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Exercice 1

1.
def somme(L,i,j):

s = 0

for k in range(i,j):
s += L[k]

return L

2.
def sous_liste_long(L,k):

s_max = somme(L,0,k)

for i in range(0,len(L)−k):
s = somme(L,i,i+k)

if s > s_max:
s_max = s

return s_max

Exercice 2

1. On reconnait une équation différentielle linéaire homogène d’ordre 2. L’équation carac-

téristique associée à (H) est 4r2 + 4r+ 1 = 0 qui admet une solution double : r = −1

2
.

L’ensemble des solutions de (H) est donc :

F =

{
R → R
t 7→ (λt+ µ)e−

t
2
, (λ, µ) ∈ R2

}
.

2. Posons f1 : t 7→ te−
t
2 et f2 : t 7→ e−

t
2 . On trouve que :

F =
{
λf1 + µf2, (λ, µ) ∈ R2

}
= Vect(f1, f2).

Puisque les fonctions f1 et f2 appartiennent au R-espace vectoriel E des fonctions
dérivables (continues ou C∞ convenait aussi) sur R, F est un sous-espace vectoriel de
E donc un R-espace vectoriel.

Remarquons que la famille (f1, f2) est génératrice de F . Étudions sa liberté. Soit
(λ, µ) ∈ R2 tel que λf1 + µf2 = 0. Ainsi : ∀t ∈ R, (λt+ µ)e−

t
2 = 0. En particulier, en

évaluant en t = 0 et t = 1, on trouve que µ = 0 et λ+ µ = 0 donc que λ = µ = 0. La
famille (f1, f2) est donc une base de F qui est donc de dimension 2.

3. Cherchons une solution particulière de l’équation différentielle :

(E) : ∀t ∈ R, 4y′′(t) + 4y′(t) + y(t) = e−
t
2 .

sous la forme g : t 7→ (at2 + bt+ c)e−
t
2 où (a, b, c) ∈ R3. Or :

∀t ∈ R, g(t) = at2e−
t
2 + (bt+ c)e−

t
2 .

Puisque toutes les fonctions de la forme t 7→ (bt+c)e−
t
2 sont solutions de l’équation ho-

mogène associée, le principe de superposition assure qu’il suffit de chercher une solution
de la forme h : t 7→ at2e−

t
2 .

La fonction h est deux fois dérivable sur R et :

∀t ∈ R, h′(t) = a

(
−1

2
t2 + 2t

)
e−

t
2

h′′(t) = a

[(
1

4
t2 − t

)
e−

t
2 + (−t+ 2) e−

t
2

]
=
a

4

(
t2 − 8t+ 8

)
e−

t
2 .

La fonction h est solution de (E) si, et seulement :

∀t ∈ R, 4h′′(t) + 4h′(t) + h(t) = e−
t
2

⇔ ∀t ∈ R, a
(
t2 − 8t+ 8

)
e−

t
2 + a

(
−2t2 + 8t

)
e−

t
2 + at2e−

t
2 = e−

t
2

⇔ ∀t ∈ R, 8a = 1.

On trouve ainsi que la fonction t 7→ t2

8
e−

t
2 est une solution particulière de (E), ce qui

permet de déterminer l’ensemble des solutions de (E) :
R → R

t 7→
(
t2

8
+ λt+ µ

)
e−

t
2
, (λ, µ) ∈ R2

 .

Exercice 3

1. Soit λ ∈ R et soient A et B deux carrés magiques d’ordre 3, i.e. (A,B) ∈ F 2.
Les sommes de coefficients de chaque ligne, colonne et diagonale de λA sont toutes
égales λsA. Ainsi λA ∈ F . Les sommes de coefficients de chaque ligne, colonne et
diagonale de A+B sont toutes égales sA + sB . Ainsi A+B ∈ F .
On en déduit que F est un sous-espace vectoriel deM3(R).

2. Remarquons que F0 ⊂ F . En reprenant la démonstration de la question précédente
avec (A,B) ∈ F 2

0 , on a sA = sB = 0. Ainsi λsA = 0 et sA + sB = 0, i.e. λA ∈ F0 et
A+B ∈ F0. On en déduit que F0 est un sous-espace vectoriel de F .
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3. Soit M ∈ F . La matrice
sM
3
J appartient à F et la somme des coefficients de chacune

de ses lignes, colonnes et diagonales est égale à s. Ainsi, a somme des coefficients de
chacune des lignes, colonnes et diagonales de la matrice M0 = M − sM

3
J est égale à 0.

On en déduit que M = M0 +
sM
3
J où M0 ∈ F0 et

sM
3
J ∈ G.

