est & densiteé.
Enfin, comme pour tout s # 0 on a :
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1 26_%
—— (F,(\/s) + F,(—+/s)) sis>0 ——— sis>0
() = { 2y oY)+ F(=V5) |
0 sinon. 0 sinon.
_1 _s
S 2e 2
_ T sis>0
=3 22T (3)
0 sinon

o . 1
On reconnait ainsi une loi Gamma de paramétres (—, 2.




