Exercice 1. \heartsuit

Calculer le rang des matrices ci-dessous. Dans le cas où elles sont inversibles, déterminer Soit E un \mathbb{K} -espace vectoriel et soit $f \in \mathcal{L}(E)$. Montrer que : leur inverse.

$$A = \begin{pmatrix} 2 & 7 & 3 \\ 3 & 9 & 4 \\ 1 & 5 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 3 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ -1 & 1 & 1 & 2 \\ 1 & 3 & 4 & 2 \end{pmatrix}$$

$$C = \begin{pmatrix} 2 & 1 & -2 & 1 \\ -1 & 3 & -1 & 1 \\ 3 & -1 & 1 & 3 \\ 1 & 2 & -3 & 0 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & -1 & 1 & 1 \\ -1 & 0 & 1 & -1 \\ 0 & -1 & 2 & 0 \\ 2 & -1 & 0 & 2 \end{pmatrix}.$$

Exercice 2. \heartsuit

[Corrigé] ★☆☆

On considère les applications suivantes :

$$f: \quad \mathbb{R}^2 \quad \rightarrow \quad \mathbb{R}^3 \quad \text{et} \quad g: \quad \mathbb{R}^3 \quad \rightarrow \quad \mathbb{R}^2 \\ (x,y) \quad \mapsto \quad (x-y,x,x+y) \quad \text{et} \quad (x,y,z) \quad \mapsto \quad (x+y+z,2x-y+3z)$$

- 1. a. Montrer que f est une application linéaire.
 - b. Déterminer son noyau, son image et son rang.
 - c. L'application f est-elle injective? surjective? bijective?
- 2. Même question pour l'application g.

Exercice 3. \heartsuit

[Corrigé] ★★☆

Montrer à l'aide d'une application linéaire bien choisie que l'ensemble E défini ci-dessous est un \mathbb{R} -espace vectoriel.

$$E = \left\{ f \in \mathcal{C}^0([0,1], \mathbb{R}) \mid \int_0^1 f(x) \, \mathrm{d}x = 0 \right\}$$

Exercice 4. \heartsuit

[Corrigé] ★★☆

On considère la matrice $A = \begin{pmatrix} 2 & -2 & 1 \\ 2 & -3 & 2 \\ -1 & 2 & 0 \end{pmatrix}$.

- 1. Calculer le rang de la matrice A. Que peut-on en déduire ?
- 2. Calculer $(A I_3)(A + 3I_3)$. En déduire que A^{-1} .
- 3. Montrer que, pour tout $n \in \mathbb{N}$, il existe $(u_n, v_n) \in \mathbb{R}^2$ tel que $A^n = u_n A + v_n I_3$
- 4. Exprimer u_n et v_n puis A^n en fonction de $n \in \mathbb{N}$.

[Corrigé] ★★☆

- (i) Ker $f = \text{Ker } f^2 \Leftrightarrow \text{Im } f \cap \text{Ker } f = \{0_E\}.$
- (ii) Im $f = \text{Im } f^2 \Leftrightarrow \forall z \in E, \exists (x, y) \in \text{Ker } f \times \text{Im } f, \ z = x + y.$

Exercice 6.

[Corrigé] ★★☆

Soient a un réel et n un entier naturel. On considère la fonction f définie sur $\mathbb{R}_n[X]$ par :

$$\forall P \in \mathbb{R}_n[X], \ f(P) = (X - a)(P' + P'(a)) - 2(P - P(a)).$$

- 1. Vérifier que f est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Déterminer la matrice A de f dans la base canonique de $\mathbb{R}_n[X]$.
- 3. Montrer que la famille $\mathcal{B} = (1, (X a), \dots, (X a)^n)$ est une base de $\mathbb{R}_n[X]$. Déterminer la matrice D de f dans cette base.
- 4. Quelle relation existe-t-il entre A et D? On pourra remarquer que $f = \operatorname{Id}_{\mathbb{R}_n[X]} \circ f \circ \operatorname{Id}_{\mathbb{R}_n[X]}$.

Exercice 7.

[Corrigé] ★★☆

Soit E un K-espace vectoriel et soit $f \in \mathcal{L}(E)$ tel que $f^2 - 5f + 6 \operatorname{Id}_E = 0$.

- 1. Calculer $(f-2\operatorname{Id}_E)\circ (f-3\operatorname{Id}_E)$ et $(f-3\operatorname{Id}_E)\circ (f-2\operatorname{Id}_E)$.
- 2. En déduire que :

$$\forall z \in E, \exists !(x,y) \in \text{Ker}(f-2 \operatorname{Id}_E) \times \text{Ker}(f-3 \operatorname{Id}_E), z = x + y.$$

Exercice 8.

Soit f un endomorphisme non nul d'un K-espace vectoriel E de dimension 3 tel que $f^2 = 0$

- 1. Comparer Ker f et Im f.
- 2. En déduire le rang de f et la dimension de son noyau.
- 3. En déduire qu'il existe une base \mathcal{B} de E dans laquelle la matrice de f est

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

On construira la base \mathcal{B} en commençant par considérer un vecteur $c \in E \setminus \operatorname{Ker} f$.

Exercice 9. Oraux 2010

[Corrigé] ★★★ Exercice 13.

