Exercice 1

Soit X une variable aléatoire telle que $X(\Omega) = \{-1, 1\}$ et $\mathbb{P}(X = 1) = p$, où $p \in]0, 1[$. On pose q = 1 - p.

Soit $(X_k)_{k\in\mathbb{N}}$ une suite de variables aléatoires indépendantes, de même loi que X. On pose $T_n = \prod_{k=0}^n X_k$.

- 1. Écrire une fonction Python prenant en argument p et n et simulant la loi de T_n .
- 2. a. Calculer l'espérance et la variance de X.
 - b. Donner l'espérance de T_n . En déduire la loi de T_n .
- 3. a. On pose $u_n = \mathbb{P}(T_n = 1)$ pour tout $n \in \mathbb{N}$. Montrer que :

$$\forall n \geqslant 0, \ u_{n+1} = (2p-1)u_n + 1 - p.$$

b. Retrouver la loi de T_n .

Exercice 2

On dit qu'une matrice carrée est symétrique (resp. antisymétrique) si elle est égale (resp. opposée) à sa transposée. Pour tout $n \in \mathbb{N}^*$, on note respectivement $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ l'ensemble des matrices symétriques et et l'ensemble des matrices antisymétriques de $\mathcal{M}_n(\mathbb{R})$:

$$\mathcal{S}_n(\mathbb{R}) = \{ A \in \mathcal{M}_n(\mathbb{R}) \mid A^T = A \} \text{ et } \mathcal{A}_n(\mathbb{R}) = \{ A \in \mathcal{M}_n(\mathbb{R}) \mid A^T = -A \}.$$

- 1. Montrer que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont des sous-espaces vectoriels de $\mathcal{M}_n(\mathbb{R})$.
- 2. Montrer que toute matrice de $\mathcal{M}_n(\mathbb{R})$ s'écrit de manière unique comme la somme d'une matrice symétrique et d'une matrice antisymétrique.
- 3. Montrer que $S_3(\mathbb{R})$ est de dimension 6 et $A_3(\mathbb{R})$ est de dimension 3.
- 4. Bonus : donner sans justification les dimensions de $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$.

Exercice 3

- 1. Calculer le rang de la famille (sin, cos).
- 2. Soit $(a, b, c) \in \mathbb{R}^3$. On pose :

$$f: x \mapsto \sin(x+a), \ g: x \mapsto \sin(x+b) \ \text{et} \ h: x \mapsto \sin(x+c).$$

Justifier que la famille (f, g, h) est liée. On attend ici une démonstration élégante et non de la virtuosité calculatoire.

* *