Exercice 1.

[Corrigé] ★★☆

A l'aide du théorème des accroissements finis, montrer que, pour tout $x \in \mathbb{R}$, $|\sin x| \leq |x|$.

Exercice 2.

Montrer que la fonction f définie ci-dessous définit une bijection entre $\left[0, \frac{\pi}{2}\right]$ et un ensemble à déterminer, puis étudier la continuité et la dérivabilité de sa réciproque.

$$f: \begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix} \to \mathbb{R}$$

$$x \mapsto \sqrt{\sin x} + x$$

Exercice 3.

[Corrigé] ★★☆

On considère les fonctions f et g définies sur $[0, +\infty[$ par :

$$\forall x \in [0, +\infty[, f(x) = \ln(1 + e^x) \text{ et } g(x) = \int_0^x f(t) dt.$$

1. Construire le tableau de variations de g sur $[0, +\infty[$.

Déterminer la limite et la branche infinie de g en $+\infty$ et donner l'allure de la courbe représentative de g sur $[0, +\infty[$.

- 2. Déterminer le signe de la fonction h définie sur $[0, +\infty[$ par h(x) = g(x) x.
- 3. On considère la suite (u_n) de premier terme $u_0 \in [0, +\infty[$ et telle que :

$$\forall n \in \mathbb{N}, \ u_{n+1} = g(u_n).$$

Déterminer la nature de la suite (u_n) selon la valeur de u_0 .

Exercice 4.

[Corrigé] ★★☆

On considère la fonctions f définie sur $[1, +\infty[$ par $f(x) = \frac{x \ln x}{x+1}$.

- 1. Démontrer que, pour tout entier naturel n non nul, l'équation f(x) = n admet une unique solution, qu'on notera α_n .
- 2. Démontrer que, pour tout entier naturel n non nul, $\alpha_n \geqslant e^n$.
- 3. Démontrer que $\alpha_n \sim e^n$.
- 4. On en déduit que $\alpha_n = e^n(1 + \varepsilon(n))$ où $\lim_{n \to +\infty} \varepsilon(n) = 0$.

Montrer que $\varepsilon(n) \underset{n \to +\infty}{\sim} ne^{-n}$. En déduire l'existence d'une suite ε_1 telle que :

$$\forall n \in \mathbb{N}^*, \ \alpha_n = e^n + n + n\varepsilon_1(n) \text{ et } \lim_{n \to +\infty} \varepsilon_1(n) = 0.$$

Exercice 5.

Déterminer les limites suivantes :

(i)
$$\lim_{x \to 0} \frac{\ln(1+x) - x - \frac{x^2}{2}}{x^2}$$

(v)
$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}}$$

(ii)
$$\lim_{x \to 1} \frac{x^2 - 2x + 1}{1 - x + \ln x}$$

(iii)
$$\lim_{x \to +\infty} \sqrt[3]{x^3 + x^2} - \sqrt[3]{x^3 - x^2}$$

(vi)
$$\lim_{x \to 0} \left(\cos x + \frac{1}{2} \sin^2 x \right)^{\frac{1}{x^4}}$$

(iv)
$$\lim_{x \to 0} \frac{e^x - e^{\sin x}}{x^3}$$

(vii)
$$\lim_{x \to 0} \frac{e^{\arctan x} - e^{\tan x}}{e^{\arcsin x} - e^{\sin x}}$$

Exercice 6.

[Corrigé] ★★☆

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction réelle admettant des dérivées partielles sur \mathbb{R} et soit $\alpha \in \mathbb{R}$. On dit que f est positivement homogène de degré α si :

$$\forall (x,y) \in \mathbb{R}^2, \ \forall t \in \mathbb{R}^{+*}, \ f(tx,ty) = t^{\alpha} f(x,y)$$

1. On suppose que f est positivement homogène de degré α . Montrer alors que ses dérivées partielles sont positivement homogènes de degré $\alpha - 1$, i.e. :

$$\forall (x,y) \in \mathbb{R}^2, \ \forall t \in \mathbb{R}^{+*}, \ \frac{\partial f}{\partial x}(tx,ty) = t^{\alpha-1}\frac{\partial f}{\partial x}(x,y) \ \text{ et } \ \frac{\partial f}{\partial y}(tx,ty) = t^{\alpha-1}\frac{\partial f}{\partial y}(x,y).$$

2. Montrer que si f est positivement homogène de degré α , alors on a:

$$\forall (x,y) \in \mathbb{R}^2, \ x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = \alpha f(x,y). \ (\star)$$

- 3. On suppose réciproquement que f vérifie la relation (\star) .
 - a. Montrer que, pour tout $(x,y) \in \mathbb{R}^2$, l'application $\varphi: t \to f(tx,ty)$ vérifie l'équation différentielle :

$$\forall t > 0, \ \varphi'(t) = \frac{\alpha}{t} \varphi(t).$$

b. En déduire que f est positivement homogène de degré α .