Dans le \mathbb{R} -espace vectoriel $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ des fonctions réelles à valeurs réelles, on considère le sous-espace vectoriel F engendré par les fonctions f_1 , f_2 et f_3 où :

$$f_1: x \mapsto e^{-x}, \quad f_2: x \mapsto (x-1)e^{-x}, \quad f_3: x \mapsto (x^2+1)e^{-x}.$$

- 1. Montrer que la famille $\mathcal{B} = (f_1, f_2, f_3)$ est une base de F.
- 2. À toute fonction f de F, on associe la fonction $\Phi(f)$ définie par $\Phi(f) = f'$. Montrer que Φ est un endomorphisme de F, puis écrire la matrice A de Φ dans \mathcal{B} .
- 3. Calculer A^n pour tout $n \in \mathbb{N}$ (on pourra écrire $A = -I_3 + J$).

Exercice 10.

[Corrigé] ★★★

Soit $n \in \mathbb{N}^*$. Soit $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$ la matrice de $\mathcal{M}_n(\mathbb{R})$ définie par :

$$a_{i,j} = \begin{cases} (-1)^{i-1} \binom{j-1}{i-1} & \text{si } 1 \leqslant i \leqslant j \leqslant n \\ 0 & \text{sinon} \end{cases}$$

- 1. Montrer que l'application $f: P(X) \mapsto P(1-X)$ est un endomorphisme de $\mathbb{R}_{n-1}[X]$. Attention, le polynôme f(P) n'est pas le résultat d'un produit mais d'une composition.
- 2. Calculer A^2 puis A^{-1} .

Exercice 11. Oraux 2007

[Corrigé] ★★★

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}.$$

- 1. Déterminer la dimension des espaces Ker(f-Id), Ker(f-3Id) et $Ker(f-3Id)^2$.
- 2. Montrer que, pour tout vecteur $x \in \mathbb{R}^3$, il existe un unique couple de vecteurs $(u, z) \in \operatorname{Ker}(f - \operatorname{Id}) \times \operatorname{Ker}(f - 3\operatorname{Id})^2 \text{ tel que } x = y + z.$

Exercice 12. Oraux 2011

[Corrigé] ★★★

Soit u un endomorphisme non nul de \mathbb{R}^3 tel que $u^3 = -u$.

- 1. Montrer que $\operatorname{Im}(u^2 + \operatorname{Id}) \subset \operatorname{Ker} u$.
- 2. En déduire que, pour tout $x \in \mathbb{R}^3$, il existe un unique couple $(y,z) \in \operatorname{Ker} u \times \operatorname{Ker} (u^2 + \operatorname{Id})$ tel que x = y + z.
- 3. Montrer que $Ker(u^2 + Id) \neq \{0\}$.

[Corrigé] ★★★

Soit E un K-espace vectoriel et soit f un endomorphisme de E tel que $f^3 = 0$.

Montrer que $f + \mathrm{Id}_E$ et $f - \mathrm{Id}_E$ sont des automorphismes de E et exprimer leurs réciproques respectives à l'aide de puissances de f.

Exercice 14.

[Corrigé] ★★★

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique \mathcal{B} est :

$$A = \begin{pmatrix} 2 & 10 & 7 \\ 1 & 4 & 3 \\ -2 & -8 & -6 \end{pmatrix}$$

- 1. a. La matrice A est-elle inversible?
 - b. Calculer A^2 et A^3 et déterminer le rang de ces deux matrices.
- 2. a. Montrer que Ker $f \subset \text{Ker } f^2$.
 - b. Déterminer Ker f et en donner une base ainsi que sa dimension.
 - c. A-t-on Ker $f = \text{Ker } f^2$?
- 3. On note u = (-2, -1, 2).
 - a. Montrer qu'il existe $v \in \mathbb{R}^3$ tel que f(v) = u et dont la deuxième coordonnée est 1.
 - b. Montrer qu'il existe $w \in \mathbb{R}^3$ tel que f(w) = v et dont la deuxième coordonnée est 1.
 - c. Montrer que $\mathcal{B}' = (u, v, w)$ est une base de \mathbb{R}^3 , puis écrire la matrice P de passage de \mathcal{B} dans \mathcal{B}' , i.e. $P = \operatorname{Mat}_{\mathcal{B}}(\mathcal{B}') = \operatorname{Mat}_{\mathcal{B}',\mathcal{B}}(\operatorname{Id})$.
 - d. Justifier que P est inversible et calculer P^{-1} .
 - e. Déterminer la matrice N de f dans \mathcal{B}' . Quelle relation lie A et N?
- 4. Pour tout $B \in \mathcal{M}_3(\mathbb{R})$, on note :

$$C_B = \{ M \in \mathcal{M}_3(\mathbb{R}) \mid BM = MB \}.$$

- a. Montrer que, pour tout $B \in \mathcal{M}_3(\mathbb{R})$, C_B est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
- b. Montrer que $C_N = \text{Vect}(I_3, N, N^2)$.
- c. Montrer que, pour tout $M \in \mathcal{M}_3(\mathbb{R})$, on a

$$M \in C_A \Leftrightarrow P^{-1}MP \in C_N$$
.

d. En déduire que $C_A = \text{Vect}(I_3, A, A^2)$. Quelle est la dimension de C_A ?

Exercice 15.

