
Chapitre 10

Applications linéaires

Dans tout le chapitre K désigne R ou C.

10.1 Applications linéaires

10.1.1 Linéarité

Soient E, F deux espaces vectoriels et f : E → F une application de E dans F .

� On dit que f est linéaire si :

∀(u, v) ∈ E2 ∀(λ, µ) ∈ K2, f(λu+ µv) = λf(u) + µf(v).

On note L(E,F ) l'ensemble des applications linéaires de E dans F .

� Une application linéaire de E dans E est appelé un endomorphisme de E.

On note L(E) l'ensemble des endomorphismes de E.

� Une application linéaire bijective est appelée un isomorphisme.

Un endomorphisme bijective est appelé un automorphisme.

Dé�nition 10.1 (Application linéaire)

Soient E, F deux espaces vectoriels et f : E → F une application de E dans F .

1. (Caractérisation des applications linéaires) f est linéaire si et seulement si pour

tout (u, v) ∈ E2 et pour tout λ ∈ R on a

f(u+ λ · v) = f(u) + λ · f(v).

2. Si f est linéaire alors pour tout n ∈ N∗, pour tous vecteurs x1, . . . , xn de E et

tous scalaires λ1, . . . , λn on a : f

(
n∑

k=1

λkxk

)
=

n∑
k=1

λkf(xk).

3. Si f est linéaire alors f(0E) = 0F .

Proposition 10.1
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Soient E,F et G des K-espaces vectoriels, (f, g) ∈ L(E,F )2 et hL(F,G).

1. Pour tout (λ, µ) ∈ K2, λf + µg est linéaire.

2. La composée h ◦ f est linéaire.

3. Si f est bijective alors f−1 est linéaire.

Proposition 10.2 (Opérations sur les applications linéaires)

Remarque 10.1. Le premier point signi�e que L(E,F ) est un sous-espace vectoriel de F(E,F ).

Soient E un espace vectoriel et f ∈ L(E). On dé�nit les puissances de f par récurrence

par {
f0 = idE

∀n ∈ N, fn+1 = f ◦ fn.

Ainsi, pour tout n ∈ N∗ on a

fn = f ◦ · · · ◦ f︸ ︷︷ ︸
n fois

.

Dé�nition 10.2 (Puissance d'un endomorphisme)

10.1.2 Noyau

Soient E, F deux K-espaces vectoriels et f ∈ L(E,F ). On appelle noyau de f et on

note ker(f), l'ensemble :

ker(f) = {u ∈ E | f(u) = 0F } .

Dé�nition 10.3 (Noyau d'une application linéaire)

Remarque 10.2. D'après la proposition ??, on a toujours 0E ∈ ker(f).

Soient E, F deux espaces vectoriels et f ∈ L(E,F ).

1. Le noyau de f est un sous-espace vectoriel de E.

2. f est injective si et seulement si ker(f) = {0E}.

Proposition 10.3

10.1.3 Image

Soient E, F deux espaces vectoriels et f ∈ L(E,F ). On appelle image de f et on note

Im(f), l'ensemble :

Im(f) = {f(u), u ∈ E} = {v ∈ F | ∃u ∈ E, f(u) = v} .

Dé�nition 10.4 (Image d'une application linéaire)
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Soient E, F deux espaces vectoriels et f ∈ L(E,F ). Alors

1. l'image de f est un sous-espace vectoriel de F ,

2. f est surjective si et seulement si Im(f) = F .

Proposition 10.4

10.2 Application linéaire en dimension �nie

10.2.1 Application linéaire et base

Soient E, F K-deux espaces vectoriels et f ∈ L(E,F ). On suppose que E est de

dimension �nie et soit B une famille génératrice de E. Alors

Im(f) = Vect((f(e))e∈B).

Proposition 10.5

Soient E, F deux K-espaces vectoriels avec E de dimension �nie et soit f ∈ L(E,F ).
Alors Im(f) est de dimension �nie et on appelle rang de f , noté rg(f), la dimension

de Im(f).

