Questions de cours

- 1. Énoncer l'inégalité triangulaire pour les séries.
- 2. Énoncer la formule des probabilités totales.
- 3. Énoncer la caractérisation d'une racine multiple d'un polynôme.

Exercice 1

Écrire en Python une fonction index_assemble prenant en argument une liste de listes de nombres L (de mêmes longueurs) et qui renvoie une liste de listes dont la première sous-liste est composée des premiers éléments de chaque sous-liste de L, la deuxième sous-liste est composée des deuxièmes éléments de chaque sous-liste de L, et ainsi de suite... Par exemple, l'instruction index_assemble([[1,2,3,4],[5,6,7,8]] devra renvoyer [[1,5],[2,6],[3,7],[4,8]].

Exercice 2

On considère le polynôme $P = X^3 - X + 1$.

- 1. Montrer que P admet une unique racine réelle, qu'on notera α . On étudiera la fonction $P: x \mapsto x^3 x + 1$ sur \mathbb{R} .
- 2. Justifier que $\alpha < -1$.
- 3. Notons β et γ les deux autres racines non nécessairement distinctes de P. Exprimer $\beta + \gamma$ et $\beta \gamma$ en fonction de α .
- 4. Justifier que β et γ sont complexes conjugués. En déduire que $|\beta|=|\gamma|<1$.
- 5. Montrer que $\alpha^2 + \beta^2 + \gamma^2 = 2$.

Exercice 3

Soit γ un réel strictement positif. Pour tout $n \in \mathbb{N}^*$, on note $x_n = \frac{1}{n^{\gamma}} - \frac{1}{(n+1)^{\gamma}}$

- 1. Montrer que la série $\sum_{n\in\mathbb{N}^*} x_n$ converge et calculer sa somme.
- 2. Montrer que $x_n \sim \frac{\gamma}{n^{\gamma+1}}$.
- 3. En déduire que, pour tout $\alpha>1,$ la série $\sum_{n\in\mathbb{N}^*}\frac{1}{n^{\alpha}}$ converge.

Exercice 4 (extrait d'Agro MCR 2025)

Soient a et b deux entiers naturels. On définit :

$$f_{a,b}: x \mapsto x^a (1-x)^b$$
 et $I_{a,b} = \int_0^1 f_{a,b}(x) dx$.

- 1. Pour tout entier naturel n, calculer $I_{0,n}$.
- 2. Soit $(a,b) \in \mathbb{N}^2$ tel que $a \neq 0$. Trouver une relation entre $I_{a,b}$ et $I_{a-1,b+1}$.
- 3. En déduire que, pour tout $a \in \mathbb{N}$, on a :

$$\forall b \in \mathbb{N}, \ I_{a,b} = \frac{a!b!}{(a+b+1)!}.$$

4. Déterminer $\lim_{n \to +\infty} \frac{I_{n+1,n+1}}{I_{n,n}}$.

- 5. Soit u une suite réelle et ℓ un réel. Donner la définition, avec quantificateurs, de $\lim_{n \to +\infty} = \ell$.
- 6. En déduire l'existence d'un rang n_0 tel que, pour tout $n \geqslant n_0$, $\frac{I_{n+1,n+1}}{I_{n,n}} \leqslant \frac{1}{2}$.
- 7. En déduire que, pour tout $n \ge n_0$, $I_{n,n} \le \frac{2^{n_0} I_{n_0,n_0}}{2^n}$.
- 8. Déterminer la nature de la série de terme général $I_{n,n}$.
- 9. a. Déterminer un équivalent de $\ln\left(\frac{2n}{2n+1}\right)$ lorsque n tend vers $+\infty$.
 - b. En déduire la limite de $\exp\left((2n+1)\ln\left(\frac{2n}{2n+1}\right)\right)$ lorsque n tend vers $+\infty$.
 - c. Déterminer un équivalent de $4^nI_{n,n}$ lorsque n tend vers $+\infty$ à l'aide de la **formule de Stirling** :

$$n! \underset{n \to +\infty}{\sim} n^n e^{-n} \sqrt{2\pi n}.$$

d. En déduire la nature de la série de terme général $4^nI_{n,n}$.

Exercice 5

Le cirque où travaillent les singes Albert et Bernard décide de nourrir ses ouistitis. On leur donne n tas de n+1 bananes. Albert, qui trouve que Bernard mange trop, a décidé de lui jouer un tour (ils sont espiègles ces ouistitis!) : il a remplacé certaines bananes par des imitations en plastique plus vraies que nature. Plus précisément, dans le tas n°i, il a remplacé i bonnes bananes bien mûres par i bananes en plastique immangeables.

Pour tout $i \in [1, n]$, le tas n°i contient donc n + 1 bananes, dont i en plastique et n + 1 - i vraies bananes. Dans tout l'exercice, on pourra utiliser les événements T_i : "Bernard a choisi le tas n°i", ainsi que tout événement que vous définirez correctement.

- 1. Bernard a faim. Il choisit un tas au hasard puis en tire une banane au hasard.
 - a. Déterminer la probabilité que la banane soit en plastique.
 - b. La banane est en plastique. Calculer la probabilité qu'elle vienne du tas n°i.
- 2. Bernard trouve ça bizarre, ces bananes en plastique. Il choisit un tas au hasard, et y tire successivement trois bananes, en les remettant dans le tas après les avoir tirées.
 - a. (i) Déterminer, en fonction de $i \in [1, n]$, la probabilité d'avoir obtenu trois bananes mangeables sachant que Bernard a choisi le tas n°i.
 - (ii) En déduire la probabilité d'avoir obtenu trois bananes mangeables.
 - b. Soit A l'événement "Bernard a tiré exactement deux bananes en plastique".

Montrer que $\mathbb{P}(A) = \sum_{i=1}^{n} \frac{3i^2(n+1-i)}{n(n+1)^3}$ puis calculer $\mathbb{P}(A)$.

- 3. Bernard commence à avoir très faim. Il choisit un tas au hasard, et en tire simultanément k bananes simultanément.
 - a. Calculer la probabilité que Bernard ait k bananes mangeables. (On gardera le résultat sous forme de somme)
 - b. Démontrer que, pour tout $n \ge 3$ et pour tout $k \in [1, n]$, on a :

$$\sum_{i=k}^{n} \binom{i}{k} = \binom{n+1}{k+1}.$$

c. Simplifier alors l'expression obtenue à la question 3.a.

* *