[Corrigé] ★★★

On note $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et D l'application qui, à toute fonction f de E associe f'. On considère les trois fonctions de E suivantes :

$$f_1: t \mapsto e^t, \ f_2: t \mapsto e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}}{2}t\right), \ f_3: t \mapsto e^{-\frac{t}{2}} \cos\left(\frac{\sqrt{3}}{2}t\right)$$

On note $\mathcal{B} = (f_1, f_2, f_3)$ et $G = \text{Vect}(\mathcal{B})$.

- 1. a. Montrer que \mathcal{B} est libre. Que peut-on en déduire ?
 - b. Montrer que pour tout $f \in G$, $D(f) \in G$.

On dit que G est stable par D et on note d l'endomorphisme induit par D sur G, i.e. :

$$\begin{array}{ccc} d: & G & \to & G \\ & f & \mapsto & D(f) = f'. \end{array}$$

- c. Préciser la matrice M de d dans la base \mathcal{B} de G.
- d. Calculer M^3 . En déduire que M est inversible et préciser son inverse.
- e. L'application d est-elle un automorphisme? Si oui, expliciter d^{-1} .
- 2. On cherche à résoudre l'équation différentielle $y^{(3)} = y$ (*).
 - a. Montrer que si f est une fonction solution de (*), alors f est dérivable trois fois et donc de classe \mathcal{C}^{∞} .
 - b. Soit $T = D^3 \mathrm{Id}_E$. Montrer que T est un endomorphisme de E.
 - c. Montrer que l'ensemble des solutions de (*) est Ker T.
 - d. Montrer, sans calcul, que $G \subset \operatorname{Ker} T$.
 - e. On veut désormais montrer l'inclusion réciproque, i.e. $\operatorname{Ker} T \subset G$.
 - (i) Soit f une solution de (*). On note g = f + f' + f''. Montrer que g' = g.
 - (ii) En déduire g puis f.
 - (iii) Conclure.

Applications linéaires

Corrigé de l'exercice 1. [Énoncé]

1. Après calculs, on trouve que $\operatorname{rg}(A)=3$. La matrice $A\in\mathcal{M}_3(\mathbb{R})$ est donc inversible. Soient $(a,b,c,x,y,z)\in\mathbb{R}^6$. Après calculs, on trouve que :

$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \Leftrightarrow \begin{cases} 2x + 7y + 3z = a \\ 3x + 9y + 4z = b \\ x + 5y + 3z = c \end{cases}$$
$$\Leftrightarrow \begin{cases} x = -\frac{7}{3}a + 2b - \frac{1}{3}c \\ y = \frac{5}{3}a - b - \frac{1}{3}c \\ x = -2a + b + c \end{cases}$$
$$\Leftrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -\frac{7}{3} & 2 & -\frac{1}{3} \\ \frac{5}{3} & -1 & -\frac{1}{3} \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

On en déduit que $A^{-1} = \begin{pmatrix} -\frac{7}{3} & 2 & -\frac{1}{3} \\ \frac{5}{3} & -1 & -\frac{1}{3} \\ -2 & 1 & 1 \end{pmatrix}$.

- Après calculs, on trouve que rg(B) = 3.
 Puisque B ∈ M₄(ℝ), la matrice B n'est pas inversible.
- 3. Après calculs, on trouve que rg(C) = 3. Puisque $C \in \mathcal{M}_4(\mathbb{R})$, la matrice C n'est pas inversible.
- 4. Après calculs, on trouve que $\operatorname{rg}(D)=2$. Puisque $D\in\mathcal{M}_4(\mathbb{R})$, la matrice D n'est pas inversible.

Corrigé de l'exercice 2. [Énoncé]

1. a. Soient u = (x, y), v = (x', y') et $\lambda \in \mathbb{R}$.

$$f(\lambda u + v) = (\lambda x + x' - \lambda y - y', \lambda x + x', \lambda x + x' + \lambda y + y')$$

= $\lambda (x - y, x, x + y) + (x' - y', x', x' + y')$
= $\lambda f(u) + f(v)$.

L'application f est donc bien linéaire : $f \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$.

b. Soit $(x, y) \in \mathbb{R}^2$.

$$(x,y) \in \operatorname{Ker} f \Leftrightarrow \begin{cases} x-y=0 \\ x=0 \\ x+y=0 \end{cases} \Leftrightarrow (x,y) = (0,0).$$

On en déduit que Ker $f = \{(0,0)\}.$

Puisque l'image d'un application linéaire est engendrée par l'image d'une base de l'espace de départ (si celui-ci est de dimension finie), on a :

$$\operatorname{Im} f = \operatorname{Vect} \Big(f((1,0)), f((0,1)) \Big) = \operatorname{Vect} \Big((1,1,1), (-1,0,1) \Big).$$

Les vecteurs (1,1,1) et (-1,0,1) n'étant pas colinéaires, ils forment une base de Im f (qui est donc de dimension 2). On propose ci-dessous trois méthodes pour déterminer le rang de l'application f:

- Par définition, $\operatorname{rg} f = \dim \operatorname{Im} f = 2$.
- Le rang de f est donné par le rang de sa matrice relativement aux bases canoniques (par exemple) de \mathbb{R}^2 et \mathbb{R}^3 :

$$\operatorname{rg} f = \operatorname{rg} \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = 2$$

• Puisque \mathbb{R}^2 (espace de départ) est de dimension finie, on peut appliquer le théorème du rang à l'application linéaire f:

$$\operatorname{rg} f = \dim \mathbb{R}^2 - \dim \operatorname{Ker} f = 2.$$

c. L'application f est injective car $\text{Ker } f = \{(0,0)\}.$

L'application f n'est pas surjective car $\operatorname{Im} f \neq \mathbb{R}^3$ (les deux espaces n'ont pas la même dimension).