Dé�nition 10.5 (Rang d'une application linéaire)

Remarque 10.3. Soit f ∈ L(E,F ).

� La propriété précédente implique que rg(f) ≤ dim(E).

� Comme Im(f) est un sous-espace vectoriel de F , si F est de dimension �nie, alors rg(f) ≤
dim(F ) avec égalité si et seulement si f est surjective.

Soient E, F deux K-espaces vectoriels avec E de dimension �nie et soit f ∈ L(E,F ).
Il y a équivalence entre :

� f est un isomorphisme,

� il existe une base B de E telle que f(B) est une base de F ,

� pour toute base B de E, f(B) est une base de F .

Proposition 10.6

Soient E, F deux espaces vectoriels avec E de dimension �nie n ∈ N∗. On considère

une base B = (e1, . . . , en) de E et (f1, . . . , fn) une famille de vecteurs de F .

Alors il existe une unique application linéaire f ∈ L(E,F ) telle que

∀i ∈ J1, nK, f(ei) = fi.

Proposition 10.7 (Principe de détermination sur une base)
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10.2.2 Théorème du rang

Soient E, F deux espaces vectoriels avec E de dimension �nie et soit f ∈ L(E,F ).
Alors

dim(E) = dim(ker(f)) + rg(f).

Autrement dit

dim(E) = dim(ker(f)) + dim(Im(f)).

Théorème 10.1 (Théorème du rang)

Soient E, F deux espaces vectoriels de dimension �nie et f ∈ L(E,F ).

1. Si dim(E) < dim(F ) alors f n'est pas surjective.

2. Si dim(E) > dim(F ) alors f n'est pas injective.

En particulier, si dim(E) ̸= dim(F ) , il n'existe pas d'isomorphisme entre E et F .

Corollaire 1

Soient E, F deux espaces vectoriels de même dimension �nie et f ∈ L(E,F ). Alors

f est injective ⇐⇒ f est surjective ⇐⇒ f est bijective.

Corollaire 2

Remarque 10.4. En particulier, si f est un endomorphisme d'un espace vectoriel E de

dimension �nie on a donc

f est injective ⇐⇒ f est surjective ⇐⇒ f est bijective.

10.3 Matrices et applications linéaires

10.3.1 Matrices représentatives d'une application linéaire

Soient n et p deux entiers naturels non nuls.

Soit E un espace vectoriel de dimension �nie n et soit B une base de E.

1. Soit u ∈ E et notons (x1, . . . , xn) ∈ Rn les coordonnées de u dans la base B. On
appelle matrice de u dans la base B et on note MatB(u) la matrice colonnex1

...

xn

.

2. Soit (u1, . . . , up) ∈ Ep une famille de vecteurs de E. On appelle matrice de

(u1, . . . , up) dans la base B et on note MatB(u1, . . . , up) la matrice de Mn,p(R)
dont la j-ième colonne est la MatB(uj).

Dé�nition 10.6 (Matrice d'une famille de vecteurs)
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Soient E et F deux espaces vectoriels de dimension �nie. On note p ∈ N∗ la dimension

de E et n ∈ N∗ la dimension de F et on considère BE = (e1, . . . , ep) une base de E et

BF une base de F .

Soit f ∈ L(E,F ). On appelle matrice de f dans les bases BE et BF la matrice

notée MatBE ,BF
(f) dé�nie par :

MatBE ,BF
(f) = MatBF

(f(e1), . . . , f(ep)).

Il s'agit d'une matrice de taille n× p.
Pour un endomorphisme f ∈ L(E) on notera MatBE

(f) pour désigner MatBE ,BE
(f).

Dé�nition 10.7 (Matrice d'une application linéaire)

Soient E, F etG trois K-espaces vectoriels de dimension �nie. On considère BE une base

de E, BF une base de F et BG une base de G. Soient f1, f2 ∈ L(E,F ) et g ∈ L(F,G).
Alors :

1. Pour tout λ ∈ K, MatBE ,BF
(f1 + λf2) = MatBE ,BF

(f1) + λMatBE ,BF
(f2).

