Mathématiques

Intégrales généralisées

BCPST 2 J-B. Say

Fonction définie par une intégrale

Exercice 1. [Corrigé] v

Soit f : R — R une fonction continue.
Justifier que les fonctions suivantes sont de classe C' sur R et exprimer leur dérivée.

2x

ggzxrﬁ/owf(w—i-t)dt

g1 :% —

Exercice 2.

[Corrigé| ¥k

1. Montrer que la fonction f: x — / — dt est définie et dérivable sur R*.

2. Déterminer la limite de f en 0. On calculer lirél+ f(z) a Vaide d’un encadrement.
T—

Exercice 3.

[Corrigé| Je¥ %

Soit f une fonction de classe C! sur R et soit G la fonction définie par :

1

f()

1. Montrer que la fonction G est prolongeable par continuité en 0 en une fonction continue
sur R (qu’on notera encore G).

2. Montrer que G est dérivable sur R* et montrer que :

1

Vo €R', G'(a) = 5

f()

Sommes de Riemann
Exercice 4. [Corrigé| vk

Déterminer les limites des suites définies par le terme général suivant :

];n2+k2 ;nz—i—kQ Zl\/m
Exercice 5. [Corrigé| Je¥ '
n

A Paide d’une somme de Riemann, déterminer un équivalent de Z Vk lorsque n — +o0.

k=1

Exercice 6.

[Corrigé| Y %k

lim
n——+o0o

2n)\ » .
Calculer <( ) ) . On pourra composer par In et trouver une somme de Riemann.

n"n!
Exercice 7. Méthode des rectangles © [Corrigé| ek
Ecrire une fonction methode_rectangles qui prend en argument une fonction f, deux flot-
b

f(t)dt alaide

a
de la méthode des rectangles, en approchant l'intégrale par ’aire de n rectangles,.

tants a et b et un entier n, et qui renvoie une approximation de l'intégrale

Calcul d’intégrales sur un segment

Exercice 8.

[Corrigé]| ek

Calculer les intégrales suivantes :

1
12:/ arctantdt
0

1 2
In(1+4¢) —Int dt
15:/ 1+t —Int 16:/

1 t 1

Suites d’intégrales sur segment

1
I :/ In(1 4 %) dt
0

e
Iy :/ t"Intdt (n € N¥)
1

Exercice 9.

[Corrigé| v

1. Montrer que, pour tout n € N :

1 2n+2
—1)n¢2n
/ ek dt = +/ ED
0 & 47 Jy 142
2. Justifier que, pour tout n € N, on a :
1 ,2n+2
t 1
0< dt < .
/0 1+¢2 2n 4+ 3

(=DF
2k + 1

—_1)k
converge et Z 2(k ) —_
k=0

3. En déduire que la série de terme général e
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Exercice 10.
dx
142

Pour tout n € N, on pose u,

/

Moutrer que la suite (uy,)nen est strictement croissante.

. Calculer ug, uq et us.

Veérifier que la suite (uy,)nen converge vers 1.

4. Etablir que, pour tout n € N* :
1 1
" In2 1
/ i :n——f/ In(1 4 2™) dz.
o 14+azm n n Jo

Montrer que : V2 >0, 0 < In(1 +z) < z.

En déduire que :
1

lim In(1+42™)dz = 0.
n—-4o0o 0
s , . In2
6. En déduire le développement asymptotique : u,, = 1—-—
n—400 n

Exercice 11. Intégrales de Wallis
Pour tout n € N, on pose :

[ME]

I,

sin”™ () dt.

J

B
1. Montrer que pour tout n € N, I,, = / cos”(t)dt et I,, > 0.
0
On pourra réaliser le changement de variable x = 5 —t.
n+1
2. Montrer que, pour tout n € N; [, = %In.
n

Exprimer, pour tout p € N, I, et I, & 1'aide de factoriels.

Montrer que, pour tout n € N :

(4 Dlndpsr = 5 et Lyso < Loyt < L.

Déterminer un équivalent de I,, lorsque n tend vers +oco.

+o

1

n

)

[Corrigé] %%+ Convergence d’intégrales généralisées

Exercice 12.

[Corrigé| v

Etudier la nature des intégrales généralisées et calculer leur valeur en cas de convergence.

[ & [ [
+oo +oo +oo

/ Int ., / =20+t gy / e
1 t oo 0 (t+1)(t+2)

Exercice 13. Intégrales de Riemann [Corrigé] Hvcve
1
dt

o

oo d¢

Etudier, pour a € R, la convergence des intégrales suivantes / o e

1
Exercice 14. [Corrigé] dedkk

+oo
Montrer que l'intégrale / sintdt n’est pas absolument convergente.
0

On découpera astucieusement l'intervalle [0, +00].

[Corrigé]| Yk
[Corrigé| ¥k

Etudier la nature des intégrales généralisées ci-dessous puis, en cas de convergence, calculer
leur valeur & I'aide d’une intégration par parties.

1 —+o0 1
/ Intdt / In (1 + > dt /
0 0 13 0

Exercice 16. Changement de variables

Exercice 15. Intégration par parties

Yn(1 - #?)

“+oo
2 dt / e tcostdt
0

[Corrigé]| Yk %k
A P’aide d’un changement de variable, étudier la convergence des intégrales ci-dessous, puis,
en cas de convergence, calculer leur valeur.

Foo dt too -t
/0 (e"+1)(e7t+1)

—dt
NG

Int

dt
Vv1i—t

z 1
2
/ sintln (sint) dt /
0 0

0
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Problémes

Exercice 17. Fonction Gamma

[Corrigé| ek

Pour tout a > 0, on considére l'intégrale généralisée :
+oo
I'a) :/ t* et dt.
0

1. Soit o > 0. Montrer qu’il existe un réel A > 0 tel que, pour tout ¢t > A, 0 < tele=3 < 1.

. 1 _t
lim t* le~=.

