CHAPITRE 10

APPLICATIONS LINEAIRES

Dans tout le chapitre K désigne R ou C.

10.1 Applications linéaires

10.1.1 Linéarité

— Définition 10.1 (Application linéaire)

Soient E, F' deux espaces vectoriels et f : E — F une application de E dans F'.

— On dit que f est linéaire si :
V(u,v) € B> V(A p) € K?, f(hu+ po) = Af(u) + pf (v).

On note L(E, F') 'ensemble des applications linéaires de E dans F.

— Une application linéaire de F dans E est appelé un endomorphisme de E.
On note L£(F) 'ensemble des endomorphismes de E.

— Une application linéaire bijective est appelée un isomorphisme.
Un endomorphisme bijective est appelé un automorphisme.

—{ Proposition 10.1 }

Soient E, F' deux espaces vectoriels et f: E — F une application de E dans F'.

1. (Caractérisation des applications linéaires) f est linéaire si et seulement si pour
tout (u,v) € E? et pour tout A € R on a

flu+X-v)=f(u)+ X f(v).

2. Si f est linéaire alors pour tout n € N*, pour tous vecteurs x1,...,x, de F et
n n
tous scalaires A,..., A\, ona: f Z ATk | = Z e f (k).
k=1 k=1

3. Si f est linéaire alors f(0g) = Op.
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— Proposition 10.2 (Opérations sur les applications linéaires)

Soient E,F et G des K-espaces vectoriels, (f,g) € L(E, F)* et hL(F,G).
1. Pour tout (X, u) € K2, A\f 4 pg est linéaire.
2. La composée h o f est linéaire.

3. Si f est bijective alors f~! est linéaire.

Remarque 10.1. Le premier point signifie que L(FE, F') est un sous-espace vectoriel de F(E, F).

— Définition 10.2 (Puissance d’un endomorphisme)

Soient F un espace vectoriel et f € L(E). On définit les puissances de f par récurrence
par
fO=idg
{ VneN, frtl = fo

Ainsi, pour tout n € N* on a
fr=fo-of.
—_—

n fois

10.1.2 Noyau

— Définition 10.3 (Noyau d’une application linéaire)

Soient F, F' deux K-espaces vectoriels et f € L(E, F). On appelle noyau de f et on
note ker(f), I’ensemble :

ker(f) ={ue E | f(u) =0r} .

Remarque 10.2. D’apreés la proposition 7?7, on a toujours O € ker(f).

—{ Proposition 10.3 }

Soient E, F' deux espaces vectoriels et f € L(E, F).
1. Le noyau de f est un sous-espace vectoriel de F.

2. f est injective si et seulement si ker(f) = {Og}.

10.1.3 Image

— Définition 10.4 (Image d’une application linéaire)

Soient F, F' deux espaces vectoriels et f € L(E, F'). On appelle image de f et on note
Im(f), ensemble :

Im(f) ={f(u), ue E} ={ve F|3ueckE, f(u =v}.




Arnaud Stocker

—{ Proposition 10.4 }

Soient E, F' deux espaces vectoriels et f € L(E, F). Alors
1. Iimage de f est un sous-espace vectoriel de F,

2. f est surjective si et seulement si Im(f) = F.

10.2 Application linéaire en dimension finie

10.2.1 Application linéaire et base

—{ Proposition 10.5 }

Soient FE, F' K-deux espaces vectoriels et f € L(E,F). On suppose que E est de
dimension finie et soit B une famille génératrice de E. Alors

Im(f) = Vect((f(€))ees)-

— Définition 10.5 (Rang d’une application linéaire)

Soient E, F deux K-espaces vectoriels avec E de dimension finie et soit f € L(E, F).

Alors Im(f) est de dimension finie et on appelle rang de f, noté rg(f), la dimension
de Im(f).

Remarque 10.3. Soit f € L(E, F).
— La propriété précédente implique que rg(f) < dim(E).

— Comme Im(f) est un sous-espace vectoriel de F', si F' est de dimension finie, alors rg(f) <
dim(F) avec égalité si et seulement si f est surjective.

—{ Proposition 10.6 }

Soient E, F' deux K-espaces vectoriels avec E de dimension finie et soit f € L(E, F).
Il y a équivalence entre :

— f est un isomorphisme,
— il existe une base B de E telle que f(B) est une base de F,
— pour toute base B de E, f(B) est une base de F.

— Proposition 10.7 (Principe de détermination sur une base)

Soient E. F' deux espaces vectoriels avec F de dimension finie n € N*. On considére
une base B = (e1,...,e,) de E et (fi1,..., fn) une famille de vecteurs de F'.
Alors il existe une unique application linéaire f € L(E, F) telle que

Vi € [[1,77,]], f(ez) = fl
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10.2.2 Théoréme du rang

— Théoréme 10.1 (Théoréme du rang)

Soient E, F' deux espaces vectoriels avec E de dimension finie et soit f € L(E,F).
Alors
dim(F) = dim(ker(f)) + rg(f)-

Autrement dit
dim(F) = dim(ker(f)) + dim(Im(f)).

—4 Corollaire 1

Soient E, F' deux espaces vectoriels de dimension finie et f € L(E, F).

1. Si dim(F) < dim(F') alors f n’est pas surjective.
2. Si dim(E) > dim(F) alors f n’est pas injective.
En particulier, si dim(E) # dim(F) , il n’existe pas d’isomorphisme entre E et F'.