Montrons que cette décomposition est unique.

Soient (A,B) ∈ F0×G tel que M = A+B. Il existe donc λ ∈ R tel que B = λJ . Ainsi
M0 +

sM
3
J = A + λJ , i.e. M0 − A = (λ − sM

3
)J . Puisque la somme des coefficients

de chaque ligne de la matrice M0 − A est égale à 0 et que celle de chaque ligne de
(λ − sM

3
)J est 3λ − sM , on en déduit que λ =

sM
3

, i.e. B =
sM
3
J . Il vient alors

immédiatement que A = M0, ce qui prouve l’unicité de la décomposition.

On en déduit que toute matrice de F s’écrit de manière unique comme la somme

d’une matrice de F0 et d’une matrice de G.

On aurait pu raisonner par analyse-synthèse pour trouver les candidats de F0 et G s’ils
ne sautaient pas aux yeux.

4. a. Soit N =

a b e
c d f
g h i

 une matrice de F0.

En considérant la somme des coefficients des deux premières lignes, on trouve
e = −(a+ b) et f = −(c+ d). En considérant la somme des coefficients des deux
premières colonnes, on trouve g = −(a + c) et h = −(b + d). En considérant la
somme des coefficients de la diagonale (au sens matriciel), on trouve i = −(a+d).
Ainsi toute matrice N ∈ F0 peut s’écrire sous la forme : a b −(a+ b)

c d −(c+ d)
−(a+ c) −(b+ d) −(a+ d)


En considérant la dernière ligne et la seconde diagonale, on trouve :

2a+ b+ c+ 2d = 0 et 2a+ b+ c+ d = 0.

On en déduit que d = 0 et c = −2a− b.
b. D’après la question précédente, on a :

F0 ⊂


 a b −(a+ b)
−2a− b 0 2a+ b
a+ b −b −a

 , (a, b) ∈ R2

 = Vect(U, V )

où :

U =

 1 0 −1
−2 0 2
1 0 −1

 et V =

 0 1 −1
−1 0 1
1 −1 0

 .

On vérifie facilement que U ∈ F0 et V ∈ F0. Ainsi Vect(U, V ) ⊂ F0 et donc
Vect(U, V ) ⊂ F0. Les matrices U et V n’étant colinéaires (cela peut se vérifier en
considérant le coefficient de la première ligne, première colonne de U et V ), ainsi
la famille (U, V ) est libre donc une base de F0, qui est donc de dimension 2.

5. D’après la question 3, F ⊂ Vect(U, V, J). En effet, soitM ∈ F . Il existe (N,B) ∈ F0×G
tel que M = N + B. D’après la question 4, il existe (λ, a, b) ∈ R3, N = aU + bV et
B = λJ . Ainsi, M = aU + bV + λJ ∈ Vect(U, V, J).

Les matrices U , V et J appartiennent à F donc Vect(U, V, J) ⊂ F et F = Vect(U, V, J).

Puisque (U, V ) est libre et J /∈ F0 = Vect(U, V ), la famille (U, V, J) est encore libre ;
c’est donc une base de F .

On en déduit que F est un espace vectoriel de dimension 3.

Exercice 4

1. a. (i) Pour tous n ∈ N∗ et t ∈ [0, x],

n∑
p=1

tp−1 =

n−1∑
k=0

tk =
1− tn

1− t
car t 6= 1.

(ii) Soit n ∈ N∗. Pour tout p ∈ N∗, la fonction
(
t 7→ tp−1

)
est continue sur [0, x],

tout comme les fonctions
(
t 7→ 1

1− t

)
et
(
t 7→ tn

1− t

)
. Par intégration sur

[0, x] et linéarité de l’intégrale, on trouve

n∑
p=1

∫ x

0

tp−1 dt =

∫ x

0

dt

1− t
−
∫ x

0

tn

1− t
dt = − ln(1− x)−

∫ x

0

tn

1− t
dt,

et ainsi que :

∀n ∈ N∗,
n∑

p=1

xp

p
= − ln(1− x)−

∫ x

0

tn

1− t
dt.
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(iii) Soit n ∈ N∗. Pour tout t ∈ [0, x], 0 < 1− x 6 1− t donc 0 6
tn

1− t
6

tn

1− x
.