2. MatBE ,BG
(g ◦ f) = MatBF ,BG

(g)×MatBE ,BF
(f).

3. f est bijective si et seulement si MatBE ,BF
(f) est inversible. Dans ce cas :

MatBF ,BE
(f−1) = (MatBE ,BF

(f))−1 .

Proposition 10.8

Soient E et F deux espaces vectoriels de dimension �nie. Alors

dim(L(E,F )) = dim(E)× dim(F ) et dim(L(E)) = dim(E)2.

Corollaire 3

10.3.2 Lien entre applications linéaires et matrices associées

Soient E et F deux espaces vectoriels de dimension �nie. On considère BE une base de

E et BF une base de F . Soit f ∈ L(E,F ), alors :

∀x ∈ E, MatBF
(f(x)) = MatBE ,BF

(f)MatBE
(x).

Proposition 10.9
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Soient E et F deux espaces vectoriels de dimension �nie. On considère BE une base de

E et BF une base de F . Soient f ∈ L(E,F ), u ∈ E.

Si les coordonnées de u dans la base BE sont (x1, . . . , xp) alors les coordonnées de f(u)

dans la base BF sont données par le vecteur colonne MatBE ,BF
(f)×

x1
...

xp

.

En particulier, pour tout v ∈ F on a :

v ∈ Im(f) ⇐⇒ MatBF
(v) ∈ Im(MatBE ,BF

(f)).

Corollaire 4 (Coordonnées de l'image d'un vecteur)

Soient E et F deux espaces vectoriels de dimension �nie. On considère BE une base de

E et BF une base de F . Soient f ∈ L(E,F ), u ∈ E.

Alors u ∈ ker(f) si et seulement si MatBE ,BF
(f)MatBE

(u) = 0.

Corollaire 5

Soient E, F deux espaces vectoriels de dimension �nie et f ∈ L(E,F ). On considère

BE une base de E et BF une base de F .

On a :

rg(f) = rg (MatBE ,BF
(f)) .

Proposition 10.10 (Rang)

10.3.3 Changement de base

Soit n ∈ N∗.
Soient E un espace vectoriel de dimension �nie n et B, B′ deux bases de E.

On appelle matrice de passage de B à B′ et on note PB,B′ la matrice de la famille

B′ dans la base B.
Ainsi, si B′ = (e′1, . . . , e

′
n) on a :

PB,B′ = MatB(e
′
1, . . . , e

′
n).

Dé�nition 10.8 (Matrice de passage)

Remarque 10.5. La matrice de passage de B à B′ est la matrice de idE dans les bases B′ et B :

PB,B′ = MatB′,B(idE).

Attention à l'ordre des bases !
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Soit E un espace vectoriel de dimension �nie et B, B′ deux bases de E.

La matrice PB,B′ est inversible et son inverse est PB′,B :(
PB,B′

)−1
= PB′,B.

Proposition 10.11

Soit E un espace vectoriel de dimension �nie et B, B′ des base de E.

1. Soit u ∈ E.

MatB(u) = PB,B′MatB′(u).

Autrement dit, la multiplication à gauche par la matrice de passage PB,B′ permet

de déterminer les coordonnées de u dans "l'ancienne� base B à partir de ses

coordonnées dans la �nouvelle� base B′.

2. Soit f ∈ L(E).
MatB′(f) = P−1

B,B′MatB(f)PB,B′ .

Proposition 10.12 (Formules de changement de base)

Deux matrices A etB deMn(R) sont dites semblables s'il existe une matrice inversible

P telle que A = P−1BP .

Dé�nition 10.9 (Matrices semblables)

Deux matrices A et B de Mn(R) sont semblables si et seulement si elles représentent

le même endomorphisme (dans des bases éventuellement di�érentes).

Proposition 10.13
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