
Mathématiques Intégrales généralisées BCPST 2 J-B. Say

Fonction définie par une intégrale

Exercice 1. [Corrigé] FFFFF

Soit f : R→ R une fonction continue.
Justifier que les fonctions suivantes sont de classe C1 sur R et exprimer leur dérivée.

g1 : x 7→
∫ x2

2x

f(t) dt g2 : x 7→
∫ x

0

xf(t) dt g3 : x 7→
∫ x

0

f(x+ t) dt.

Exercice 2. [Corrigé] FFFF

1. Montrer que la fonction f : x 7→
∫ 2x

x

et

t
dt est définie et dérivable sur R∗.

2. Déterminer la limite de f en 0. On calculer lim
x→0+

f(x) à l’aide d’un encadrement.

Exercice 3. [Corrigé] FFF

Soit f une fonction de classe C1 sur R et soit G la fonction définie par :

∀x ∈ R∗, G(x) =
1

2x

∫ x

−x
f(t) dt.

1. Montrer que la fonction G est prolongeable par continuité en 0 en une fonction continue
sur R (qu’on notera encore G).

2. Montrer que G est dérivable sur R∗ et montrer que :

∀x ∈ R∗, G′(x) =
1

2x2

∫ x

−x
tf ′(t).

Sommes de Riemann

Exercice 4. [Corrigé] FFFFF

Déterminer les limites des suites définies par le terme général suivant :

n∑
k=1

n

n2 + k2

n∑
k=1

k

n2 + k2

n∑
k=1

1√
n2 + 2kn

.

Exercice 5. [Corrigé] FFFF

À l’aide d’une somme de Riemann, déterminer un équivalent de
n∑
k=1

√
k lorsque n→ +∞.

Exercice 6. [Corrigé] FFF

Calculer lim
n→+∞

(
(2n)!

nnn!

) 1
n

. On pourra composer par ln et trouver une somme de Riemann.

Exercice 7. Méthode des rectangles ♥ [Corrigé] FFFF

Écrire une fonction methode_rectangles qui prend en argument une fonction f, deux flot-

tants a et b et un entier n, et qui renvoie une approximation de l’intégrale
∫ b

a

f(t) dt à l’aide

de la méthode des rectangles, en approchant l’intégrale par l’aire de n rectangles,.

Calcul d’intégrales sur un segment

Exercice 8. [Corrigé] FFFF

Calculer les intégrales suivantes :

I1 =

∫ 1

0

ln(1 + t2) dt

I4 =

∫ e

1

tn ln tdt (n ∈ N∗)

I2 =

∫ 1

0

arctan tdt

I5 =

∫ 1

1
2

ln(1 + t)− ln t

t2
dt

I3 =

∫ π

0

sin t

3 + cos2 t
dt

I6 =

∫ 2

1

dt√
t+ 2t

Suites d’intégrales sur segment

Exercice 9. [Corrigé] FFFF

1. Montrer que, pour tout n ∈ N :∫ 1

0

n∑
k=0

(−1)kt2k dt =
π

4
+

∫ 1

0

(−1)nt2n+2

1 + t2
dt.

2. Justifier que, pour tout n ∈ N, on a :

0 6
∫ 1

0

t2n+2

1 + t2
dt 6

1

2n+ 3
.

3. En déduire que la série de terme général
(−1)k

2k + 1
converge et

+∞∑
k=0

(−1)k

2k + 1
=
π

4
.
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Exercice 10. [Corrigé] FFFF

Pour tout n ∈ N, on pose un =

∫ 1

0

dx

1 + xn
.

1. Calculer u0, u1 et u2.

2. Montrer que la suite (un)n∈N est strictement croissante.

3. Vérifier que la suite (un)n∈N converge vers 1.

4. Établir que, pour tout n ∈ N∗ :∫ 1

0

xn

1 + xn
dx =

ln 2

n
− 1

n

∫ 1

0

ln(1 + xn) dx.

5. Montrer que : ∀x > 0, 0 6 ln(1 + x) 6 x.

En déduire que :

lim
n→+∞

∫ 1

0

ln(1 + xn) dx = 0.

6. En déduire le développement asymptotique : un =
n→+∞

1− ln 2

n
+ o

(
1

n

)
.

Exercice 11. Intégrales de Wallis [Corrigé] FFFF

Pour tout n ∈ N, on pose :

In =

∫ π
2

0

sinn(t) dt.

1. Montrer que pour tout n ∈ N, In =

∫ π
2

0

cosn(t) dt et In > 0.

On pourra réaliser le changement de variable x = π
2 − t.

2. Montrer que, pour tout n ∈ N, In+2 =
n+ 1

n+ 2
In.

3. Exprimer, pour tout p ∈ N, I2p et I2p+1 à l’aide de factoriels.

4. Montrer que, pour tout n ∈ N :

(n+ 1)InIn+1 =
π

2
et In+2 6 In+1 6 In.