L'application f n'est donc pas un isomorphisme de \mathbb{R}^2 dans \mathbb{R}^3 (ce qu'on savait déjà puisque les deux espaces n'ont pas la même dimension.

- 2. a. La démonstration de la linéarité de g ne pose aucun problème.
 - b. On trouve après calculs que $\operatorname{Ker} g = \operatorname{Vect}((-4, 1, 3))$.

Puisque l'image d'un application linéaire est engendrée par l'image d'une base de l'espace de départ (si celui-ci est de dimension finie), on a :

$$\operatorname{Im} g = \operatorname{Vect} \Big(g((1,0,0)), g((0,1,0)), g((0,0,1)) \Big) = \operatorname{Vect} \Big((1,2), (1,-1), (1,3) \Big).$$

Les vecteurs (1,2) et (1,-1) n'étant pas colinéaires, ils engendrent un espace de dimension 2, donc \mathbb{R}^2 . On en déduit que Im $g = \mathbb{R}^2$.

• Par définition, $\operatorname{rg} g = \dim \operatorname{Im} g = 2$.

• Le rang de g est donné par le rang de sa matrice relativement aux bases canoniques (par exemple) de \mathbb{R}^2 et \mathbb{R}^3 :

$$\operatorname{rg} g = \operatorname{rg} \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & 3 \end{pmatrix} = 2$$

• Puisque \mathbb{R}^3 (espace de départ) est de dimension finie, on peut appliquer le théorème du rang à l'application linéaire g:

$$\operatorname{rg} g = \dim \mathbb{R}^3 - \dim \operatorname{Ker} g = 2.$$

- c. L'application g est n'est pas injective car $\operatorname{Ker} g \neq \{(0,0,0)\}.$
 - L'application g est pas surjective car $\operatorname{Im} f = \mathbb{R}^2$.
 - L'application g n'est donc pas un isomorphisme de \mathbb{R}^3 dans \mathbb{R}^2 (ce qu'on savait déjà puisque les deux espaces n'ont pas la même dimension.

Corrigé de l'exercice 3. [Énoncé]

Remarquons que $C^0([0,1],\mathbb{R})$ est un \mathbb{R} -espace vectoriel (sous-espace vectoriel de $\mathcal{F}(\mathbb{R},\mathbb{R})$). On considère l'application

$$\varphi: \quad \mathcal{C}^0([0,1],\mathbb{R}) \quad \to \quad \mathbb{R}$$

$$f \qquad \qquad \mapsto \quad \int_0^1 f.$$

L'application φ est bien une application linéaire (entre deux \mathbb{R} -espaces vectoriels) par linéarité de l'intégrale. L'ensemble E peut être alors vu comme le noyau de φ ; c'est donc un sous-espace vectoriel de $\mathcal{C}^0([0,1],\mathbb{R})$, et donc un \mathbb{R} -espace vectoriel.

Corrigé de l'exercice 4. [Énoncé]

- 1. On trouve que rg(A) = 3. Puisque $A \in \mathcal{M}_3(\mathbb{R})$, la matrice A est inversible.
- 2. On trouve que $(A I_3)(A + 3I_3) = 0_3$. En développant le membre de gauche, on trouve que $A^2 + 2A 3I_3 = 0_3$, ou encore :

$$\frac{1}{3}(A+2I_3) \times A = I_3.$$

On en déduit que $A^{-1} = \frac{1}{3} (A + 2I_3)$.

3. Montrons le résultat par récurrence sur $n \in \mathbb{N}$.

$$A^0 = 0A + 1I_3$$
, donc $u_0 = 0$ et $v_0 = 1$.

Soit $n \in \mathbb{N}$. Supposons qu'il existe $(u_n, v_n) \in \mathbb{R}^2$ tel que $A^n = u_n A + v_n I_3$.

$$A^{n+1} = u_n A^2 + v_n A$$

= $(-2u_n + v_n)A + 3u_n I_3$
= $u_{n+1}A + v_{n+1}I_3$,

où $u_{n+1} = -2u_n + v_n$ et $v_{n+1} = 3u_n$.

La propriété étant initialisée et héréditaire, elle est donc vraie pour tout $n \in \mathbb{N}$.

4. La suite $(u_n)_{n\in\mathbb{N}}$ est récurrente linéaire d'ordre 2 :

$$\forall n \in \mathbb{N}, \ u_{n+2} = -2u_{n+1} + v_{n+1} = -2u_{n+1} + 3u_n.$$

Après calculs, on trouve que :

$$\forall n \in \mathbb{N}, \ u_n = \frac{1}{4} (1 - (-3)^n).$$

Puisque pour tout $n \in \mathbb{N}^*$, $v_n = 3u_{n-1}$, on a:

$$\forall n \in \mathbb{N}^*, \ v_n = \frac{1}{4} (3 + (-3)^n).$$

Attention: cette formule est encore vraie pour n = 0 puisque $v_0 = 1$.