On pourra calculer
—+o0

+oo
2. En déduire que l'intégrale généralisée / t*te~t dt converge pour tout a > 0.
0

3. A P'aide d’une intégration par parties, montrer que, pour tout a > 0, I'(a + 1) = al'().

4. En déduire que pour tout entier naturel n non nul, I'(n) = (n — 1)!.

Exercice 18.

[Corrigé| J %

Pour tout & > 0, on pose :

o0 et

1. A laide de lim te™ !, montrer qu’il existe A > 0 tel que, pour tout ¢t > A, 0 < te™? < 1.

t—+o0
2. En déduire que F(z) est bien définie pour tout = > 0.
3. Etablir que F est de classe C! sur R* et calculer F’(z) pour tout z > 0.

4. A l'aide d’un encadrement, montrer que :

lim zF(x)=0.

T—r+00

5. Montrer que :
Vo €]0,1], 0 < zF(z) < —zlnx + xF(1).

En déduire la valeur de lim zF(x).
z—0+

6. Sans déterminer une expression de F'(x) en fonction de x > 0, montrer que U'intégrale

+o00
généralisée / F(z) dx converge.
0

[Corrigé] v %

Exercice 19. Comparaison aux intégrales de Riemann
1. Soit f une fonction positive et continue sur un intervalle [a, 400 (a € RY.).
1. On suppose qu’il existe v > 1 tel que lim 7 f(¢) = 0.
t—+oo
+oo
Montrer que / f(t)dt converge.
a

2. On suppose qu'il existe vy < 1 tel que lim ¢7 f(t) = +o0.
t——+oo

+o0
Montrer que / f(t) dt diverge.
a

oot
2. Convergence des intégrales de Bertrand / —
e te (h’l t)
teoat
a. Montrer que / —————7 converge pour a > 1 et diverge pour o < 1.
e to (hl t)
oo dt
b. Montrer, & I’aide d’un changement de variable, que I'intégrale généralisée / (1) 3
e t(lnt

converge si, et seulement si, 5 > 1.

[Corrigé| Jev %

Exercice 20. (hors-programme)
Soit f : RT — R une fonction continue, décroissante et intégrable sur RT.

1. Montrer que f tend vers 0 en +o0.

2. Montrer que zf(x) tend vers 0 lorsque & — +00.
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Corrigé de I’exercice 1. [Enoncé]

Soit F' une primitive de f sur R. On a alors :

¥z €R, gi(2) = F(2%) — F(22), ga2(2) = = (F(z) — F(0)).

La fonction t — x + ¢ étant C' sur R pour tout € R, on obtient, via le changement de
variable u =z 4+t :

2x

Vr € R, /If(x—i-t)dt: f(u)du =
0

x

F(2z) — F(x).

La fonction F étant C' sur R, les fonctions g1, go et g3 sont C' sur R par opérations sur les
fonctions C! et :

Vo € R, gi(x) = 2z f(z?) — 2f(2z),

/fdt

92(93 =

g3(z) =

Corrigé de I’exercice 2. [Enoncé|

t

e
1. Soit G une primitive de g : ¢ = — sur R% et R*.
t

Pour tout = # 0, z et 2z sont de méme signe donc 0 n’est pas compris entre x et 2z donc
f est définie sur R* et :

Ve e R*, f(z) = G(2z) — G(x).
Puisque G est dérivable sur R*, on trouve que f est dérivable sur R* par opérations sur
les fonctions dérivables.

2. Soit & > 0. Pour tout t € [x,2z], e® < e! < e?®. Ainsi :

2x

e$<et<e
St Tt

Vt € [z, 2z],
Par croissance de 'intégrale sur un segment (les fonctions en jeu sont continues sur [z, 2x]),
on trouve :

Vo >0, e*In2 < f(z) < e**In2.

On en déduit que lirn+ f(x) = In2 par passage a la limite.
z—0

Un raisonnement analogue montrerait que lim f(z) =1In2.
r—0~

On en déduit donc que lin%) f(z) =In2.
r—r

Corrigé de I’exercice 3.

Corrigé de ’exercice 4.

[Enoncé]

1. Soit F une primitive de f sur R.

Ve 0, Gz) = 2D E) _LIFE) - FO) W

2x 2 T x

La fonction F' étant dérivable sur R, la fonction G est bien continue sur R*.

F(x)—F
On trouve que lir% w = F’(0) = f(0) et, en posant u : x — F(—zx), on trouve
z—
par composition :
F(0) — F(— 0) — -
O~ Fl-a) _ a0 ~ue) __ul@)=wl®) o o) - o
x x x z—0

On en déduit que li(r)nF = f(0).

La fonction G est donc prolongeable par continuité en 0 en une fonction continue sur R
en posant G(0) = f(0).