5. Déterminer un équivalent de In lorsque n tend vers +∞.

Convergence d’intégrales généralisées

Exercice 12. [Corrigé] FFFFF

Étudier la nature des intégrales généralisées et calculer leur valeur en cas de convergence.

∫ 1

0

dt

t2

∫ 1

0

dt√
t

∫ +∞

1

dt

t ln t∫ +∞

1

ln t

t
dt

∫ +∞

−∞
e−2|t|+t dt

∫ +∞

0

dt

(t+ 1)(t+ 2)

Exercice 13. Intégrales de Riemann ♥ [Corrigé] FFFFF

Étudier, pour α ∈ R, la convergence des intégrales suivantes
∫ +∞

1

dt

tα
et
∫ 1

0

dt

tα
.

Exercice 14. [Corrigé] FFF

Montrer que l’intégrale
∫ +∞

0

sin tdt n’est pas absolument convergente.

On découpera astucieusement l’intervalle [0,+∞[.

Exercice 15. Intégration par parties [Corrigé] FFFF

Étudier la nature des intégrales généralisées ci-dessous puis, en cas de convergence, calculer
leur valeur à l’aide d’une intégration par parties.

∫ 1

0

ln tdt

∫ +∞

0

ln

(
1 +

1

t

)
dt

∫ 1

0

ln(1− t2)

t2
dt

∫ +∞

0

e−t cos tdt

Exercice 16. Changement de variables [Corrigé] FFF

À l’aide d’un changement de variable, étudier la convergence des intégrales ci-dessous, puis,
en cas de convergence, calculer leur valeur.

∫ +∞

0

dt

(et + 1)(e−t + 1)

∫ +∞

0

e−
√
t

√
t

dt

∫ π
2

0

sin t ln (sin t) dt

∫ 1

0

ln t√
1− t

dt
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Problèmes

Exercice 17. Fonction Gamma [Corrigé] FFFF

Pour tout α > 0, on considère l’intégrale généralisée :

Γ(α) =

∫ +∞

0

tα−1e−t dt.

1. Soit α > 0. Montrer qu’il existe un réel A > 0 tel que, pour tout t > A, 0 6 tα−1e−
t
2 6 1.

On pourra calculer lim
t→+∞

tα−1e−
t
2 .

2. En déduire que l’intégrale généralisée
∫ +∞

0

tα−1e−t dt converge pour tout α > 0.

3. À l’aide d’une intégration par parties, montrer que, pour tout α > 0, Γ(α+ 1) = αΓ(α).

4. En déduire que pour tout entier naturel n non nul, Γ(n) = (n− 1)!.

Exercice 18. [Corrigé] FFF

Pour tout x > 0, on pose :

F (x) =

∫ +∞

x

e−t

t
dt.

1. À l’aide de lim
t→+∞

te−t, montrer qu’il existe A > 0 tel que, pour tout t > A, 0 6 te−t 6 1.

2. En déduire que F (x) est bien définie pour tout x > 0.

3. Établir que F est de classe C1 sur R∗+ et calculer F ′(x) pour tout x > 0.

4. À l’aide d’un encadrement, montrer que :

lim
x→+∞

xF (x) = 0.

5. Montrer que :
∀x ∈]0, 1], 0 6 xF (x) 6 −x lnx+ xF (1).

En déduire la valeur de lim
x→0+

xF (x).

6. Sans déterminer une expression de F (x) en fonction de x > 0, montrer que l’intégrale

généralisée
∫ +∞

0

F (x) dx converge.

Exercice 19. Comparaison aux intégrales de Riemann [Corrigé] FFF

1. Soit f une fonction positive et continue sur un intervalle [a,+∞[ (a ∈ R∗+).

1. On suppose qu’il existe γ > 1 tel que lim
t→+∞

tγf(t) = 0.

Montrer que
∫ +∞

a

f(t) dt converge.

2. On suppose qu’il existe γ 6 1 tel que lim
t→+∞

tγf(t) = +∞.

Montrer que
∫ +∞

a

f(t) dt diverge.

2. Convergence des intégrales de Bertrand
∫ +∞

e

dt

tα (ln t)
β
.

a. Montrer que
∫ +∞

e

dt

tα (ln t)
β
converge pour α > 1 et diverge pour α < 1.

b. Montrer, à l’aide d’un changement de variable, que l’intégrale généralisée
∫ +∞

e

dt

t (ln t)
β

converge si, et seulement si, β > 1.

Exercice 20. (hors-programme) [Corrigé] FFF

Soit f : R+ → R une fonction continue, décroissante et intégrable sur R+.