—4 Corollaire 2

Soient E, F' deux espaces vectoriels de méme dimension finie et f € L(E, F'). Alors

f est injective <= f est surjective <= f est bijective.

Remarque 10.4. En particulier, si f est un endomorphisme d’un espace vectoriel E de
dimension finie on a donc

f est injective <= f est surjective <= f est bijective.

10.3 Matrices et applications linéaires

10.3.1 Matrices représentatives d’une application linéaire

— Définition 10.6 (Matrice d’une famille de vecteurs)

Soient n et p deux entiers naturels non nuls.
Soit E un espace vectoriel de dimension finie n et soit B une base de F.

1. Soit w € E et notons (x1,...,2z,) € R" les coordonnées de u dans la base B. On
appelle matrice de u dans la base B et on note Matg(u) la matrice colonne
x1
L,
2. Soit (u1,...,up) € EP une famille de vecteurs de E. On appelle matrice de
(u1,...,up) dans la base B et on note Matg(ui, ..., up) la matrice de M, ,(R)

dont la j-iéme colonne est la Matg(u;).
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— Définition 10.7 (Matrice d’une application linéaire)

Soient E et F' deux espaces vectoriels de dimension finie. On note p € N* la dimension
de E et n € N* la dimension de F' et on considére Bg = (e1,...,€p) une base de E et
B une base de F'.

Soit f € L(E,F). On appelle matrice de f dans les bases Br et Bp la matrice
notée Matg, 5, (f) définie par :

Matg, B, (f) = Matg, (@)oo, f(ep))'

1l s’agit d’'une matrice de taille n x p.
Pour un endomorphisme f € L(E) on notera Matg, (f) pour désigner Matg, 5, (f).

—{ Proposition 10.8 }

Soient E, F' et G trois K-espaces vectoriels de dimension finie. On considére Br une base
de E, Br une base de F' et B une base de G. Soient f1, fa € L(E,F) et g € L(F,G).
Alors :

1. Pour tout X € K, Matg,, g, (f1 + Af2) = Matg, 5, (f1) + AMatg, 5, (f2).

2. MatBE,BG(Q of)= MatBF,Bg(g) X MatBE,BF(f)-
3. f est bijective si et seulement si Matg,, 5, (f) est inversible. Dans ce cas :

MatBF,BE (f_l) = (MatBE,BF (f))_l o

—‘ Corollaire 3

Soient F et I’ deux espaces vectoriels de dimension finie. Alors

dim(L(E, F)) = dim(E) x dim(F) et dim(£(E)) = dim(E)2.

10.3.2 Lien entre applications linéaires et matrices associées

—{ Proposition 10.9 }

Soient E et F' deux espaces vectoriels de dimension finie. On considére Bg une base de
E et Bp une base de F. Soit f € L(E, F), alors :

Vo € E, Matg,(f(z)) = Matg, 5, (f)Matg,(z).
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— Corollaire 4 (Coordonnées de I'image d’un vecteur)

Soient E et F' deux espaces vectoriels de dimension finie. On considére Bg une base de
E et Bp une base de F. Soient f € L(E,F), u € E.
Si les coordonnées de u dans la base By sont (z1, ..., ;) alors les coordonnées de f(u)
T
dans la base Br sont données par le vecteur colonne Matg,, 5. (f) x
Tp
En particulier, pour tout v € F on a :

v € Im(f) <= Matg, (v) € Im(Matg, 5, (f))

—4 Corollaire 5

Soient E et F' deux espaces vectoriels de dimension finie. On considére Bg une base de
E et Br une base de F. Soient f € L(E,F), u € E.
Alors u € ker(f) si et seulement si Matg,, g, (f)Matg, (u) = 0.

— Proposition 10.10 (Rang)

Soient E, F' deux espaces vectoriels de dimension finie et f € L(E, F'). On considére
Bg une base de E et Bp une base de F.
On a:

rg(f) = rg Matp, B, (f)) -

10.3.3 Changement de base

— Définition 10.8 (Matrice de passage)

Soit n € N*.

Soient E un espace vectoriel de dimension finie n et B, B’ deux bases de E.

On appelle matrice de passage de B a B’ et on note Pg la matrice de la famille
B’ dans la base B.

a o o / / / i
Ainsi, si B = (e],...,€,) on a:

Pgp = Matg(ell, e ,e'n).

Remarque 10.5. La matrice de passage de B a B’ est la matrice de idg dans les bases B’ et B :
PB,B’ = Matglylg(idE).

Attention & 'ordre des bases!
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—{ Proposition 10.11 }

Soit F un espace vectoriel de dimension finie et B, B’ deux bases de E.
La matrice Pg 5 est inversible et son inverse est Ppr 5 :

(Pep) ' = Py .

— Proposition 10.12 (Formules de changement de base)

Soit E un espace vectoriel de dimension finie et B, B’ des base de E.

1. Soit uw € E.
Matp(u) = PB,B/MatB/(u).

Autrement dit, la multiplication & gauche par la matrice de passage Pg ' permet
de déterminer les coordonnées de u dans "l’ancienne” base B & partir de ses
coordonnées dans la "nouvelle” base B'.

2. Soit f € L(E).
Matp (f) = Pg zMats(f)Ps -

— Définition 10.9 (Matrices semblables)

Deux matrices A et B de M,,(R) sont dites semblables s’il existe une matrice inversible
P telle que A = P~ 'BP.

—{ Proposition 10.13 }

Deux matrices A et B de M,,(R) sont semblables si et seulement si elles représentent
le méme endomorphisme (dans des bases éventuellement différentes).
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