Semaines 15 et 16

du lundi 20 au 31 janvier 2025

Chapitre: Variables aléatoires à densité

Mots-clé du cours :

- notion de densité,
- moments d'une variable aléatoire,
- lois usuelles:
 - loi uniforme sur [a, b]
 - lois exponentielles
 - lois normales : densité et fonction de répartition (avec représentations graphiques), espérance et variance), simulation informatique (par outil intégré à Python que les étudiants ne doivent pas connaître par cœur), propriétés de régularité et de symétrie de la fonction de répartition de la loi $\mathcal{N}(0,1)$, loi de aX+b lorsque X suit une loi normale
 - indépendance de variables aléatoires (non nécessairement à densité) :
 - * définition et caractérisation,
 - * espérance d'un produit de variables aléatoires indépendantes admettant une espérance,
 - * variance d'une somme de variables aléatoires indépendantes admettant une variance,
 - * méthode pour étudier le max/min d'une famille finie de variables aléatoires indépendantes à densité,
 - * loi d'une somme de variables aléatoires à densité indépendantes et densité obtenue par produit de convolution des densités (la formule est à rappeler aux étudiants lors des exercices),
 - * somme de variables aléatoires indépendantes gaussiennes

Chaque étudiant devra déterminer lors d'un exercice la loi de la somme de deux variables aléatoires à densité via un produit de convolution.

S'il reste du temps, un petit exercice de révision d'analyse pourra être proposé (ou intégré dans l'exercice sur les variables à densité.

Résultats à connaitre :

□ caractérisation de variables aléatoires à densité (par leur fonction de répartition),
\square Si X admet une espérance, $aX+b$ admet une espérance pour tout $(a,b)\in\mathbb{R}^2$
□ linéarité de l'espérance
\Box théorème du transfert pour les variables aléatoires à densité,
\square loi uniforme sur $[a,b]$:
 densité, fonction de répartition (démonstration exigible), espérance (démonstration exigibles, variance (démonstration exigible) simulation en Python
\Box loi exponentielle de paramètre λ :
 densité, fonction de répartition (démonstration exigible),
- espérance (démonstration exigible),

- variance (démonstration exigible)
- lien avec la loi uniforme sur $[0,1[$ (démonstration exigible)
- simulation en Python
- absence de mémoire
\square lois normales :
– densité,
$-$ espérance (${\bf d\acute{e}monstration}$ exigible en retrouvant l'espérance de la loi normale centrée réduite) ,
- variance (démonstration exigible en retrouvant la variance de la loi normale centrée réduite),
\square loi de $aX + b$ lorsque X suit une loi normale et $a \neq 0$,
\Box loi de la somme de deux variables aléatoires à densité indépendantes,

 \square loi de la somme de deux variables aléatoires normales indépendantes (+ généralisation à une somme finie),