1. Montrer que f tend vers 0 en +∞.

2. Montrer que xf(x) tend vers 0 lorsque x→ +∞.
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Corrigé de l’exercice 1. [Énoncé]
Soit F une primitive de f sur R. On a alors :

∀x ∈ R, g1(x) = F (x2)− F (2x), g2(x) = x (F (x)− F (0)) .

La fonction t 7→ x + t étant C1 sur R pour tout x ∈ R, on obtient, via le changement de
variable u = x+ t :

∀x ∈ R,
∫ x

0

f(x+ t) dt =

∫ 2x

x

f(u) du = F (2x)− F (x).

La fonction F étant C1 sur R, les fonctions g1, g2 et g3 sont C1 sur R par opérations sur les
fonctions C1 et :

∀x ∈ R, g1(x) = 2xf(x2)− 2f(2x),

g2(x) = xf(x) +

∫ x

0

f(t) dt,

g3(x) = 2f(2x)− f(x).

Corrigé de l’exercice 2. [Énoncé]

1. Soit G une primitive de g : t 7→ et

t
sur R∗+ et R∗−.

Pour tout x 6= 0, x et 2x sont de même signe donc 0 n’est pas compris entre x et 2x donc
f est définie sur R∗ et :

∀x ∈ R∗, f(x) = G(2x)−G(x).

Puisque G est dérivable sur R∗, on trouve que f est dérivable sur R∗ par opérations sur
les fonctions dérivables.

2. Soit x > 0. Pour tout t ∈ [x, 2x], ex 6 et 6 e2x. Ainsi :

∀t ∈ [x, 2x],
ex

t
6
et

t
6
e2x

t
.

Par croissance de l’intégrale sur un segment (les fonctions en jeu sont continues sur [x, 2x]),
on trouve :

∀x > 0, ex ln 2 6 f(x) 6 e2x ln 2.

On en déduit que lim
x→0+

f(x) = ln 2 par passage à la limite.

Un raisonnement analogue montrerait que lim
x→0−

f(x) = ln 2.

On en déduit donc que lim
x→0

f(x) = ln 2.

Corrigé de l’exercice 3. [Énoncé]

1. Soit F une primitive de f sur R.

∀x 6= 0, G(x) =
F (x)− F (−x)

2x
=

1

2

[
F (x)− F (0)

x
+
F (0)− F (−x)

x

]
. (1)

La fonction F étant dérivable sur R, la fonction G est bien continue sur R∗.

On trouve que lim
x→0

F (x)− F (0)

x
= F ′(0) = f(0) et, en posant u : x 7→ F (−x), on trouve

par composition :

F (0)− F (−x)

x
=
u(0)− u(x)

x
= −u(x)− u(0)

x
−→
x→0
−u′(0) = F ′(0) = f(0).

On en déduit que lim
0
F = f(0).

La fonction G est donc prolongeable par continuité en 0 en une fonction continue sur R
en posant G(0) = f(0).

2. La fonction F étant dérivable sur R, on tire de l’égalité (1) la dérivabilité de G sur R∗
par opérations sur les fonctions dérivables et :

∀x ∈ R∗, G′(x) = − 1

2x2

∫ x

−x
f(t) dt+

f(x) + f(−x)

2x
.

Les fonctions (t 7→ t)) et f étant de classe C1 sur R, on trouve par intégration par parties

∀x ∈ R∗, G′(x) =
1

2x2

∫ x

−x
tf ′(t).

Corrigé de l’exercice 4. [Énoncé]

1. Pour tout n ∈ N∗, on a :

n∑
k=1

n

n2 + k2
=

1

n

n∑
k=1

1

1 +
(
k
n

)2 =
1

n

n∑
k=1

f

(
k

n

)
où f : t 7→ 1

1 + t2
.

Puisque la fonction f est continue sur [0, 1], on reconnait une somme de Riemann et :

lim
n→+∞

n∑
k=1

n

n2 + k2
=

∫ 1

0

dt

1 + t2
=
π

4
.
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2. Pour tout n ∈ N∗, on a :

n∑
k=1

k

n2 + k2
=

1

n

n∑
k=1

k
n

1 +
(
k
n

)2 =
1

n

n∑
k=1

f

(
k

n

)
où f : t 7→ t

1 + t2
.

Puisque la fonction f est continue sur [0, 1], on reconnait une somme de Riemann et :

lim
n→+∞

n∑
k=1

n

n2 + k2
=

∫ 1

0

t

1 + t2
dt =

[
1

2
ln
∣∣1 + t2

∣∣]1
0

=
ln 2

2
.

3. Pour tout n ∈ N∗, on a :

n∑
k=1

1√
n2 + 2kn

=
1

n

n∑
k=1

1√
1 + 2 kn

=
1

n

n∑
k=1

f

(
k

n

)
où f : t 7→ 1√

1 + 2t
.

