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3. Cherchons une solution particuliére de 1’équation différentielle :
1. (E): Vt € R, 4y"(t) + 4y (t) + y(t) = e 3.

1.

def somme(L,i,j):
s =0
for k in range(i,j):
s += L[k]
return L

def sous_liste_long(L,k):
s_max = somme(L,0,k)
for i in range(0,len(L)—k):
s = somme(L,i,i+k)
if s > s_max:
s_max = s
return s_max

Exercice 2

On reconnait une équation différentielle linéaire homogeéne d’ordre 2. L’équation carac-

1
téristique associée a (H) est 472 +4r + 1 = 0 qui admet une solution double : r = —5

L’ensemble des solutions de (H) est donc :

F:{R - R t,(A,u)eRQ}.

t = (M+pe 2

. Posons f1 : t — te~s et foit— e~2. On trouve que :

F={\fi+nfe, (A p) € R?} = Vect(f1, f2).

Puisque les fonctions f; et f; appartiennent au R-espace vectoriel E des fonctions
dérivables (continues ou C* convenait aussi) sur R, F' est un sous-espace vectoriel de
FE donc un R-espace vectoriel.

Remarquons que la famille (fi, f2) est génératrice de F. Etudions sa liberté. Soit
(A, 1) € R? tel que Af; + pfz = 0. Ainsi : Vt € R, (Mt + u)e*% = 0. En particulier, en
évaluant en t =0 et ¢ = 1, on trouve que p =0 et A+ =0 donc que A = 4 =0. La
famille (f1, f2) est donc une base de F' qui est donc de dimension 2.

sous la forme g : t — (at? + bt + ¢)e~2 ou (a,b,c) € R3. Or :
Vt € R, g(t) = at?e” + (bt + c)e 2.

Puisque toutes les fonctions de la forme ¢ — (bt+c¢)e™2 sont solutions de 'équation ho-
mogéne associée, le principe de superposition assure qu’il suffit de chercher une solution
de la forme h : t — at?e" 2.

La fonction h est deux fois dérivable sur R et :

Nl

VteER, W(t)=a (—;R + 2t> e”

]. t t t
h’/(t)a{<4t2t)e2+(t+2)e2 =— (*—8t+8)e 2.

AN

La fonction h est solution de (FE) si, et seulement :
Vt € R, 4h"(t) + 4h'(t) + h(t) = e~ 3
SVEER, a(P—8t+8)e % +a(-22+8t)e 2 +atde F =¢
&S VteR, 8a=1.

oo+

2
On trouve ainsi que la fonction ¢ — “_e~ % est une solution particuliére de (E), ce qui

permet de déterminer ’ensemble des solutions de (F) :

R — R
2 ; 2
t - <8+)\t+u>ez » (A p) ER

Exercice 3

. Soit A € R et soient A et B deux carrés magiques d’ordre 3, i.e. (A, B) € F2.

Les sommes de coefficients de chaque ligne, colonne et diagonale de AA sont toutes
égales Ass. Ainsi AMA € F. Les sommes de coefficients de chaque ligne, colonne et
diagonale de A + B sont toutes égales s4 + sp. Ainsi A+ B € F.

On en déduit que F est un sous-espace vectoriel de M3 (R).

. Remarquons que Fy C F. En reprenant la démonstration de la question précédente

avec (A,B) € FZ,ona sy =sg=0. Ainsi Asq =0 et s4 +s5 =0, i.e. NA€ Fp et
A+ B € Fy. On en déduit que Fj est un sous-espace vectoriel de F.
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3. Soit M € F. La matrice —£J appartient & F et la somme des coefficients de chacune
de ses lignes, colonnes et diagonales est égale a s. Ainsi, a somme des coefficients de
S
chacune des lignes, colonnes et diagonales de la matrice My = M — ?MJ est égale a 0.

On en déduit que M = My + %MJ ot My € Fy et %J caq.

Montrons que cette décomposition est unique.

Soient (A, B) € Fy x G tel que M = A+ B. 1l existe donc A € R tel que B = AJ. Ainsi
MO+%J=A+AJ, fe. My— A= (n— M
de chaque ligne de la matrice My — A est égale a 0 et que celle de chaque ligne de

(A — S?M)J est 3\ — sy, on en déduit que A = M

)J. Puisque la somme des coefficients

s
—, l.e. B = M 7. 11 vient alors
immeédiatement que A = My, ce qui prouve 'unicité de la décomposition.

On en déduit que toute matrice de F' s’écrit de maniére unique comme la somme

d’une matrice de Fy et d’une matrice de G.