On trouve alors que :

$$\forall n \in \mathbb{N}, \ A^n = \frac{1}{4} (1 - (-3)^n) A + \frac{1}{4} (3 + (-3)^n) I_3.$$

Corrigé de l'exercice 5. [Énoncé]
Corrigé de l'exercice 6. [Énoncé]

1. Soit $(P,Q) \in \mathbb{R}_n[X]^2$ et $\lambda \in \mathbb{R}$.

$$f(\lambda P + Q)$$
= $(X - a)((\lambda P + Q)' + (\lambda P + Q)'(a)) - 2((\lambda P + Q) - (\lambda P + Q)(a))$
= $\lambda [(X - a)(P' + P'(a)) - 2(P - P(a))] + (X - a)(Q' + Q'(a)) - 2(Q - Q(a))$
= $\lambda f(P) + f(Q)$.

Pour tout $P \in \mathbb{R}_n[X]$, on a

$$(X - a)(P' + P'(a)) \in \mathbb{R}_n[X] \text{ et } 2(P - P(a)) \in \mathbb{R}_n[X],$$

donc $f(P) \in \mathbb{R}_n[X]$.

On en déduit que f est un endomorphisme de $\mathbb{R}_n[X]$.

2. On trouve que $f(1) = f(X) = f(X^2) = 0$, et pour tout $k \in [3, n]$:

$$f(X^{k}) = 2 - ka^{k} + a^{k-1}kX - akX^{k-1} + (k-2)X^{k}.$$

La matrice A de f dans la base canonique de $\mathbb{R}_n[X]$ est donc :

$$A = \begin{pmatrix} 0 & 0 & 0 & -a^3 & -2a^4 & \dots & (2-n)a^n \\ \vdots & \vdots & \vdots & 3a^2 & 4a^3 & \dots & na^{n-1} \\ \vdots & \vdots & \vdots & -3a & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & 1 & -4a & \ddots & \vdots \\ \vdots & \vdots & \vdots & 0 & 2 & \ddots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & -na \\ 0 & 0 & 0 & 0 & \dots & 0 & n-2 \end{pmatrix}$$

3. Les polynômes de la famille \mathcal{B} sont de degrés étagés, ils forment donc une famille libre. Puisque la famille \mathcal{B} est formée de n+1 polynômes de $\mathbb{R}_n[X]$, qui est de dimension n+1, \mathcal{B} est une base de $\mathbb{R}_n[X]$.

On trouve que f(1) = f(X - a) = 0 et :

$$\forall k \in [2, n], \ f((X - a)^k) = (k - 2)(X - a)^k.$$

La matrice D de f dans cette base est donc :

$$D = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 & \vdots & & \vdots \\ \vdots & \vdots & \vdots & 0 & \vdots & (0) & \vdots \\ \vdots & \vdots & \vdots & 1 & 0 & & \vdots \\ \vdots & \vdots & \vdots & 0 & 2 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & n-2 \end{pmatrix}$$

4. On note $\mathcal C$ la base canonique de $\mathbb R_n[X]$. Puisque $f=\mathrm{Id}_{\mathbb R_n[X]}\circ f\circ \mathrm{Id}_{\mathbb R_n[X]},$ on a :

$$\begin{split} A &= \operatorname{Mat}_{\mathcal{C}}(f) \\ &= \operatorname{Mat}_{\mathcal{C} \leftarrow \mathcal{B}}(\operatorname{Id}_{\mathbb{R}_n[X]}) \operatorname{Mat}_{\mathcal{B}}(f) \operatorname{Mat}_{\mathcal{B} \leftarrow \mathcal{C}}(\operatorname{Id}_{\mathbb{R}_n[X]}) \\ &= PDP^{-1} \text{ où } P = \operatorname{Mat}_{\mathcal{C} \leftarrow \mathcal{B}}(\operatorname{Id}_{\mathbb{R}_n[X]}) = \operatorname{Mat}_{\mathcal{C}}(\mathcal{B}). \end{split}$$

Corrigé de l'exercice 7. [Énoncé]

- 1. Par distributivité de la composition sur l'addition, on trouve que $(f-2\operatorname{Id}_E)\circ (f-3\operatorname{Id}_E)=0$ et $(f-3\operatorname{Id}_E)\circ (f-2\operatorname{Id}_E)=0$.
- 2. Montrons le résultat par analyse-synthèse.

Analyse. Soit $z \in E$.

Supposons qu'il existe $(x, y) \in \text{Ker}(f - 2 \text{Id}_E) \times \text{Ker}(f - 3 \text{Id}_E)$ tel que z = x + y.

Puisque $x \in \text{Ker}(f - 2 \text{Id}_E)$, f(x) = 2x. Par un argument analogue, on a f(y) = 3y.

Ainsi:

$$(f - 2 \operatorname{Id}_E)(z) = (f - 2 \operatorname{Id}_E)(y) = f(y) - 2y = y$$

 $(f - 3 \operatorname{Id}_E)(z) = (f - 3 \operatorname{Id}_E)(x) = f(x) - 3x = -x,$

ce qui assure <u>l'unicité</u> des vecteurs x et y.

Synthèse. Soit $z \in E$. Posons $x = -(f - 3 \operatorname{Id}_E)(z)$ et $y = (f - 2 \operatorname{Id}_E)(z)$.