. La fonction F' étant dérivable sur R, on tire de 1’¢galité (1) la dérivabilité de G sur R*

par opérations sur les fonctions dérivables et :
[ s 10

Les fonctions (¢ + t)) et f étant de classe C! sur R, on trouve par intégration par parties

Vz € R,

1

Vo e R, Gla) = 5

f()

[Enoncé]

1. Pour tout n € N*, on a

n 1 n
Y R T n Ty

k=1 11+(E

Puisque la fonction f est continue sur [0, 1], on reconnait une somme de Riemann et :

i Z”:n_/ldt_ﬂ
n—>+ock n2—|—k‘2_ 0 1—|—t2_4
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2. Pour tout n € N*, on a

Pl Dhme

k=1 k= 11 (

t
Zf( ) on f it

Puisque la fonction f est continue sur [0, 1], on reconnait une somme de Riemann et :

1 1
1 In 2
:/ dt= [sIn|1+£|| ==
o 112 2 .2

n

lim >
1m — %
n—-+oo 1 n2 + kg

3. Pour tout n € N*, on a

n

1 1 & 1 1 k 1
SEEEEN SR N Y-
;\/n2+2kn n; /1+2% nkzl n V1+2¢

Puisque la fonction f est continue sur [0, 1], on reconnait une somme de Riemann et :

=V3-1.

lim

- 1 S U 1
— = | —— =[V1+t
n—>+ookZ=1 vn2 + 2kn /0 V1+2t [ 0

Corrigé de I’exercice 5. [Enoncé|

Pour tout n € N*, on a :

S () = (i ()

ou f:z ~ /z. On reconnait une somme de Riemann d’une fonction continue sur [0,1] :

nkrfmnzf( )= [ Va3

On en déduit que :

puis :

[Enoncé|

| ()| = ()
— %m <k_Han;>

:% 3 m(i)

k=n-+1

Corrigé de ’exercice 6.
Pour tout n € N*, on a :

1 n .
-3 <1+’>
nizl n

12 (h)

ou f:x+ In(1+ ). Puisque la fonction f est continue sur [0, 1], on reconnait une somme

de Riemann et :
1
2n)1\ ™ !
lim In <(n”)') :/ In(l +z)de = 2In2 — 1.
n—-+00 n"n! 0

On en déduit que :

1
lim <(2n)') " emea1 4

n—+oo \ n"n! e

Corrigé de I’exercice 7. [Enoncé]

b
b
Le principe est d’approcher / f(t)dt alaide de

—a < k
a4 E I (a +(b- a)> puisque, aprés
n
k=1

le changement de variable t = a + (b — a)z (la fonction z + a + (b — a)x est C* sur [0, 1]), on

trouve : b
t =
/a f( ) t=a+(b— a)x

def methode_rectangles(f, a, b, n)
somme = 0
for k in range(n):
somme += f(a+ (b—a)xk/n)
return sommex(b—a)/n

/fa—|— b—a)r)dx.
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Corrigé de I’exercice 8. [Enoncé]

1. La fonction (¢ +— In(1+ t?)) est continue sur [0, 1], ce qui justifie Pexistence de I;.
Les fonctions (¢ + t) et (¢ — In(1 +¢2)) étant C* sur [0, 1], on intégre I; par parties :

1 ) 21 1 2
I = In(1+¢“)dt = |tIn(1 +¢ -2 e
S

! 1
:ln2—2/ 1———|dt
0 1+41¢2

T
=In2-2+ —.
n —|—2

dt

2. La fonction arctan est continue sur [0, 1], ce qui justifie Uexistence de I5.

Les fonctions (¢ +— t) et arctan étant C' sur [0, 1], on intégre I par parties :

! 1 Lot T 1
I :/ arctantdt = {tarctant} —/ ﬁdt: — — —1In2.
0 0 o 141 4 2

sint

3. La fonction |t +— ————
3+ cos?2t

) est continue sur [0, 7], ce qui justifie 'existence de I5.

La fonction cos étant C' sur [0, 7], on réalise le changement de variable 2 = cost. On a
alors do = —sintdt et :

sint dz

T 1
L= 22 _q= 22
s /0 3+ cos?t /_1x2+3

[ ()],

™

4. Soit n € N*. La fonction (¢ — t™Int) est continue sur [1,e], ce qui justifie I'existence de
t’n+1
14. Les fonctions (t — n 1) et In étant C' sur [1,e], on intégre I; par parties :
n

e tn-‘rl € 1 tn
I4:/ t"Intdt = Int —/ dt
1 n+1 1 0 n+1

ne”tt 41

GRS

In(1+¢) —Int

t 3

1
5. La fonction ) est continue sur [2, 1], ce qui justifie 'existence de
. N o . 1
I5. La fonction [ ¢ — n étant C* sur 2 1|, on réalise le changement de variable x = T

t
On a alors do = 5 et :

1 1
B In(1+t)—Int 1 1
2
:/ In(1+2)dz
1

= [(1+m)1n(1+m) fo:}
=3In3-2n2 - 1.

2

1

6. La fonction (t — ) est continue sur [1,2], ce qui justifie existence de Is. La

1
V42t

fonction (¢+ v/t) étant C* sur [1,2], on réalise le changement de variable z = v/t. On a

alors de = —— et :

2Vt

2 gt V2o NG
Ig = _ = ——dz=In(1+2v2) —1n3.
° /1 Vi+2t /1 2z + 1 ( )

Corrigé de I’exercice 9. [Enoncé]

n
1. Pour tout n € N, la fonction | ¢ +— Z(fl)ktzl€ est continue sur [0, 1] (car polynomiale),
k=0
ce qui justifie I'existence de l'intégrale du premier membre de ’égalité & prouver.

VneN, veel0,1], S (—1Fetar =Y (—2) at
k=0 k=0
1- (_tQ)nH 2
= H—itz car —t 75 1
1 (_1)nt2n+2
= +
1+¢2 1+1¢2
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Par linéarité de l'intégrale (les fonctions en jeu sont bien continues sur [0, 1]), on trouve Corrigé de I’exercice 10. [Enoncé|
I’égalité recherchée :

3

1
1. On trouve sans difficulté que ug = 3 U= In2 et ug = —.