On aurait pu raisonner par analyse-synthése pour trouver les candidats de Fy et G s’ils
ne sautaient pas auxr yeur.

a b e
4. a. Soit N=|c d f| une matrice de Fyp.

g h 1
En considérant la somme des coefficients des deux premiéres lignes, on trouve
e=—(a+b)et f=—(c+d). En considérant la somme des coefficients des deux
premiéres colonnes, on trouve g = —(a +c¢) et h = —(b+ d). En considérant la
somme des coefficients de la diagonale (au sens matriciel), on trouve i = —(a+d).
Ainsi toute matrice N € Fyy peut s’écrire sous la forme :

a b —(a+1b)
c d —(c+d)
—(a+c¢) —(b+d) —(a+4d)

En considérant la derniére ligne et la seconde diagonale, on trouve :

20 +b+c+2d=0et2a+b+c+d=0.

On en déduit que |d =0et c = —2a—b.‘

b. D’apreés la question précédente, on a :

a b —(a+b)
Foc{|—2a-b 0 2a+b |,(a,b) €R?p = Vect(U,V)
a+b —b —a

ou :
1 0 -1 0 1 -1
U=|-2 0 2 etV=|-1 0 1
1 0 -1 1 -1 0

On vérifie facilement que U € Fy et V € Fy. Ainsi Vect(U,V) C Fy et donc
Vect(U, V) C Fy. Les matrices U et V n’étant colinéaires (cela peut se vérifier en
considérant le coefficient de la premiére ligne, premiére colonne de U et V), ainsi
la famille (U, V') est libre donc une base de Fy, qui est donc de dimension 2.

5. D’aprés la question 3, F' C Vect(U,V, J). En effet, soit M € F. Ilexiste (N, B) € FoxG

tel que M = N + B. D’aprés la question 4, il existe (\,a,b) € R®, N = aU + bV et
B =M\J. Ainsi, M = aU + bV 4+ A\J € Vect(U,V, J).

Les matrices U, V et J appartiennent a F donc Vect(U,V, J) C F et F = Vect(U,V, J).

Puisque (U, V) est libre et J ¢ Fy = Vect(U, V), la famille (U, V, J) est encore libre ;
c’est donc une base de F.

On en déduit que F' est un espace vectoriel de dimension 3.

Exercice 4

a. (i) Pour tous n € N* et ¢ € [0, z],

n

n—1
1—-t"
thilzztk:ﬁ Cart#l.
k=0

p=1

(ii) Soit n € N*. Pour tout p € N*, la fonction (t — t”_l) est continue sur [0, z],

1 n
tout comme les fonctions (t — 1t> et (t — 1 t) . Par intégration sur

[0, z] et linéarité de l'intégrale, on trouve

tLor Todt T ogn T ogn
Z/ At = ——/ dt:—ln(l—x)—/ —dt,

et ainsi que :

D P S AL
* —=—In(1—2)— dt.
VnEN,;p n(l—x) /0 T3
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t" t"

(iii) Soit n € N*. Pour tout ¢t € [0,2], 0 <1 —2 < 1—1t donc 0 < T S7 .
— -z

Par croissance de I'intégrale, on trouve que :

Togn o 1
0< dt < dt = ————.
/0 1—t /0 1—z (n+1)(1—2x)

(iv) Le théoréme d’encadrement assure que :

x n

lim dt = 0.
n—-+oo 0 1—

Par passage a la limite de ’égalité obtenue a la question 1.a.(ii), on obtient

. P
que la série Y. — converge et
peN= P
—+oo
2P
— =—In(1—2).
p=1

b. En appliquant la formule du triangle de Pascal, on trouve (en reconnaissant une
somme télescopique) que, pour tout n = m :

> ()= () - G = (G - () = ()

k=m k=m

On pouvait aussi démontrer le résultat par récurrence sur n > m.

2. a. On commence par écrire une fonction simulant des lois géométriques ; on conclut
en sommant les simulations des variables (Xj)1<k<n-

import random as rd

def geometrique(x):
rang = 1
while rd.random() > x:
rang += 1
return rang

def simule_S(n,x):
somme = 0
for k in range(n):
somme += geometrique(x)
return somme

. Puisque X;(2) = N* pour tout k € [1,n], alors ‘ Sn(Q) = [n, —l—oo[[.‘

Par indépendance des variables (X%)1<k<n+1 les variables S, = X7 +---+ X, et
X 41 sont indépendantes d’aprés le lemme des coalitions.