Puisque la fonction f est continue sur [0, 1], on reconnait une somme de Riemann et :

lim
n→+∞

n∑
k=1

1√
n2 + 2kn

=

∫ 1

0

dt√
1 + 2t

=
[√

1 + t
]1
0

=
√

3− 1.

Corrigé de l’exercice 5. [Énoncé]
Pour tout n ∈ N∗, on a :

n∑
k=1

√
k = n

3
2

(
1

n

n∑
k=1

√
k

n

)
= n

3
2

(
1

n

n∑
k=1

f

(
k

n

))
,

où f : x 7→
√
x. On reconnait une somme de Riemann d’une fonction continue sur [0, 1] :

lim
n→+∞

1

n

n∑
k=1

f

(
k

n

)
=

∫ 1

0

√
x dx =

2

3
.

On en déduit que :
1

n

n∑
k=1

f

(
k

n

)
∼

n→+∞

2

3
,

puis :
n∑
k=1

√
k ∼
n→+∞

2

3
n

2
3 .

Corrigé de l’exercice 6. [Énoncé]
Pour tout n ∈ N∗, on a :

ln

[(
(2n)!

nnn!

) 1
n

]
=

1

n
ln

(
(2n)!

nnn!

)

=
1

n
ln

(
2n∏

k=n+1

k

n

)

=
1

n

2n∑
k=n+1

ln

(
k

n

)

=
1

n

n∑
i=1

ln

(
1 +

i

n

)

=
1

n

n∑
i=1

f

(
i

n

)
.

où f : x 7→ ln(1 + x). Puisque la fonction f est continue sur [0, 1], on reconnait une somme
de Riemann et :

lim
n→+∞

ln

[(
(2n)!

nnn!

) 1
n

]
=

∫ 1

0

ln(1 + x) dx = 2 ln 2− 1.

On en déduit que :

lim
n→+∞

(
(2n)!

nnn!

) 1
n

= e2 ln 2−1 =
4

e
.

Corrigé de l’exercice 7. [Énoncé]

Le principe est d’approcher
∫ b

a

f(t) dt à l’aide de
b− a
n

n∑
k=1

f

(
a+ (b− a)

k

n

)
puisque, après

le changement de variable t = a+ (b− a)x (la fonction x 7→ a+ (b− a)x est C1 sur [0, 1]), on
trouve : ∫ b

a

f(t) dt =
t=a+(b−a)x

(b− a)

∫ 1

0

f (a+ (b− a)x) dx.

def methode_rectangles(f, a, b, n):
somme = 0
for k in range(n):

somme += f(a+ (b−a)∗k/n)
return somme∗(b−a)/n

5
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Corrigé de l’exercice 8. [Énoncé]

1. La fonction
(
t 7→ ln(1 + t2)

)
est continue sur [0, 1], ce qui justifie l’existence de I1.

Les fonctions (t 7→ t) et
(
t 7→ ln(1 + t2)

)
étant C1 sur [0, 1], on intègre I1 par parties :

I1 =

∫ 1

0

ln(1 + t2) dt =
[
t ln(1 + t2)

]1
0
− 2

∫ 1

0

t2

1 + t2
dt

= ln 2− 2

∫ 1

0

(
1− 1

1 + t2

)
dt

= ln 2− 2 +
π

2
.

2. La fonction arctan est continue sur [0, 1], ce qui justifie l’existence de I2.

Les fonctions (t 7→ t) et arctan étant C1 sur [0, 1], on intègre I2 par parties :

I2 =

∫ 1

0

arctan tdt =
[
t arctan t

]1
0
−
∫ 1

0

t

1 + t2
dt =

π

4
− 1

2
ln 2.

3. La fonction
(
t 7→ sin t

3 + cos2 t

)
est continue sur [0, π], ce qui justifie l’existence de I3.

La fonction cos étant C1 sur [0, π], on réalise le changement de variable x = cos t. On a
alors dx = − sin tdt et :

I3 =

∫ π

0

sin t

3 + cos2 t
dt =

∫ 1

−1

dx

x2 + 3

=

[
1√
3

arctan

(
x√
3

)]1
−1

=
π

3
√

3
.

4. Soit n ∈ N∗. La fonction (t 7→ tn ln t) est continue sur [1, e], ce qui justifie l’existence de

I4. Les fonctions
(
t 7→ tn+1

n+ 1

)
et ln étant C1 sur [1, e], on intègre I1 par parties :

I4 =

∫ e

1

tn ln tdt =

[
tn+1

n+ 1
ln t

]e
1

−
∫ 1

0

tn

n+ 1
dt

=
nen+1 + 1

(n+ 1)2
.

5. La fonction
(
t 7→ ln(1 + t)− ln t

t2

)
est continue sur

[
1

2
, 1

]
, ce qui justifie l’existence de

I5. La fonction
(
t 7→ 1

t

)
étant C1 sur

[
1

2
, 1

]
, on réalise le changement de variable x =

1

t
.