D'après la question précédente, on a :

$$\operatorname{Im}(f - 3\operatorname{Id}_E) \subset \operatorname{Ker}(f - 2\operatorname{Id}_E) \text{ et } \operatorname{Im}(f - 2\operatorname{Id}_E) \subset \operatorname{Ker}(f - 3\operatorname{Id}_E).$$

Puisque $x \in \text{Im}(f - 3 \text{Id}_E)$ et $y \in \text{Im}(f - 2 \text{Id}_E)$, on en déduit que $x \in \text{Ker}(f - 2 \text{Id}_E)$ et $y \in \text{Ker}(f - 3 \text{Id}_E)$. De plus :

$$x + y = -(f - 3\operatorname{Id}_E)(z) + (f - 2\operatorname{Id}_E)(z) = -f(z) + 3z + f(z) - 2z = z.$$

Pour tout $z \in E$, il existe donc un unique couple $(x,y) \in \text{Ker}(f-2\operatorname{Id}_E) \times \text{Ker}(f-3\operatorname{Id}_E)$ tel que z=x+y.

Corrigé de l'exercice 8. [Énoncé]

- 1. Soit $y \in \text{Im } f$. Il existe $x \in E$ tel que f(x) = y. Ainsi $f(y) = f^2(x) = 0_E$, i.e. $y \in \text{Ker } f$. On en déduit que $\text{Im } f \subset \text{Ker } f$.
- 2. Puisque ${\cal E}$ est de dimension finie, on peut appliquer le théorème du rang :

$$\operatorname{rg} f + \dim \operatorname{Ker} f = \dim E = 3.$$

D'après la question précédente, rg $f \leq \dim \operatorname{Ker} f$ donc $2 \operatorname{rg} f \leq \operatorname{rg} f + \dim \operatorname{Ker} f = 3$. On en déduit que rg f = 0 ou rg f = 1. Puisque $f \neq 0$, rg f = 1 et ainsi dim $\operatorname{Ker} f = 2$.

3. Raisonnons par analyse-synthèse.

Applications linéaires

 \bullet Analyse. Supposons qu'il existe une base (a,b,c) de E dans laquelle la matrice de

$$f$$
 est $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. On en déduit alors que $f(a) = f(b) = 0_E$ et $f(c) = a$ puis que

b appartient au noyau de f, et a appartient à la fois au noyau et à l'image de f. Puisque (a,b,c) est une base de E, (a,b) est une famille libre de Ker f. Puisque dim Ker f=2, (a,b) forme une base de Ker f. On en déduit que $c \notin \operatorname{Ker} f$.

• Synthèse. Soit $c \in E \setminus \text{Ker } f$. On pose a = f(c). Puisque $a \in \text{Im } f$, $a \in \text{Ker } f$.

Par hypothèse $a \neq 0$, donc (a) forme une famille libre, qu'on complète en une base (a,b) de Ker f (qui est de dimension 2).

Soit $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$ tel que $\lambda_1 a + \lambda_2 b + \lambda_3 c = 0_E$. On a alors :

$$\lambda_1 f(a) + \lambda_2 f(b) + \lambda_3 f(c) = 0_E,$$

i.e. $\lambda_3 a = 0_E$. Puisque $a \neq 0_E$, $\lambda_3 = 0$ et ainsi $\lambda_1 a + \lambda_2 b = 0_E$. Puisque (a, b) est libre, $\lambda_1 = \lambda_2 = 0$. On en déduit que la famille $\mathcal{B} = (a, b, c)$ est libre ; elle forme donc une base de E.

Puisque $f(a) = f(b) = 0_E$ et f(c) = a, la matrice de f dans la base \mathcal{B} est :

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Corrigé de l'exercice 9. [Énoncé] Corrigé de l'exercice 10. [Énoncé]

1. Remarquons que, pour tout $P \in \mathbb{R}_{n-1}[X]$, $f(P) \in \mathbb{R}_{n-1}[X]$.

Soit $(P,Q) \in \mathbb{R}_{n-1}[X]^2$ et soit $\lambda \in \mathbb{R}$.

$$f(\lambda P + Q) = (\lambda P + Q)(1 - X) = \lambda P(1 - X) + Q(1 - X) = \lambda f(P) + f(Q).$$

L'application f est donc un endomorphisme de $\mathbb{R}_{n-1}[X]$.

2. L'idée était ici de remarquer que la matrice A est celle qui représente l'endomorphisme f

dans la base canonique de $\mathbb{R}_{n-1}[X]$ (qu'on notera \mathcal{B}_c):

$$\forall j \in \llbracket 1,n \rrbracket, \ f\left(X^{j-1}\right) = (1-X)^{j-1} \text{ d'après la formule du binôme de Newton}$$

$$= \sum_{k=0}^{j-1} (-1)^k \binom{j-1}{k} X^k$$

$$= \sum_{i=1}^j (-1)^{i-1} \binom{j-1}{i-1} X^{i-1}$$

$$= \sum_{i=1}^j a_{i,j} X^{i-1}.$$

Puisque $A = \operatorname{Mat}_{\mathcal{B}_c}(f)$, $A^2 = \operatorname{Mat}_{\mathcal{B}_c}(f^2)$. Or $f^2 = \operatorname{Id}_{\mathbb{R}_{n-1}[X]}$ puisque, pour tout $P \in \mathbb{R}_{n-1}[X]$, $f^2(P) = f(P)(1-X) = P(1-(1-X)) = P(X)$.