1 n 1 n42n+2 4
—1)"t
VneI\L/ > (—l)kt%dtzg—&—/ EUT 4,
0 0

1+ ¢2 1 1
k=0 + 2. Soit n € N. Remarquons que les fonctions [z+— — | et |2+— ——— | sont
14 azm 1+ gntt
f2n+2 - continues sur [0,1].
2. Soit n € N. Pour tout ¢ € [0,1], 0 < T < 122, /1 R ; /1 (1 — )
Up+1 — Up = Tr = xT.
Par croissance de I'intégrale (les fonctions intégrées sont continues sur [0, 1]), on a : n+ " Jo (T4 am)(1 4 anth) o (IT4+2m)(1+znt)
1 42n42 1 - Or:
142 v x x x x
0 0 e 0,1], > 0 et Vx €]0,1], > 0.
el g 2 S R O e g

On en déduit que, pour tout n € N - Par croissance de l'intégrale, on trouve que :

1 2n+2

t 1 1 n
0< dt < . a"(1 — )
\/0 1+2 S 13 /0 (1+xn)(1+xn+l)dx>0,
1 - (—1)F On en déduit que la suite (u,)nen est strictement croissante.
3. Pour tout k € N, /0 (=D)"7dt = 2k +1° 3. Pour tout n € N, on a :
1 n
D’aprés 1’égalité de la premiére question et la linéarité de 'intégrale (les fonctions intégrées 1—u, = / ] i —du.
sont continues sur [0, 1]), on trouve : o L+
n
") x L (q)ngne? Or:vneN, Vxel0,1], 0< 1 _T_ o < 2”. Par croissance de l'intégrale, on trouve :
vn € N, =— ———dt.
" kz_o dh+1 4 /0 1t .
= 0<1l—u, < nrl

Or, d’aprés l'inégalité triangulaire :

Puisque lim = 0, le théoréme d’encadrement assure que lim 1 —wu, =0, i.e.
/1 (71)"t2"+2 ‘ /1 $2n+2 1 n—+oom + 1 n—-+o0o
- <
0 0

vneN, 0< e e dt < i3 la suite (uy)nen converge vers 1.

4. Soit n € N*.

On en déduit que : 1

Les fonctions (J; — —In(1+ m")) et (z +— z) sont de classe C* sur [0,1]. Par intégration
n

1 ny2n+2 n k
. (=)™t ) ) (-1) T : )
1 dt =0. ie 1 —— par parties, on trouve :
oo 0 1+ ¢2 e n—1>r-&r-loozz 2k+1 4
- Lo T ]t 1 ! n m2 1 [! "
dx:{—ln(l—kx )} —— | m(l+2")de=——— | In(1+2z")dx.
(—1)k 400 (—1)F = o 1+azm n 0o nJy n n Jo
On en déduit donc que la série Z converge et Z = —.
k>0 2k +1 —2k+1 4 5. On sait déja que, pour tout = > 0, In(1+z) > 0.
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Corrigé de ’exercice 11.

1.

Etudions la fonction ¢ : z + In(1 + z) — 2. Cette fonction est dérivable sur R et :

1 T

Ve >0, ¢(z) = —1= <0.
9@ =1 T1+a
La fonction g est donc décroissante sur Ry . Puisque g( ) = 0, la fonction g est négative
sur R;. On en déduit que : Vo >0, 0 <In(l1+2) <
Pour tous n € N et z € [0,1], 2™ > 0 donc 0 < ln(l + 2™) < z™. Par croissance de

I'intégrale, on trouve :

1 1
0</ ln(1+x")dx</ " dx =
0 0

Le théoréme d’encadrement permet de conclure :

1
n+1

1
lim In(1+2™)dz = 0.

n—-+o0o 0

. D’aprés la question 4, on a :

In2 1

1
YneN*, 1 —u, = —77/ In(1+ z") dz.
0

n n

Le résultat de la question précédente assure que :

1
/ln(1—|—x")d$ =
0

n—-+oo

o(1).

On en déduit le développement asymptotique recherché :

In2 (1>
U, = 1——"+o(=).
n—-+oo n n

[Enoncé]
. . . . 77
Soit n € N. Remarquons que la fonction sin™ est continue sur [0, 5}

La fonction (t — g — t) est C sur {0, g} On peut donc poser z = % —t. On a alors
de = —dtet:

3 0 . 3
I, = / sin”™(¢t) dt = —/ sin™ <f — a:) dz = / cos”™ (z) dx.
0 z 2 0

Puisque :
Vr € [0, g} , cos™(z) = 0et Va € {0, % {, cos™(z) > 0,

la positivité de l'intégrale assure que I,, > 0.

2. Remarquons que :

Inis = /0 * cos™(#)(1 — sin(t)) dt = I, — /O * sin(t) [sin(¢) cos™ ()] dt.

cos™ 1 étant C* sur

Intégrons la seconde intégrale par parties, les fonctions sin et

[0, g} On a alors :

2 1 3 1
/0 sin(t) [sin(t) cos™ (t)] dt = [— o sin(t) cos™ T (t) 02 + i cos"T2(t) dt
1
= Iio.
n+1 +2
1 n+1
0] déduit tout N, Inio=1,— ——1I,.0,ie 1 0=——1I,
n en déduit que, pour tout n € N, I, 44 o1t ie Inqo 2
. Pour tout p € N, on a :
2p+1 2p+2
1. =—1 t =——1I.
2p+2 %+ 2 2p € 2p+3 %+ 3 2p+1
Un raisonnement par récurrence montre que :
2k—1 =« (2p)! P2 (2¢p!)2
VpeN, I, =1 t  Topr1 =1 =
p 2 OkH1 T ooy & P 1g2k+1 (2p+1)!