On a alors dx = −dt

t2
et :

I5 =

∫ 1

1
2

ln(1 + t)− ln t

t2
dt =

∫ 1

1
2

1

t2
ln

(
1 +

1

t

)
dt

=

∫ 2

1

ln (1 + x) dx

=
[
(1 + x) ln(1 + x)− x

]2
1

= 3 ln 3− 2 ln 2− 1.

6. La fonction
(
t 7→ 1√

t+ 2t

)
est continue sur [1, 2], ce qui justifie l’existence de I6. La

fonction
(
t 7→
√
t
)
étant C1 sur [1, 2], on réalise le changement de variable x =

√
t. On a

alors dx =
dt

2
√
t
et :

I6 =

∫ 2

1

dt√
t+ 2t

=

∫ √2

1

2

2x+ 1
dx = ln(1 + 2

√
2)− ln 3.

Corrigé de l’exercice 9. [Énoncé]

1. Pour tout n ∈ N, la fonction

(
t 7→

n∑
k=0

(−1)kt2k

)
est continue sur [0, 1] (car polynômiale),

ce qui justifie l’existence de l’intégrale du premier membre de l’égalité à prouver.

∀n ∈ N, ∀t ∈ [0, 1],

n∑
k=0

(−1)kt2k dt =
n∑
k=0

(
−t2

)k
dt

=
1−

(
−t2

)n+1

1 + t2
car − t2 6= 1

=
1

1 + t2
+

(−1)nt2n+2

1 + t2
.

6
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Par linéarité de l’intégrale (les fonctions en jeu sont bien continues sur [0, 1]), on trouve
l’égalité recherchée :

∀n ∈ N,
∫ 1

0

n∑
k=0

(−1)kt2k dt =
π

4
+

∫ 1

0

(−1)nt2n+2

1 + t2
dt.

2. Soit n ∈ N. Pour tout t ∈ [0, 1], 0 6
t2n+2

1 + t2
6 t2n+2.

Par croissance de l’intégrale (les fonctions intégrées sont continues sur [0, 1]), on a :

0 6
∫ 1

0

t2n+2

1 + t2
dt 6

∫ 1

0

t2n+2 dt.

On en déduit que, pour tout n ∈ N :

0 6
∫ 1

0

t2n+2

1 + t2
dt 6

1

2n+ 3
.

3. Pour tout k ∈ N,
∫ 1

0

(−1)kt2k dt =
(−1)k

2k + 1
.

D’après l’égalité de la première question et la linéarité de l’intégrale (les fonctions intégrées
sont continues sur [0, 1]), on trouve :

∀n ∈ N,
n∑
k=0

(−1)k

2k + 1
=
π

4
+

∫ 1

0

(−1)nt2n+2

1 + t2
dt.

Or, d’après l’inégalité triangulaire :

∀n ∈ N, 0 6

∣∣∣∣∫ 1

0

(−1)nt2n+2

1 + t2
dt

∣∣∣∣ 6 ∫ 1

0

t2n+2

1 + t2
dt 6

1

2n+ 3
.

On en déduit que :

lim
n→+∞

∫ 1

0

(−1)nt2n+2

1 + t2
dt = 0, i.e. lim

n→+∞

n∑
k=0

(−1)k

2k + 1
=
π

4
.

On en déduit donc que la série
∑
k>0

(−1)k

2k + 1
converge et

+∞∑
k=0

(−1)k

2k + 1
=
π

4
.

Corrigé de l’exercice 10. [Énoncé]

1. On trouve sans difficulté que u0 =
1

2
, u1 = ln 2 et u2 =

π

4
.

2. Soit n ∈ N. Remarquons que les fonctions
(
x 7→ 1

1 + xn

)
et
(
x 7→ 1

1 + xn+1

)
sont

continues sur [0, 1].

un+1 − un =

∫ 1

0

xn − xn+1

(1 + xn)(1 + xn+1)
dx =

∫ 1

0

xn(1− x)

(1 + xn)(1 + xn+1)
dx.

Or :

∀x ∈ [0, 1],
xn(1− x)

(1 + xn)(1 + xn+1)
> 0 et ∀x ∈]0, 1[,

xn(1− x)

(1 + xn)(1 + xn+1)
> 0.

Par croissance de l’intégrale, on trouve que :∫ 1

0

xn(1− x)

(1 + xn)(1 + xn+1)
dx > 0,

On en déduit que la suite (un)n∈N est strictement croissante.

3. Pour tout n ∈ N, on a :

1− un =

∫ 1

0

xn

1 + xn
dx.

Or : ∀n ∈ N, ∀x ∈ [0, 1], 0 6
xn

1 + xn
6 xn. Par croissance de l’intégrale, on trouve :

0 6 1− un 6
1

n+ 1
.