On en déduit que $A^2 = I_n$, et ainsi que A est inversible, d'inverse la matrice A elle-même.

Corrigé de l'exercice 11. [Énoncé]

1. La matrice de f dans la base canonique de \mathbb{R}^3 est :

$$A - I_3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

D'après le théorème du rang, on a (puisque \mathbb{R}^3 est de dimension finie) :

$$\dim \operatorname{Ker}(f - \operatorname{Id}) = 3 - \operatorname{rg}(f - \operatorname{Id}).$$

Or $rg(A - I_3) = 2$, donc dim Ker(f - Id) = 1.

En appliquant le même raisonnement, on trouve que $\dim(f - 3\operatorname{Id}) = 1$.

Enfin, toujours par le même raisonnement, on trouve que la matrice de $(f-3\operatorname{Id})^2$ relativement à la base canonique de \mathbb{R}^3 est :

$$(A - 3I_3)^2 = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

On a immédiatement $rg(A - 3I_3)^2 = 1$ donc dim $Ker(f - 3Id)^2 = 2$ par le théorème du rang.

2. Montrons le résultat par analyse-synthèse.

Analyse. Soit $x \in \mathbb{R}^3$. Supposons qu'il existe un unique couple $(y,z) \in \text{Ker}(f-\text{Id}) \times$ $\operatorname{Ker}(f-3\operatorname{Id})^2$ tel que x=y+z.

Puisque $(f-3 \text{ Id})^2 = f^2 - 6f + 9 \text{ Id}$ et f(y) = y, $(f-3 \text{ Id})^2(x) = f^2(y) - 6f(y) + 9y = 4y$. La dernière égalité assure l'unicité de y (et donc celle de z puisque z = x - y).

Synthèse. Soit $x \in \mathbb{R}^3$. Posons :

$$y = \frac{1}{4}(f - 3\operatorname{Id})^2(x)$$
 et $z = x - y$.

Vérifions que $y \in \text{Ker}(f - \text{Id})$ et $z \in \text{Ker}(f - 3 \text{Id})^2$.

Un calcul montre que $(A-I_3) \times (A-3I_3)^2 = 0_3$. Ainsi $\operatorname{Im}(f-3\operatorname{Id})^2 \subset \operatorname{Ker}(f-\operatorname{Id})$, ce qui implique que $y \in \text{Ker}(f - \text{Id})$.

Remarquons que:

$$(f - 3\operatorname{Id})^2(z) = (f - 3\operatorname{Id})^2(x) - \frac{1}{4}(f - 3\operatorname{Id})^4(x).$$

Or un second calcul montre que $(A-3I_3)^4=4(A-3I_3)^2$. On en déduit donc que 1. a. Soit $(a,b,c)\in\mathbb{R}^3$ tel que $af_1+bf_2+cf_3=0$, i.e. : $z \in \text{Ker}(f-3\text{Id})^2$, ce qui conclut le raisonnement.

Corrigé de l'exercice 12. Énoncé

1. Soit $y \in \text{Im}(u^2 + \text{Id})$. Il existe $x \in \mathbb{R}^3$ tel que $y = (u^2 + \text{Id})(x) = u^2(x) + x$.

Ainsi $u(y) = u^3(x) + u(x) = 0$, ce qui signifie que $y \in \text{Ker } u$.

On en déduit que $\operatorname{Im}(u^2 + \operatorname{Id}) \subset \operatorname{Ker} u$.

2. Raisonnons par analyse-synthèse.

Analyse. Soit $x \in \mathbb{R}^3$.

Supposons qu'il existe un unique couple $(y,z) \in \text{Ker } u \times \text{Ker}(u^2 + \text{Id})$ tel que x = y + z. On a alors $(u^2 + \mathrm{Id})(x) = (u^2 + \mathrm{Id})(y) = y$, ce qui assure l'unicité de y (et donc celle de z puisque z = x - y.

Synthèse. Soit $x \in \mathbb{R}^3$.

Posons $y = (u^2 + \mathrm{Id})(x)$ et z = x - y. Montrons que $y \in \mathrm{Ker}\, u$ et $z \in \mathrm{Ker}(u^2 + \mathrm{Id})$.

Puisque $y \in \text{Im}(u^2 + \text{Id}), y \in \text{Ker } u$ d'après la première question. De plus :

$$(u^2 + \operatorname{Id})(z) = u^2(z) + z = u^2(x) - u^2(y) + x - y = (u^2 + \operatorname{Id})(x) - y = 0.$$

On en déduit que $z \in \text{Ker}(u^2 + \text{Id})$, ce qui conclut l'analyse-synthèse :

$$\forall x \in \mathbb{R}^3, \ \exists !(y,z) \in \operatorname{Ker} u \times \operatorname{Ker}(u^2 + \operatorname{Id}), \ x = y + z.$$

3. Puisque l'endomorphisme u est non nul, dim $\operatorname{Ker} u < 3$. On en déduit que $\operatorname{rg}(u^2 + \operatorname{Id}) < 3$ et, par le théorème du rang, dim $\operatorname{Ker}(u^2 + \operatorname{Id}) > 0$, i.e. $\operatorname{Ker}(u^2 + \operatorname{Id}) \neq \{0\}$.