. Pour tout n € N, on pose u, = (n + 1)I,,I,,+1. D’aprés la question 3, pour tout n € N,

(n+2)I,42 = (n+1)I, donc :

—~

Vn S N, Up41 = (n + 2)1n+1In+2 =(n+ 1)ITLI’I’L+1 = Un-

La suite (u,)nen est donc constante, égale a Iy} = —, i.e.

ol 2

VneN, (n+ 1)1t ==

Mountrons que la suite (I,,)nen est décroissante. Soit n € N.

™

Iny1—1I, = /05 sin”(¢) (sin(t) — 1) dt.

Puisque, pour tout ¢t € [0, g} , 0 <sin(t) <1, sin”(¢) (sin(t) — 1) <

0 et ainsi que la suite (I),)nen est

0. Par positivité (ou

croissance) de l'intégrale, on trouve que I, 11 — I, <
décroissante. On en déduit donc que

Vn € N7 In+2 < InJrl < In
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. rs . . . Int
5. Soit n € N. D’aprés la question précédente, on a : 4. La fonction (t — I;) est continue sur [1,4o0[. Soit A € [1, 4+00[.
T n—+2 n+2m
P (Tl + 2)1n+11n+2 < (n+ 2)Iy2L+1 < (’I”L + 2)InIn+1 = 7(”"’ 1)InIn+1 = V75" A A
2 n+1 n+12 Int 1.5 1. 5
—dt=|-In"t] =-In"A — 40
T 1 t 2 1 2 A—1+
Puisque les membres extrémes de cet encadrement tendent vers 5 on trouve que
T Int
ngl}rloo(n +2)I2,, = g, puis ngrfoo(n +1)I2 = g On en déduit que : On en déduit que lintégrale /1 HT dt diverge.
T T . p 5. La fonction (t — e’zmH) est continue sur R. Etudions alors la convergence des intégrales
n nﬁj»oo 2(7’L —|— 1) n%r:»oo % pulb n n%ioo % 0 —2\t|+t +eo —2|t\+t
e dt et e dt. Remarquons que :
—00 0
Corrigé de l’exercice 12. [Enoncé] P
—oft|+t e sit>0
Vi eR, e =
et st <0

1
1. La fonction (t — t2> est continue sur 0, 1]. Soit A €]0,1].

A A
Pour A > 0, on a / e 2t qp = / etdt=1—¢e* — 1.

dt convergent donc

1 dt |: 1:| 1 1 . N 0 0 A—+o00
22 I o 0 0 1 1
at tla A A=07 Pour B <0, o0n a / e 2+t g = / eStdt = = (1 — 633) — -
B B 3 B——oc0 3
. L Lae +oo 0
On en déduit que l'intégrale ) diverge. On en déduit que les intégrales / o2t 4t ot / o—2ltl+t
0 oo ) 0 —0o0
1 —2|t|+t .
2. La fonction (t — \/7?) est continue sur 0, 1]. Soit A €]0, 1]. /_Oo € dt converge et :
+o0
1 4
1 -2
dt 1 [+t q¢ = ==
/—:[2\/2] =2-2VA — 1 /_Ooe di=1+3=3
A Vi A A0+
bt bt 6. La fonction (#+> ——— ) est continue sur [0, +oo]. Soit 4 € [0, +o0]
On en déduit que l'intégrale / — converge et / — =1. - -a foncto (t+1)(t+2) st contiue sur |9, 770, 5o » oL
0 Vit 0 Vit
1 A dt Alt+2)—(t+1)
3. La fonction (t — tlnt) est continue sur |1, +oco[. Soit A €]1,2]. A = G0t dt

41 41
2 2 :/ 7dt—/ 7dt
/i:[munt@ =In|ln2 —In|lnAd| — +oo o t+1 o tH2
A tlnt A A=1+ =In(A4+1)—In(A+2)+1n2
A+1
A+2

A—+oo

, : Pt : teedr ,
On en déduit que U'intégrale / —— diverge donc 'intégrale / —— diverge aussi.
1 t ln t 1 t 111 t

=In <> +In2 — In2.
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Foo dt
On en déduit que l'intégrale [P
d & /0 t+ 1) +2)

Foo dt
/0 Grniry M

Corrigé de I’exercice 13. [Enoncé|

converge et :

1
Soit a € R. La fonction <t — ta> est continue sur 0, +-oo[. Soit A € [1, +o0].

1 A 1
A S i 1 _
1

te A
{hlt:| sia=1 In A
1

Ainsi :
+00 sia<1
At :
lim i S XSS sia=1
A—+4o0 1 t™

o —

“+o0
On en déduit que / o converge si, et seulement si, v > 1.
1

sia>1.

1

Soit e €]0, 1].
1 ! 1
1 —_ sia#1 _
/g: |:(1—Oé)ta_1:|6 7£ — 1a(1
te 1
€ {lnt} sia=1 —Ine
I
Ainsi :
. L - sia<1
511_% i o Ytoo sia=1

+o00 sia> 1.

1
. dt . .
On en déduit que / o converge si, et seulement si, o < 1.
0

Corrigé de I’exercice 14. [Enoncé

1> sia#1
sia=1
1) sia#1
sia=1

La fonction sin est continue sur [0,4oo[. L’idée est de découper lintervalle [0,+oo] de
maniére & pouvoir faire “sauter” la valeur absolue. Pour tout n € N, on a :

2nm 1 o(k+1)m
/ Isint| df = / Isint| dt
0 2

km

2km+4m 2(k+1)w
</ |Sint|dt+/ |Sintdt>
2k 2km+m
2km4m 2(k+1)m
</ sintdt+/ sintdt)
2km 2km+m

™ 2m
(/ sintdt + / sintdt) (par 27-périodicité de sin)
0 7T

n

i T
= O

|
I
NNy
= O

3
3
|

I
g

il
=

(]