Puisque lim
n→+∞

1

n+ 1
= 0, le théorème d’encadrement assure que lim

n→+∞
1 − un = 0, i.e.

la suite (un)n∈N converge vers 1.

4. Soit n ∈ N∗.

Les fonctions
(
x 7→ 1

n
ln(1 + xn)

)
et (x 7→ x) sont de classe C1 sur [0, 1]. Par intégration

par parties, on trouve :∫ 1

0

xn

1 + xn
dx =

[x
n

ln(1 + xn)
]1
0
− 1

n

∫ 1

0

ln(1 + xn) dx =
ln 2

n
− 1

n

∫ 1

0

ln(1 + xn) dx.

5. On sait déjà que, pour tout x > 0, ln(1 + x) > 0.

7
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Étudions la fonction g : x 7→ ln(1 + x)− x. Cette fonction est dérivable sur R+ et :

∀x > 0, g′(x) =
1

1 + x
− 1 = − x

1 + x
6 0.

La fonction g est donc décroissante sur R+. Puisque g(0) = 0, la fonction g est négative
sur R+. On en déduit que : ∀x > 0, 0 6 ln(1 + x) 6 x.
Pour tous n ∈ N et x ∈ [0, 1], xn > 0 donc 0 6 ln(1 + xn) 6 xn. Par croissance de
l’intégrale, on trouve :

0 6
∫ 1

0

ln(1 + xn) dx 6
∫ 1

0

xn dx =
1

n+ 1
.

Le théorème d’encadrement permet de conclure :

lim
n→+∞

∫ 1

0

ln(1 + xn) dx = 0.

6. D’après la question 4, on a :

∀n ∈ N∗, 1− un =
ln 2

n
− 1

n

∫ 1

0

ln(1 + xn) dx.

Le résultat de la question précédente assure que :∫ 1

0

ln(1 + xn) dx =
n→+∞

o(1).

On en déduit le développement asymptotique recherché :

un =
n→+∞

1− ln 2

n
+ o

(
1

n

)
.

Corrigé de l’exercice 11. [Énoncé]

1. Soit n ∈ N. Remarquons que la fonction sinn est continue sur
[
0,
π

2

]
.

La fonction
(
t 7→ π

2
− t
)
est C1 sur

[
0,
π

2

]
. On peut donc poser x =

π

2
− t. On a alors

dx = −dt et :

In =

∫ π
2

0

sinn(t) dt = −
∫ 0

π
2

sinn
(π

2
− x
)

dx =

∫ π
2

0

cosn(x) dx.

Puisque :
∀x ∈

[
0,
π

2

]
, cosn(x) > 0 et ∀x ∈

[
0,
π

2

[
, cosn(x) > 0,

la positivité de l’intégrale assure que In > 0.

2. Remarquons que :

In+2 =

∫ π
2

0

cosn(t)(1− sin2(t)) dt = In −
∫ π

2

0

sin(t) [sin(t) cosn(t)] dt.

Intégrons la seconde intégrale par parties, les fonctions sin et
−1

n+ 1
cosn+1 étant C1 sur[

0,
π

2

]
. On a alors :∫ π

2

0

sin(t) [sin(t) cosn(t)] dt =
[
− 1

n+ 1
sin(t) cosn+1(t)

]π
2

0
+

1

n+ 1
cosn+2(t) dt

=
1

n+ 1
In+2.

On en déduit que, pour tout n ∈ N, In+2 = In −
1

n+ 1
In+2, i.e In+2 =

n+ 1

n+ 2
In.

3. Pour tout p ∈ N, on a :

I2p+2 =
2p+ 1

2p+ 2
I2p et I2p+3 =

2p+ 2

2p+ 3
I2p+1.

Un raisonnement par récurrence montre que :

∀p ∈ N, I2p = I0

p∏
k=1

2k − 1

2k
=
π

2

(2p)!

(2pp!)2
et I2p+1 = I1

p∏
k=1

2k

2k + 1
=

(2pp!)2

(2p+ 1)!

4. Pour tout n ∈ N, on pose un = (n + 1)InIn+1. D’après la question 3, pour tout n ∈ N,
(n+ 2)In+2 = (n+ 1)In donc :

∀n ∈ N, un+1 = (n+ 2)In+1In+2 = (n+ 1)InIn+1 = un.

La suite (un)n∈N est donc constante, égale à I0I1 =
π

2
, i.e.

∀n ∈ N, (n+ 1)InIn+1 =
π

2
.

Montrons que la suite (In)n∈N est décroissante. Soit n ∈ N.

In+1 − In =

∫ π
2

0

sinn(t) (sin(t)− 1) dt.

Puisque, pour tout t ∈
[
0,
π

2

]
, 0 6 sin(t) 6 1, sinn(t) (sin(t)− 1) 6 0. Par positivité (ou

croissance) de l’intégrale, on trouve que In+1 − In 6 0 et ainsi que la suite (In)n∈N est
décroissante. On en déduit donc que

∀n ∈ N, In+2 6 In+1 6 In.

