Exercice 1

Écrire en Python un fonction **somme_rec** qui prend en argument une liste de nombres et qui renvoie la somme de ses éléments. On impose dans cette question que la fonction soit **récursive** et on convient que **somme_rec([]) = 0**.

Exercice 2

- 1. Étudier la nature de la série $\sum_{n \in \mathbb{N}} e^{-n^3}$.
- 2. Montrer la convergence de la série $\sum_{n\in\mathbb{N}} \frac{(n+1)(2^n-n!)}{2^n\times(n!)}$ et calculer sa somme.

Exercice 3

Pour tout $n \ge 2$, on pose $u_n = \ln \ln (n+1) - \ln \ln n$

- 1. Montrer que la série $\sum_{n\geq 2} u_n$ diverge.
- 2. À l'aide du théorème des accroissements finis appliqué à la fonction $f: x \mapsto \ln(\ln x)$ sur un intervalle à identifier, démontrer que : $\forall n \ge 2, \ u_n \le \frac{1}{n \ln n}$.
- 3. En déduire que la nature de la série $\sum_{n\geqslant 2} \frac{1}{n \ln n}$.

Exercice 4

Pour tout entier $n \ge 1$, on pose :

$$u_n = \frac{n^{n+\frac{1}{2}}e^{-n}}{n!}$$
 et $v_n = \ln\left(\frac{u_{n+1}}{u_n}\right)$.

- 1. Montrer que la suite $(v_n)_{n\geqslant 1}$ est bien définie puis donner un équivalent de v_n lorsque n tend vers $+\infty$. Indication: on utilisera le développement limité de $\ln(1+x)$ à l'ordre 3 en 0.
- 2. Déterminer la nature de la série $\sum\limits_{n\geqslant 1}v_n$
- 3. En déduire par télescopage que la suite $(\ln u_n)_{n\geq 1}$ converge.

Exercice 5

Soit f une fonction de classe \mathcal{C}^1 sur \mathbb{R}^2 . Préciser si chacune des fonctions ci-dessous est dérivable sur \mathbb{R} ou admet des dérivées partielles sur \mathbb{R}^2 et calculer la dérivée ou les dérivées partielles associées.

- 1. $g_1:(x,y)\mapsto f(y,x)$
- $2. \ g_2: x \mapsto f(x,x)$
- 3. $g_3:(x,y)\mapsto f(y,f(x,x))$
- 4. $g_4: x \mapsto f(x, f(x, x))$.

Indication : on pourra utiliser le résultat sur la fonction g_2 pour traiter les fonctions g_3 et g_4 .

* *