Questions de cours

DS 2 (3h)

- 1. Quelle est la dimension de $\mathbb{R}_{n-2}[X]$ pour un entier naturel $n \ge 2$?
- 2. Donner la caractérisation d'une famille libre/génératrice/d'une base d'un espace vectoriel par son rang.
- 3. Donner la définition de l'espérance d'une variable aléatoire discrète.
- 4. Énoncer le théorème du transfert pour les variables aléatoires discrètes.

Exercice 1 Oral Agro 2024

- 1. Écrire une fonction **somme** qui prend en argument une liste L de nombres et deux indices **i**<**j** et qui renvoie la somme des éléments de l'indice **i** inclus à l'indice **j** exclu.
- 2. Écrire une fonction **sous_liste_long** qui prend en argument une liste L de nombres et un entier **k** et qui renvoie la plus grande somme des éléments de sous-listes de L (d'éléments consécutifs) de longueur **k**.

Exercice 2

- 1. Déterminer l'ensemble F des solutions de l'équation différentielle $(H): \forall t \in \mathbb{R}, \ 4y''(t) + 4y'(t) + y(t) = 0.$
- 2. Montrer que F est un \mathbb{R} -espace vectoriel de dimension 2.
- 3. Déterminer toutes les fonctions f vérifiant : $\forall t \in \mathbb{R}, \ 4f''(t) + 4f'(t) + f(t) = e^{-\frac{t}{2}}$.

On cherchera une solution particulière de l'équation différentielle ci-dessus de la forme $g: t \mapsto P(t)e^{-\frac{t}{2}}$ où P est un polynôme de degré inférieur ou équl à 2.

Exercice 3

On appelle carré magique d'ordre 3 toute matrice de $\mathcal{M}_3(\mathbb{R})$ dont les sommes de chaque ligne, chaque colonne et des deux diagonales sont égales. Pour une telle matrice M, on notera s_M cette valeur commune.

- 1. Justifier que l'ensemble F des carrés magiques d'ordre 3 est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
- 2. Justifier que l'ensemble F_0 des carrés magiques d'ordre 3 dont la somme de chaque ligne, colonne et diagonale est nulle, est un sous-espace vectoriel de F.
- 3. On note G le sous-espace vectoriel de F engendré par la matrice $J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

Montrer que toute matrice M de F s'écrit de manière unique comme la somme d'une matrice de F_0 et d'une matrice de G. On pourra déterminer ces deux matrices par un raisonnement direct ou bien par analyse-synthèse.

4. a. Montrer que toute matrice $N \in F_0$ peut s'écrire sous la forme :

$$\begin{pmatrix} a & b & -(a+b) \\ c & d & -(c+d) \\ -(a+c) & -(b+d) & -(a+d) \end{pmatrix}.$$

En déduire que d = 0 et c = -2a - b.

- b. En déduire une base et la dimension de F_0 .
- 5. Déduire des questions 3 et 4.b une base de F et vérifier que dim F=3.

Exercice 4

- 1. a. Soit x un réel de l'intervalle [0, 1].
 - (i) Pour tous $n \in \mathbb{N}^*$ et $t \in [0, x]$, donner une expression ramassée de la somme $\sum_{p=1}^{n} t^{p-1}$.
 - (ii) En déduire que : $\forall n \in \mathbb{N}^*, \sum_{p=1}^n \frac{x^p}{p} = -\ln(1-x) \int_0^x \frac{t^n}{1-t} dt$.
 - (iii) Montrer que : $\forall n \in \mathbb{N}^*, \ 0 \leqslant \int_0^x \frac{t^n}{1-t} \, \mathrm{d}t \leqslant \frac{1}{(n+1)(1-x)}.$
 - (iv) En déduire que $\sum_{p=1}^{+\infty} \frac{x^p}{p} = -\ln(1-x)$.
 - b. Soit m un entier naturel. Établir que : $\forall n \ge m, \sum_{k=m}^{n} \binom{k}{m} = \binom{n+1}{m+1}$.
- 2. Soit $x \in [0,1[$. On considère une suite $(X_n)_{n \in \mathbb{N}^*}$ de variables aléatoires indépendantes suivant la loi géométrique de paramètre x. Pour tout $n \in \mathbb{N}^*$, on note $S_n = \sum_{k=1}^n X_k$.
 - a. Écrire en Python une fonction prenant en argument un entier $n \in \mathbb{N}^*$ et un réel x et simulant S_n . Il est conseillé d'écrire une fonction auxiliaire qui sera utilisée dans la fonction principale répondant à la question.
 - b. Déterminer $S_n(\Omega)$, puis établir que :

$$\forall k \geqslant n+1, \ \mathbb{P}(S_{n+1}=k) = \sum_{j=n}^{k-1} \mathbb{P}(S_n=j) \mathbb{P}(X_{n+1}=k-j).$$

c. En déduire par récurrence sur $n \in \mathbb{N}^*$ que :

$$\forall k \geqslant n, \ \mathbb{P}(S_n = k) = \binom{k-1}{n-1} x^n (1-x)^{k-n}.$$

- d. En déduire que : $\forall x \in]0,1[, \ \forall n \in \mathbb{N}^*, \ \sum_{k=n}^{+\infty} \binom{k-1}{n-1} (1-x)^{k-n} = \frac{1}{x^n}.$
- 3. Soient $p \in]0,1[$ et q=1-p. On considère la suite $(u_k)_{k\in\mathbb{N}^*}$ définie par : $\forall k\in\mathbb{N}^*,\ u_k=-\frac{q^k}{k\ln p}.$
 - a. Vérifier que la suite $(u_k)_{k\in\mathbb{N}^*}$ est à valeurs positives.
 - b. Montrer en utilisant un résultat de la partie 1 que $\sum_{k=1}^{+\infty} u_k = 1$.
 - c. On considère une variable aléatoire X dont la loi de probabilité est donnée par : $\forall k \in \mathbb{N}^*, \ \mathbb{P}(X=k) = u_k$. Montrer que X admet une espérance qu'on déterminera.
 - d. Montrer que X admet une variance égale à $\mathbb{V}(X) = \frac{-q(q+\ln p)}{(p\ln p)^2}$.
- 4. On considère une variable aléatoire Y dont la loi, conditionnellement à l'événement [X=k], est la loi binomiale de paramètres k et p, pour tout $k \in \mathbb{N}^*$.
 - a. Déterminer $Y(\Omega)$ puis montrer que $\mathbb{P}(Y=0) = 1 + \frac{\ln(1+q)}{\ln p}$.
 - b. Après avoir montré que pour tout couple $(n,k) \in \mathbb{N}^* \times \mathbb{N}^*$ on a $\frac{\binom{k}{n}}{k} = \frac{\binom{k-1}{n-1}}{n}$, établir que :

$$\forall n \in \mathbb{N}^*, \ \mathbb{P}(Y = n) = -\frac{p^n q^n}{n \ln p} \sum_{k=n}^{+\infty} \binom{k-1}{n-1} \left(q^2\right)^{k-n} = -\frac{q^n}{n(1+q)^n \ln p}.$$