=0

n — —400.
n—-+oo

=

+oo
Puisque lir_~r_1 2nm = 400, I'intégrale / sint dt n’est pas absolument convergente.
n—-+oo
0

Corrigé de I’exercice 15. |Enoncé]

1. Les fonctions (t +— t) et In sont C* sur [0, +oo[. Remarquons que 2lginétlnt = Opar crois-
—
1
sances comparées. Le théoréme d’intégration par parties assure que l'intégrale / Intdt
0

1
est de méme nature que l'intégrale / dt, qui converge trivialement. Ainsi la premiére
0

1 1 1
/mtdt:{tlnt] 7/ dt = —1.
0 0 0

1
2. La fonction <t»—> In (1+ t)) est continue sur ]0,4+o00[. Les fonctions (¢t+t) et

intégrale converge et :

1 1
(t — In (1 + t)) sont C! sur ]0, +oc[. Remarquons que ¢In (1 + t) let:

~J
t——+o0

1
tln (1 + t) =tln(l+t¢)—tint Y 0 (croissances comparées)
—

+oo 1
Le théoréme d’intégration par parties assure que les intégrales / In (1 + t) dt et
0

400 too gt
/ sont de méme nature. Puisque 'intégrale / —— diverge (on peut s’en
0 t =+ 1 0 t + 1

10
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400 1
convaincre en posant le changement de variable x = t+ 1), 'intégrale / In (1 + t) dt
0

diverge aussi.

In(1 — #2)

La fonction (t —
t2

) est continue sur |0, 1].

1
Soit € €]0, 1]. Les fonctions (t — _t> et (¢t In (1 —#2)) sont C! sur ]0,e].

In(1 —¢2 t2 In(1 —¢2
Puisque —M ~ —— ~ t lim —M = 0. Le théoréme d’intégration
t t——+o0 t t—+oo t—0 t
1—1t%)

€lIn € 2de
par parties' assure que les intégrales / ( e / 1T—z sont de méme nature.
0 o 1—

. . . . ° 24t
Puisque la fonction | ¢ +— -2 est continue sur [0, €], 'intégrale -2 est conver-
_ 0 1—
€ In(1—¢*
gente donc / % dt converge aussi.
0
On a donc :
/E In(1 — ?) & — In(1—1?)1° / 2dt
0 2 B t o Jo 1-#2
B In(1 —&2) /5 2dt
B € o 1—1¢2
In(1 — &? /1 1
_ (- / BRI S B
€ o \1+t t-1
In(1 —¢?
_ _BO=E) e —m—e
1 1—
=—1n(1+8)(1+)— 6ln(l—s)
€ €
— —2In2 par croissances comparées.
e—1
1 2
In(1—t¢
On en déduit que / % dt converge et :
0
1 2 € 2
In(1 — In(1 —
/ WO gy i [ 2O g2 o,
0 t e—=1 /g t2

€ 2dt
1Une intégration par parties sur |0, 1[ n’était pas possible car I'intégrale / 1T 2 diverge.
0o 1—

4. La fonction (¢ — e~ cost) est continue sur R, et :
vVt e Ry, ‘e_tcost‘ <e b

+oo

“+o0
Puisque l'intégrale de référence e~ tdt converge, 'intégrale / e tcostdt con-
0 0
verge absolument par comparaison de fonctions positives, donc converge.

Les fonctions (t — e~t) et sin sont C! sur [0,+oo[. Puisque, pour tout t € Ry, 0 <

le"tsint| < et . lir+n e tsint = 0. On a, par intégration par parties (ce résultat garan-
—+00

tit la convergence de la seconde intégrale) :
+oo +00 +oo +o00
/ e tcostdt = [e*tsint} —|—/ e 'sintdt. = / e 'sintdt.
0 0 0 0

Les fonctions (¢t — e~!) et —cos sont C* sur [0,+oo[. Puisque thIJP —e"tcost = 0, le
—+00

théoréme d’intégration par parties assure que (remarquons que toutes les intégrales con-
—+oo
0

vergent d’aprés ce qui précéde) :
+oo “+o0
/ e“tsintdt = [— e~ tcos t} — / e tcostdt
0 0
+oo
:/ e“tsintdt
0
+oo

=1- / e~ tcostdt.

0

—+oo
1
On en déduit alors que / e tcostdt = 5
0

Corrigé de I’exercice 16. |[Enoncé]

dt
1. La fonction (¢ — est continue sur R.
(et+1)(e"t+1)
La fonction exp est C! et strictement croissante sur R, et exp(Ry) = [1,+oc[. Posons
u = e!. On a alors du = et dt. Sous réserve de convergence, on a, par changement de
variable :
/+°° dt B /+°° et & = /+°° du
o (e D(et+1) Sy (e H1)? u=er fy o (ut 1)

11
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Soit A € [1, 4o0]. La fonction (2 + In (v/1 — 22)) est continue sur [0, 1[. Soit A € [0, 1].
A A A 1 /4
/ due [ 1 11 . 1 / In (\/1—;32) dz = 5/ In(1 —z) 4+ In(1 + z)] dz
L (w12 | u+l], 2 A+1 Asfe 2 0 ) 0 M
= 7[— l1—-2)n(l—2)—z+ (1+2z)In(l +2) —:v}
+oo du “+o0 dt 2 0 N
(0] déduit I'intégral — . L’intégral 1
n en déduit que megrae/1 CFSIE converge 1negrae/0 @ T e+ 1) :7[—(1—A)ln(1—A)—A+(1+A)ln(1+A)—A}
converge donc par changement de variables et : 2 0
P In2 -1 (par croissances comparées).
—+o00
/+oo ds B 1 )
0 (" +1)(e7t+1) 2 On en déduit que l'intégrale / In (\/ 1-— x2) dx converge, donc, par changement de vari-
0

[NE]

Vit

La fonction u : t — v/t est C! et strictement croissante sur R et u (Ri) =R%.

ables, que l'intégrale / sintln (sint) dt converge aussi et :
0

™

2. La fonction (t —
2
/ sintln (sint)dt =1n2 — 1.
0

> est continue sur R .