Par croissance de l’intégrale, on trouve que :

0 6
∫ x

0

tn

1− t
dt 6

∫ x

0

tn

1− x
dt =

1

(n+ 1)(1− x)
.

(iv) Le théorème d’encadrement assure que :

lim
n→+∞

∫ x

0

tn

1− t
dt = 0.

Par passage à la limite de l’égalité obtenue à la question 1.a.(ii), on obtient

que la série
∑

p∈N∗

xp

p
converge et

+∞∑
p=1

xp

p
= − ln(1− x).

b. En appliquant la formule du triangle de Pascal, on trouve (en reconnaissant une
somme télescopique) que, pour tout n > m :

n∑
k=m

(
k

m

)
=

n∑
k=m

[(
k + 1

m+ 1

)
−
(

k

m+ 1

)]
=

(
n+ 1

m+ 1

)
−
(

m

m+ 1

)
=

(
n+ 1

m+ 1

)
.

On pouvait aussi démontrer le résultat par récurrence sur n > m.

2. a. On commence par écrire une fonction simulant des lois géométriques ; on conclut
en sommant les simulations des variables (Xk)16k6n.

import random as rd

def geometrique(x):
rang = 1

while rd.random() > x:
rang += 1

return rang

def simule_S(n,x):
somme = 0

for k in range(n):
somme += geometrique(x)

return somme

b. Puisque Xk(Ω) = N∗ pour tout k ∈ J1, nK, alors Sn(Ω) = Jn,+∞J.

Par indépendance des variables (Xk)16k6n+1 les variables Sn = X1 + · · ·+Xn et
Xn+1 sont indépendantes d’après le lemme des coalitions.
Puisque ([Sn = j])j>n forme un système complet d’événements, on peut appliquer
la formule des probabilités totales pour tout entier naturel k > n+ 1 :

P(Sn+1 = k)

=

+∞∑
j=n

P ([Sn = j] ∩ [Sn+1 = k]) (la série converge par σ-additivité)

=

+∞∑
j=n

P ([Sn = j] ∩ [Sn +Xn+1 = k])

=

+∞∑
j=n

P ([Sn = j] ∩ [Xn+1 = k − j])

=

+∞∑
j=n

P(Sn = j)P(Xn+1 = k − j) par indépendance de Sn et Xn+1

=

k−1∑
j=n

P(Sn = j)P(Xn+1 = k − j) car ∀j > k, [Xn+1 = k − j] = ∅

=

k−1∑
j=n

P(Sn = j)P(Xn+1 = k − j),

c. • Initialisation. Pour n = 1, on a :

∀k > 1, P(S1 = k) = P(X1 = k)

= x(1− x)k−1

=

(
k − 1

0

)
xn(1− x)k−n

=

(
k − 1

n− 1

)
xn(1− x)k−n.

• Soit n ∈ N∗. Supposons que :

∀k > n, P(Sn = k) =

(
k − 1

n− 1

)
xn(1− x)k−n.

3



Mathématiques Corrigé du DS 2 BCPST 2 Jean-Baptiste Say

D’après la question précédente, on a :

∀k > n+ 1, P(Sn+1 = k) =

k−1∑
j=n

P (Sn = j)P (Xn+1 = k − j)

=

k−1∑
j=n

(
j − 1

n− 1

)
xn(1− x)j−nx(1− x)k−j−1

= xn+1(1− x)k−n−1
k−1∑
j=n

(
j − 1

n− 1

)

= xn+1(1− x)k−(n+1)
k−2∑

i=n−1

(
i

n− 1

)
=

(
k − 1

n

)
xn+1(1− x)k−(n+1) (d’après 1.b).

La propriété est initialisée et héréditaire. Ainsi

∀k > n, P(Sn = k) =

(
k − 1

n− 1

)
xn(1− x)k−n.

d. Puisque Sn(Ω) = Jn,+∞J, on a obtient immédiatement que :

1 =

+∞∑
k=n

P(Sn = k) =

+∞∑
k=n

(
k − 1

n− 1

)
xn(1− x)k−n.