Corrigé de l'exercice 13. Énoncé

Puisque f et Id_E commutent, on a :

$$(f - \operatorname{Id}_E) \circ (f^2 + f + \operatorname{Id}_E) = f^3 - \operatorname{Id}_E = -\operatorname{Id}_E.$$

On en déduit que $f - \mathrm{Id}_E$ est un automorphisme de E, et de réciproque $-f^2 - f - \mathrm{Id}_E$. De manière analogue, on a :

$$(f + \operatorname{Id}_E) \circ (f^2 - f + \operatorname{Id}_E) = f^3 + \operatorname{Id}_E = \operatorname{Id}_E.$$

On en déduit que $f + \mathrm{Id}_E$ est un automorphisme de E, et de réciproque $f^2 - f + \mathrm{Id}_E$.

Corrigé de l'exercice 14. [Énoncé] Corrigé de l'exercice 15. Énoncé

$$\forall t \in \mathbb{R}, \ ae^t + be^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}}{2}t\right) + ce^{-\frac{t}{2}} \cos\left(\frac{\sqrt{3}}{2}t\right).$$

En multipliant par e^{-t} , on trouve :

$$\forall t \in \mathbb{R}, \ a + be^{-\frac{3t}{2}} \sin\left(\frac{\sqrt{3}}{2}t\right) + ce^{-\frac{3t}{2}} \cos\left(\frac{\sqrt{3}}{2}t\right).$$

En passant à la limite lorsque t tend vers $+\infty$, on trouve a=0. En évaluant en t=0, on obtient c=0. Il vient immédiatement que b=0.

On en déduit que \mathcal{B} est libre et donc une base de G.

b. Après calculs, on trouve que $D(f_1) = f_1 \in G$ et :

•
$$D(f_2) = -\frac{1}{2}f_2 + \frac{\sqrt{3}}{2}f_3 \in G$$
, • $D(f_3) = -\frac{\sqrt{3}}{2}f_2 - \frac{1}{2}f_3 \in G$.

Pour tout $f \in G$, il existe $(a, b, c) \in \mathbb{R}^3$ tel que $f = af_1 + bf_2 + cf_3$, et ainsi par linéarité de l'application D, on a :

$$D(f) = aD(f_1) + bD(f_2) + cD(f_3) \in G.$$

On a donc bien montré que pour tout $f \in G$, $D(f) \in G$.

- c. On trouve immédiatement que $M=\operatorname{Mat}_{\mathcal{B}}(d)=\begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{-\sqrt{3}}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$.
- d. On obtient $M^3 = I_3$, ce qui signifie que M est inversible, d'inverse :

$$M^{-1} = M^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & \frac{-\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}.$$

e. La matrice de l'endomorphisme d étant inversible, d est un automorphisme de G et $d^{-1} = d^2$. On en déduit que d^{-1} est l'opérateur de dérivation seconde :

$$d^{-1}: G \to G$$

$$f \mapsto f''.$$

- 2. a. Si f est une solution de (*) alors f est nécessairement trois fois dérivable pour vérifier $f^{(3)} = f$. Un raisonnement par récurrence (à faire !) montrerait que f est \mathcal{C}^{3n} pour tout $n \in \mathbb{N}$, donc \mathcal{C}^{∞} .
 - b. Puisque la dérivée de toute fonction \mathcal{C}^{∞} est une fonction \mathcal{C}^{∞} , l'opérateur D est un endomorphisme de E (la linéarité est déjà connue).

Par opérations sur les endomorphismes, $T = D^3 - \mathrm{Id}_E$ est un endomorphisme de E.

- c. Une fonction y de E est solution de (*) si, et seulement si, $y^{(3)} y = 0$, i.e. si, et seulement si, $D^3 \mathrm{Id}_E(y) = 0$, ce qui revient à T(y) = 0. On en déduit que l'ensemble des solutions de (*) est $\mathrm{Ker}\,T$.
- d. On a démontré à la question 1.d que $M^3 = I_3$, i.e pour tout $f \in G$, $f^{(3)} = f$. On obtient donc bien que $G \subset \operatorname{Ker} T$.
- e. (i) Soit f une solution de (*). La fonction g est bien dérivable puisque f est \mathcal{C}^{∞} et :

$$g' = f' + f'' + f^{(3)} = f' + f'' + f = g.$$

(ii) La résolution de l'équation différentielle g'=g montre qu'il existe $K\in\mathbb{R}$ tel que, pour tout $x\in\mathbb{R},$ $g(x)=Ke^x.$

Soit $K \in \mathbb{R}$. La résolution de l'équation différentielle $f'' + f' + f = Ke^x$ nous donne une expression de f:

$$\exists (\lambda, \mu) \in \mathbb{R}^2, \ \forall x \in \mathbb{R}, \ f(x) = \frac{K}{3}e^x + \lambda e^{-\frac{x}{2}}\cos\left(\frac{\sqrt{3}}{2}x\right) + \mu e^{-\frac{x}{2}}\sin\left(\frac{\sqrt{3}}{2}x\right).$$

On en déduit que $f = \frac{K}{3}f_1 + \lambda f_2 + \mu f_3 \in G$. On a donc bien prouvé l'inclusion réciproque $\operatorname{Ker} T \subset G$.

f. Puisque $\operatorname{Ker} T = G$, l'ensemble des solutions de (*) est le sous-espace vectoriel $G = \operatorname{Vect}(f_1, f_2, f_3)$ de E.