Exercice 7.

On considère la fonction f définie sur \mathbb{R}^2 par :

$$f(x,y) = \begin{cases} \frac{x^4 y^2}{x^6 + y^4} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

Montrer que f admet des dérivées partielles en tout point de \mathbb{R}^2 et les calculer.

Exercice 8.

[Corrigé] ★★★

Déterminer, dans chacun des cas, toutes les fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ définies et admettant des dérivées partielles sur \mathbb{R}^2 telles que :

$$(i) \ \frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial^2 f}{\partial y \partial x}(x,y) = x^2 + y^2 \qquad \qquad (ii) \ \frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial^2 f}{\partial y \partial x}(x,y) = xy.$$

Exercice 9.

[Corrigé] ★★★

Soit a un réel strictement positif.

Soit $f:[0,a]\to\mathbb{R}$ une fonction dérivable sur [0,a] telle que f(0)=f'(0)=f(a)=0.

- 1. Montrer que la dérivée de la fonction $x \mapsto \frac{f(x)}{x}$ s'annule sur]0, a[.
- 2. En déduire qu'il existe un autre point que l'origine en lequel la tangente à C_f passe par l'origine.

Exercice 10. Applications du théorème des accroissements finis [Corrigé] *** Déterminer $\lim_{x \to +\infty} \left((x+1)e^{\frac{1}{x+1}} - xe^{\frac{1}{x}} \right)$.

Exercice 11. Racines des polynômes de Legendre

[Corrigé] ★★★

- 1. Soit $n \in \mathbb{N}$ et soit $f: I \to \mathbb{R}$ une fonction de classe \mathcal{C}^n s'annulant en n+1 points distincts de I. Montrer que $f^{(n)}$ s'annule au moins une fois sur I.
 - Indication : on pourra étudier les zéros des dérivées successives de la fonction f.
- 2. Pour tout $n \in \mathbb{N}$, on considère le polynôme $P_n : x \mapsto (x^2 1)^n$. Montrer que le polynôme de Legendre $L_n = P_n^{(n)}$ admet n racines réelles distinctes sur l'intervalle] – 1; 1[.

Indication : on pourra étudier les racines des polynômes $\left(P_n^{(k)}\right)_{k\in [\![0,n]\!]}$

[Corrigé] ★★☆ Exercice 12. Méthode de Newton

[Corrigé] ★★★

Soit $f:[a,b] \to \mathbb{R}$ une fonction de classe \mathcal{C}^2 sur [a,b] (a < b). On suppose que :

$$f(a) > 0$$
, $f(b) < 0$, $f' < 0$ et $f'' > 0$ sur $[a, b]$

- 1. Montrer qu'il existe un unique $c \in]a, b[$ tel que f(c) = 0.
- 2. On considère la suite $(x_n)_{n\in\mathbb{N}}$ définie par $x_0=a$ et pour tout $n\in\mathbb{N},\ x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$.
 - a. Montrer que la suite $(x_n)_{n\in\mathbb{N}}$ est bien définie, à valeurs dans l'intervalle [a,c]. On pourra considérer la fonction $x \mapsto x - \frac{f(x)}{f(x)}$
 - b. Montrer que la suite converge. Déterminer sa limite.
- 3. a. Justifier l'existence de $m = \min_{x \in [a,b]} |f'(x)|$ et $M = \max_{x \in [a,b]} f''(x)$.
 - b. Montrer que la fonction $x \mapsto f(x) + (c-x)f'(x) + \frac{M}{2}(c-x)^2$ est positive sur [a, c].
 - c. En déduire que, pour tout entier naturel n, on a :

$$0 \leqslant c - x_{n+1} \leqslant \frac{M}{2m} (x_n - c)^2.$$

On dit alors que la convergence est quadratique : le nombre de décimales exactes dans l'approximation de c par les termes de la suite double à chaque itération.

d. En déduire qu'il existe un réel $q \in \mathbb{R}$ tel que, pour tout entier n, on ait :

$$0 \leqslant c - x_n \leqslant \frac{\left[q(c - x_0)\right]^{2^n}}{q}.$$

4. Écrire en Python une fonction permettant de renvoyer une approximation à l'aide de la méthode de Newton du zéro sur un segment d'une fonction passée en argument.

On supposera que la fonction vérifie les conditions de l'énoncé.