8
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5. Soit n ∈ N. D’après la question précédente, on a :

π

2
= (n+ 2)In+1In+2 6 (n+ 2)I2n+1 6 (n+ 2)InIn+1 =

n+ 2

n+ 1
(n+ 1)InIn+1 =

n+ 2

n+ 1

π

2
.

Puisque les membres extrêmes de cet encadrement tendent vers
π

2
, on trouve que

lim
n→+∞

(n+ 2)I2n+1 =
π

2
, puis lim

n→+∞
(n+ 1)I2n =

π

2
. On en déduit que :

I2n ∼
n→+∞

π

2(n+ 1)
∼

n→+∞

π

2n
puis In ∼

n→+∞

√
π

2n
.

Corrigé de l’exercice 12. [Énoncé]

1. La fonction
(
t 7→ 1

t2

)
est continue sur ]0, 1]. Soit A ∈]0, 1].

∫ 1

A

dt

t2
=

[
−1

t

]1
A

=
1

A
− 1 −→

A→0+
+∞

On en déduit que l’intégrale
∫ 1

0

dt

t2
diverge.

2. La fonction
(
t 7→ 1√

t

)
est continue sur ]0, 1]. Soit A ∈]0, 1].

∫ 1

A

dt√
t

=
[
2
√
t
]1
A

= 2− 2
√
A −→
A→0+

1

On en déduit que l’intégrale
∫ 1

0

dt√
t
converge et

∫ 1

0

dt√
t

= 1.

3. La fonction
(
t 7→ 1

t ln t

)
est continue sur ]1,+∞[. Soit A ∈]1, 2].

∫ 2

A

dt

t ln t
=
[

ln | ln t|
]2
A

= ln | ln 2| − ln | lnA| −→
A→1+

+∞

On en déduit que l’intégrale
∫ 2

1

dt

t ln t
diverge donc l’intégrale

∫ +∞

1

dt

t ln t
diverge aussi.

4. La fonction
(
t 7→ ln t

t

)
est continue sur [1,+∞[. Soit A ∈ [1,+∞[.

∫ A

1

ln t

t
dt =

[
1

2
ln2 t

]A
1

=
1

2
ln2A −→

A→1+
+∞

On en déduit que l’intégrale
∫ +∞

1

ln t

t
dt diverge.

5. La fonction
(
t 7→ e−2|t|+t

)
est continue sur R. Étudions alors la convergence des intégrales∫ 0

−∞
e−2|t|+t dt et

∫ +∞

0

e−2|t|+t dt. Remarquons que :

∀t ∈ R, e−2|t|+t =

{
e−t si t > 0

e3t si t 6 0.

Pour A > 0, on a
∫ A

0

e−2|t|+t dt =

∫ A

0

e−t dt = 1− e−A −→
A→+∞

1.

Pour B < 0, on a
∫ 0

B

e−2|t|+t dt =

∫ 0

B

e3t dt =
1

3

(
1− e3B

)
−→

B→−∞

1

3
.

On en déduit que les intégrales
∫ +∞

0

e−2|t|+t dt et
∫ 0

−∞
e−2|t|+t dt convergent donc∫ +∞

−∞
e−2|t|+t dt converge et :

∫ +∞

−∞
e−2|t|+t dt = 1 +

1

3
=

4

3
.

6. La fonction
(
t 7→ 1

(t+ 1)(t+ 2)

)
est continue sur [0,+∞[. Soit A ∈ [0,+∞[.

∫ A

0

dt

(t+ 1)(t+ 2)
=

∫ A

0

(t+ 2)− (t+ 1)

(t+ 1)(t+ 2)
dt

=

∫ A

0

1

t+ 1
dt−

∫ A

0

1

t+ 2
dt

= ln(A+ 1)− ln(A+ 2) + ln 2

= ln

(
A+ 1

A+ 2

)
+ ln 2 −→

A→+∞
ln 2.

9
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On en déduit que l’intégrale
∫ +∞

0

dt

(t+ 1)(t+ 2)
converge et :

∫ +∞

0

dt

(t+ 1)(t+ 2)
= ln 2.

Corrigé de l’exercice 13. [Énoncé]

Soit α ∈ R. La fonction
(
t 7→ 1

tα

)
est continue sur ]0,+∞[. Soit A ∈ [1,+∞[.

∫ A

1

dt

tα
=


[

1

(1− α)tα−1

]A
1

si α 6= 1[
ln t
]A
1

si α = 1

=


1

1− α

(
1

Aα−1
− 1

)
si α 6= 1

lnA si α = 1

Ainsi :

lim
A→+∞

∫ A

1

dt

tα
=


+∞ si α < 1

+∞ si α = 1
1

α− 1
si α > 1.