Int
V1—t

dt
Posons o = v/t. On a alors doz = ——. Sous réserve de convergence, on a, par changement 4. [a fonction <t N

2Vt

) est continue sur |0, 1].

d iable :
@ varabie La fonction u : t — /1 — ¢ est C! et strictement décroissante sur |0, 1] et u (]0, 1) =]0, 1[.

+oo Vi +°° dt Feo
—dt = / —Vi / 2¢* dx. dt )
0 Vit 0 PN x_\/ Posons x = +/1 —t. On a alors dz = RN Sous réserve de convergence, on a, par
too Yoo I changement de variable :
Puisque l'intégrale de référence e~ % dx converge et vaut 1, I'intégrale ¢ 1 1 1
0 o Vi o[ o (——Var = 2In(1 — u?)
converge par changement de variables et : o V1—t 0 2v/1—1t z=v1=1 Jo ’
+o0 e—\/{ . s R . . e L,
/ dt = 2. On sait d’aprés la question précédente que 'intégrale ( ) x converge (et vaut
o Vi
2(In2 — 1)), donc, par changement de variables, que l'intégrale / dt converge
3. La fonction (¢ — sintIn (sint)) est continue sur ]O, g] aussi et : Lt
n
- - dt =4In2 — 4.
La fonction cos est C! et strictement décroissante sur }O, 5} et cos G 0, 5}) =10, 1]. o VI-t
Corrigé de I’ ice 17. [E ¢
Posons z = cost. On a alors dz = —sintdt. Sous réserve de convergence, on a, par orrige de Texercice [Enonce]
changement de variable : 1. On commence par remarquer que, pour tout t > 0, t* " Le=5 > 0.
= z 1 De plus . 1121 telems =0 par croissances comparées. Il existe donc un réel A > 0 tel
— 400
; ; — _ V1 — cos2t) (— s — A1 — 2 ,
/0 sintln (sint) dt = /0 In ( 1 —cos t) (—sint)dt r=cost /0 In ( 1-x ) dz. que, pour tout ¢ > 1, t*=le=2 < 1. On en déduit que, pour tout t > A, 0 < ! e~z < 1.

12
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2. Soit a > 0. La fonction f: ¢ — t* le~2 est continue sur |0, +oo[. Fixons A > 0.

e Etudions l'existence de l'intégrale de f sur |0, A].

vt €]0, 4], 0 <t et <

1
Puisque 1 — a < 1, l'intégrale de Riemann /
0

1
tl—a’

= COmVerge (& démontrer - cf ex-

A
ercice 13) donc / e aussi. Par comparaison de fonctions positives, 'intégrale
0

1

1 —t .

/ t* lem2 dt converge aussi.
0

e Etudions I'existence de I'intégrale de f sur [A, +-0o[. D’aprés la question précédente,

on trouve que :

VE> A, 0<t et Ce 2,

—+oo
Puisque l'intégrale de référence / e ¥dx converge, on peut montrer par le
0

t +ee
changement de variable x = 3 que l'intégrale / e 3 dt converge, et enfin que
0

—+o0
Iintégrale / e~z dt converge. Par comparaison de fonctions positives, l'intégrale

A

+o0 .
/ t* lem2 dt converge aussi.
A

+oo
On en déduit que l'intégrale / t>~Le~t dt converge pour tout a > 0.
0

3. Soit « un réel strictement positif. Les fonctions (

(0%

Puisque a > 0, lir% —e~t = 0. Par croissances comparées,
t—

«

e}

t
L ) et (t+— e ") sont C! sur RY.
a

(0%

lim —e t=0.
t—4o00

+oo
Le théoréme d’intégration par parties assure que 'intégrale / —t*e~t dt converge et :
0 «

+oo ta
/ et dt = {e
0 «

On trouve alors que :

VYa >0, T'(a) = éf(a +1)

ﬂ

—+o00

0

i.e.

“+oo 1
+ / et dt.
0

(07

P(a+1) =al'(a).

4. Puisque I'(1) = 1 = 0!, un raisonnement par récurrence montre que, pour tout entier

13

naturel n non nul, I'(n) = (n — 1)

Corrigé de I’exercice 18. [Enoncé]

1. On commence par remarquer que, pour tout ¢t > 0, te™t > 0.

De plus tlir+n te~? = 0 par croissances comparées. Il existe donc un réel A > 0 tel que,
— 00

pour tout ¢ > 0, te~t < 1. On en déduit que, pour tout t > A, 0 < te™? < 1.

—t

e
. Soit x € R% La fonction g : ¢ - est continue sur ]0, +oo[, donc sur [z, +oo[. Pour

et 1
tout t > A, Ongt—Q.
+oo —+oo
Puisque l'intégrale de Riemann / ) converge, / ) converge aussi. Par com-
1 A
+oo —t
paraison de fonctions positives, l'intégrale / - dt converge.
A

+oo —t
Par continuité de g sur ]0, 00|, U'intégrale / - dt converge pour tout x > 0, i.e.

x

F(z) est bien défini pour tout « > 0.

. D’aprés la relation de Chasles, on a :

+oo

1 “+o00 T
vz > 0, F(x):/ g(t)dtz/ g(t)dt+/1 g(t)dt:F(l)—/l g(t) dt.

x

Puisque g est continue sur R* , g admet une primitive G sur R . Ainsi :
Vo >0, F(x) = F(1) — G(z) + G(1).