Puisque ([S,, = j]) i>n forme un systéme complet d’événements, on peut appliquer
la formule des probabilités totales pour tout entier naturel k >n + 1 :

P(Sys1 = k)

+ oo
= Z P([Sn = j] N [Snt1 = k]) (la série converge par o-additivité)
j=n
—+o0
= P([Sn =41 N [Sn + Xpns1 = K])
j=n
+oo
= ZP([Sn :J} n [Xn+1 =k _.7])
j=n

+oo
= Z]P’(Sn = j)P(X,,+1 = k — j) par indépendance de S,, et X, 11
j=n

k—1
Z]P(Sn =j)P(Xpny1=k—j)carVj 2k, [Xpp1 =k —j]=0

j=n

k—1
= | > B(S0 = HP(Xns1 = k = j),

j=n

e Initialisation. Pour n =1, on a :
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D’aprés la question précédente, on a :

Vk=n+1, P(Spa =k) = ZIE”

P = gy Z (n—l)

i=n—1

k-1
= ( >x"+1(1 —z)P= (D (@apres 1.b).
n

La propriété est initialisée et héréditaire. Ainsi

vk >n, P(S, =k) = (k a 1)33"(1 —x)k .

n—1

d. Puisque S,,(Q2) = [n, +o0o[, on a obtient immédiatement que :

+o00o +00
1= ZP(Sn =k)= Z (?k;: i)x"(l —z)k .
k=n

k=n

On en déduit que :

* = k—1 k—n 1
Va €]0,1[, Vn e N*, > (1—z)bm=—,

n—1 "
k=n

3. a. Pour tout k € N*, ¢* > 0et —lnp > 0 (car p €]0,1[) donc u; > 0. La suite
(uk)ken+ est donc bien a valeurs positives.

k
b. D’aprés la question 1.a.(iv), la série > K converge et :
keN~*

F¢j+

% —In(l —¢q)=—Inp.

x>

On en déduit que la série Y wuy converge et : Z up = 1.
keN*

c. Soit N € N*. En reconnaissant une somme partielle de série géométrique de raison
q, convergente car |¢| < 1, on trouve :

N = —¢ N\~ —4 4
P(X = k) =—Y ¢#=—2% ¢ =
1;1' ( )l 1npk§::1q Inp ;q N—>—+>oo (1-¢q)lnp plnp

Puisque la série > kP(X =
keN*

k) converge absolument, X admet une espérance et

E(X)= —L.

plnp

d. Soit N € N*. En reconnaissant une somme partielle de série géométrique dérivée
de raison ¢, convergente car |g| < 1, on trouve :

N
-1
Sl =) = o 3t = S

k=1 k

—q —q
Notoe (1—q)2lnp p?Inp

Puisque la série > k?P(X = k) converge absolument, X2 admet une espérance
keN~
d’aprés le théoréme du transfert, égale & :

—-q

E(XQ) = Plnp’

La formule de Konig-Hyugens assure que X admet une variance, égale & :

V(X)=E (X?) - E(X)?
—q 'S

Plnp  (plop)’

_| —a(g+Inp)
(pInp)?
a. On obtient immédiatement que :
+o00
Y(Q) =J[0.k=N
k=1
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Puisque ([X = k]), oy forme un systéme complet d’événements, on trouve, en verge par o-additivité) :
vertu de la formule des probabilités totales (la série ci-dessous converge par o-
additivité) :
ZP = k)Pix—i (Y =n)
+o00
P(Y =0) =Y P(X = k)Px_(Y =0) = ZIP’ = k)Pix—g (Y =n) (car Vk < n, Pix_p(Y =n) = 0)
k=1
oo ok WX gk (k-1
—q k _ q n_ k—n
=S o (e =% inp(no 1)
klnp \O = nlnp\n
k=1 c=n
00 n,n 1+°
_ii(qg)k _ pq Z( )2k2n
~Inp k n—1
k=1
i 1-— 2 n n 100
= M d’aprés la question 1.a.(iv) et puisque ¢* € [0,1] _|_P4 k—1 ( 2)’“—"
Inp nlnp n—1 q
k=
In((1-¢)(1+4q)
B In _ p"q" 1 s N - .
D = — ——— d’aprés la question 1.c.(iv)
nlnp (1 —¢?)
[, g n
B Inp —|_ a

n(l+q)"Inp’

b. Soit (n,k) € N* x N*. Sin >k, (%) = (/7]) = 0 ; I'égalité est alors triviale. *

Sinon, sin < k, on a :

) k! (k- 1)! (n"1)

k knllk—n)! nan-D((k—1)—-(m-1) =

On a donc bien :

Y(n, k) € N* x N*, 2l —

Fixons n € N*. Puisque ([X = k]), cy. forme un systéme complet d’événements,
on trouve, en vertu de la formule des probabilités totales (la série ci-dessous con-