On en déduit que :

∀x ∈]0, 1[, ∀n ∈ N∗,
+∞∑
k=n

(
k − 1

n− 1

)
(1− x)k−n =

1

xn
.

3. a. Pour tout k ∈ N∗, qk > 0 et − ln p > 0 (car p ∈]0, 1[) donc uk > 0. La suite
(uk)k∈N∗ est donc bien à valeurs positives.

b. D’après la question 1.a.(iv), la série
∑

k∈N∗

qk

k
converge et :

+∞∑
k=1

qk

k
= − ln(1− q) = − ln p.

On en déduit que la série
∑

k∈N∗
uk converge et :

+∞∑
k=1

uk = 1.

c. Soit N ∈ N∗. En reconnaissant une somme partielle de série géométrique de raison
q, convergente car |q| < 1, on trouve :

N∑
k=1

|kP(X = k)| = −1

ln p

N∑
k=1

qk =
−q
ln p

N−1∑
i=0

qi −→
N→+∞

−q
(1− q) ln p

=
−q
p ln p

Puisque la série
∑

k∈N∗
kP(X = k) converge absolument, X admet une espérance et

E(X) =
−q
p ln p

.

d. Soit N ∈ N∗. En reconnaissant une somme partielle de série géométrique dérivée
de raison q, convergente car |q| < 1, on trouve :

N∑
k=1

|k2P(X = k)| = −1

ln p

N∑
k=1

kqk =
−q
ln p

N∑
k=1

kqk−1 −→
N→+∞

−q
(1− q)2 ln p

=
−q

p2 ln p

Puisque la série
∑

k∈N∗
k2P(X = k) converge absolument, X2 admet une espérance

d’après le théorème du transfert, égale à :

E
(
X2
)

=
−q

p2 ln p
.

La formule de König-Hyugens assure que X admet une variance, égale à :

V(X) = E
(
X2
)
− E(X)2

=
−q

p2 ln p
− q2

(p ln p)
2

=
−q(q + ln p)

(p ln p)2
.

4. a. On obtient immédiatement que :

Y (Ω) =

+∞⋃
k=1

J0, kK = N.

4
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Puisque ([X = k])k∈N∗ forme un système complet d’événements, on trouve, en
vertu de la formule des probabilités totales (la série ci-dessous converge par σ-
additivité) :

P(Y = 0) =

+∞∑
k=1

P(X = k)P[X=k](Y = 0)

=

+∞∑
k=1

−qk

k ln p

(
k

0

)
p0qk

=
−1

ln p

+∞∑
k=1

(
q2
)k
k

=
ln
(
1− q2

)
ln p

d’après la question 1.a.(iv) et puisque q2 ∈ [0, 1[

=
ln ((1− q)(1 + q))

ln p

= 1 +
ln(1 + q)

ln p
.

b. Soit (n, k) ∈ N∗ × N∗. Si n > k,
(
k
n

)
=
(
k−1
n−1
)

= 0 ; l’égalité est alors triviale.

Sinon, si n 6 k, on a :

(
k
n

)
k

=
k!

kn!(k − n)!
=

(k − 1)!

n(n− 1)!((k − 1)− (n− 1))!
=

(
k−1
n−1
)

n
.

On a donc bien :

∀(n, k) ∈ N∗ × N∗,
(
k
n

)
k

=

(
k−1
n−1
)

n
.

Fixons n ∈ N∗. Puisque ([X = k])k∈N∗ forme un système complet d’événements,
on trouve, en vertu de la formule des probabilités totales (la série ci-dessous con-

verge par σ-additivité) :

P(Y = n) =

+∞∑
k=1

P(X = k)P[X=k](Y = n)

=

+∞∑
k=n

P(X = k)P[X=k](Y = n) (car ∀k < n, P[X=k](Y = n) = 0)

=

+∞∑
k=n

−qk

n ln p

(
k − 1

n− 1

)
pnqk−n

= − p
nqn

n ln p

+∞∑
k=n

(
k − 1

n− 1

)
q2k−2n

= − p
nqn

n ln p

+∞∑
k=n

(
k − 1

n− 1

)(
q2
)k−n

= − p
nqn

n ln p

1

(1− q2)
n d’après la question 1.c.(iv)

= − qn

n(1 + q)n ln p
.

* *
*
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