Puisque G est C! sur R%, F l'est aussi par théorémes opératoires et :

Ve >0, F'(r) = -G'(z) = —g(z) = ——.

. Soit z € R%. Remarquons que

+oo 4 »
xF(x) = —e"dt.
= t
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Or, pour tout t > z, 0 <

~+| 8

+oo
et < e7t. Puisque I'intégrale / e~ dt converge, I'intégrale
0

—+oo
de référence / et dt converge aussi. Par croissance de I'intégrale, on trouve que :
x

+oo
0<aF(z) < / e~ tdt.

+oo

Puisque lim e~'dt = 0 (convergence vers 0 du reste d'une intégrale généralisée),

T— 00 .

le théoréme d’encadrement assure que lim zF'(x) = 0.
r——+00

Soit  €]0, 1]. La relation de Chasles permet aussi d’écrire :

1 “+o0 1
dt dt dt
xF(x):x/ —e_t—l—a:/ —e_t:x/ —e b aF(1).
T t 1 t T t
et 1 . o
Pour tout ¢ € [z, 1], - < T Par croissance de l'intégrale, on trouve que :

Lat ol
—e "< - =—Inx.

On en déduit que : Vz €]0,1], 0 < zF(x) < —zxInz + xF(1). Les croissances comparées
et le théoréme d’encadrement permettent de conclure : hn%) xF(z) = 0.
r—

. Les fonctions (z + 1) et F étant C' sur R,.. Puisque lim xF(z) =0et lim xF(z) =0,
r—+00 z—0+t

le théoréme d’intégration par parties assure alors que les intégrales :

/O+OOF(x)d33 et /O+Ooxf(m)dsc

sont de méme nature. Or :

YV €]0,4o00[, xf(x) =e "

+oo too
L’intégrale de référence / e~ ¥ dx étant convergente, 'intégrale / F(z)dx est aussi
0 0

convergente.

Corrigé de I’exercice 19. [Enoncé|

. Puisque la fonction f :t +—

1. a. Par définition de la limite, il existe A > 0 tel que, pour tout t > A, ¢7 f(¢) < 1. Ainsi :

1
V> A 0L f() <

+oo +oo dt
Puisque l'intégrale de Riemann / 4y converge (v = 1), lintégrale / 5 con-
1 A

+oo
verge et, par comparaison de fonctions positives, 'intégrale / f(¢) dt converge aussi.
A

—+o00
On en déduit que l'intégrale / f(t) dt converge.
A

. Par définition de la limite, il existe B > 0 tel que, pour tout ¢t > B, t7 f(t) < 1. Ainsi :

1
vt> B, f(t) > -
“+o0 dt +oo
Puisque l'intégrale de Riemann / - diverge (v < 1), l'intégrale / - diverge
1 B
+oo

et, par comparaison de fonctions positives, 'intégrale / f(t)dt diverge aussi.
B
+oo

On en déduit que l'intégrale / f(t) dt diverge.

a

est continue positive sur [e, +00[, on peut appli-
to (Int)?
quer les résultats des questions précédentes.

e Si a > 1, considérons un réel v €]1, .
1

Puisque tlir+n tf(t) = 0, le résultat de la question l.a assure alors que
—+00

+o0 d
———7 converge.
/e te (Int)”

e Si v < 1, considérons un réel v €], 1.

-

Par croissances comparées . 119_[1 t7f(t) = +oo. Le résultat de la question 1.b
——+00

+oo
dt .
assure alors que —— diverge.
e te ( s

Int)
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b. La fonction In est C! et strictement croissante sur [e, +0o[. Posons z = Int. On a alors Puisque :
dt x +oo +oo
dx = e Le théoréme de changement de variable assure alors que les intégrales : / ft)dt = / f(t)dt — / f(t)dt,
3 bl r
/ o dt ot / e dj la convergence du reste d’une intégrale convergence assure que :
e t (h’l t)B 1 mB T
sont de méme nature. Puisque 'intégrale de Riemann / —5 converge si, et seule- 2
1 X

On en déduit alors que lim xf(z) = 0 par encadrement.
T—r+00

+oo
ment si, 5 > 1, 'intégrale / converge si, et seulement si, 5 > 1.
(&

t(Int)’
Corrigé de I’exercice 20. [Enoncé|

1. La fonction f est décroissante sur Ry, elle admet donc une limite en +oo d’aprés le
théoréme de la limite monotone.

e Si lir}rl f(z) = —o0, il existe A > 0 tel que, pour tout x > A, f(z) < —1, et donc
Tr—r+00
—+oo —+oo

|f(x)] > 1. Puisque lintégrale dz diverge, U'intégrale / |f(x)| dx diverge

(e}

0
aussi par comparaison de fonction positives, ce qui est absurde.
e Posons /= lim f(x) € R.
r—r+00

si€>Oetf(x)<—£

Si ¢ #0, il existe A > 0 tel que, pour tout x > A, f(z) > 5

si ¢ > 0. Ainsi :

N s

Ve A |f(@) > L

[\

Foo p Foo
Puisque l'intégrale / 3 dz diverge, l'intégrale / |f(z)|dz diverge aussi par
0 0

comparaison de fonction positives, ce qui est absurde.
On en déduit donc que f tend vers 0 en +oo0.

2. Puisque f est décroissante sur R et tend vers 0 en +oo0, elle est positive sur R.

Soit & > 0. Puisque la fonction f est décroissante sur R, on a :
vte|S.a] F0) > f@) >0

Par croissance de l'intégrale, on a :

WV

/; Ft)dt > gf(x) 0.
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