On en déduit que
∫ +∞

1

dt

tα
converge si, et seulement si, α > 1.

Soit ε ∈]0, 1].

∫ 1

ε

dt

tα
=


[

1

(1− α)tα−1

]1
ε

si α 6= 1[
ln t
]1
ε

si α = 1

=


1

1− α

(
1− 1

εα−1

)
si α 6= 1

− ln ε si α = 1

Ainsi :

lim
ε→0

∫ 1

ε

dt

tα
=


1

1− α
si α < 1

+∞ si α = 1

+∞ si α > 1.

On en déduit que
∫ 1

0

dt

tα
converge si, et seulement si, α < 1.

Corrigé de l’exercice 14. [Énoncé]

La fonction sin est continue sur [0,+∞[. L’idée est de découper l’intervalle [0,+∞[ de
manière à pouvoir faire “sauter” la valeur absolue. Pour tout n ∈ N, on a :∫ 2nπ

0

| sin t|dt =

n−1∑
k=0

∫ 2(k+1)π

2kπ

| sin t|dt

=

n−1∑
k=0

(∫ 2kπ+π

2kπ

| sin t|dt+

∫ 2(k+1)π

2kπ+π

| sin t|dt

)

=

n−1∑
k=0

(∫ 2kπ+π

2kπ

sin tdt+

∫ 2(k+1)π

2kπ+π

sin tdt

)

=

n−1∑
k=0

(∫ π

0

sin tdt+

∫ 2π

π

sin tdt

)
(par 2π-périodicité de sin)

= 4n −→
n→+∞

+∞.

Puisque lim
n→+∞

2nπ = +∞, l’intégrale
∫ +∞

0

sin tdt n’est pas absolument convergente.

Corrigé de l’exercice 15. [Énoncé]

1. Les fonctions (t 7→ t) et ln sont C1 sur [0,+∞[. Remarquons que lim
t→0

t ln t = 0par crois-

sances comparées. Le théorème d’intégration par parties assure que l’intégrale
∫ 1

0

ln tdt

est de même nature que l’intégrale
∫ 1

0

dt, qui converge trivialement. Ainsi la première

intégrale converge et : ∫ 1

0

ln tdt =
[
t ln t

]1
0
−
∫ 1

0

dt = −1.

2. La fonction
(
t 7→ ln

(
1 +

1

t

))
est continue sur ]0,+∞[. Les fonctions (t 7→ t) et(

t 7→ ln

(
1 +

1

t

))
sont C1 sur ]0,+∞[. Remarquons que t ln

(
1 +

1

t

)
∼

t→+∞
1 et :

t ln

(
1 +

1

t

)
= t ln(1 + t)− t ln t −→

t→0
0 (croissances comparées)

Le théorème d’intégration par parties assure que les intégrales
∫ +∞

0

ln

(
1 +

1

t

)
dt et∫ +∞

0

dt

t+ 1
sont de même nature. Puisque l’intégrale

∫ +∞

0

dt

t+ 1
diverge (on peut s’en
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convaincre en posant le changement de variable x = t+1), l’intégrale
∫ +∞

0

ln

(
1 +

1

t

)
dt

diverge aussi.

3. La fonction
(
t 7→ ln(1− t2)

t2

)
est continue sur ]0, 1[.

Soit ε ∈]0, 1[. Les fonctions
(
t 7→ −1

t

)
et
(
t 7→ ln

(
1− t2

))
sont C1 sur ]0, ε].

Puisque − ln(1− t2)

t
∼

t→+∞
− t

2

t
∼

t→+∞
t, lim

t→0
− ln(1− t2)

t
= 0. Le théorème d’intégration

par parties1 assure que les intégrales
∫ ε

0

ln(1− t2)

t2
dt et

∫ ε

0

2 dt

1− t2
sont de même nature.

Puisque la fonction
(
t 7→ 2 dt

1− t2

)
est continue sur [0, ε], l’intégrale

∫ ε

0

2 dt

1− t2
est conver-

gente donc
∫ ε

0

ln(1− t2)

t2
dt converge aussi.

On a donc : ∫ ε

0

ln(1− t2)

t2
dt =

[
− ln(1− t2)

t

]ε
0

−
∫ ε

0

2 dt

1− t2

= − ln(1− ε2)

ε
−
∫ ε

0

2 dt

1− t2

= − ln(1− ε2)

ε
−
∫ ε

0

(
1

1 + t
+

1

t− 1

)
dt

= − ln(1− ε2)

ε
− ln(1 + ε)− ln(1− ε)

= − ln(1 + ε)

(
1 +

1

ε

)
− 1− ε

ε
ln(1− ε)

−→
ε→1
−2 ln 2 par croissances comparées.

On en déduit que
∫ 1

0

ln(1− t2)

t2
dt converge et :

∫ 1

0

ln(1− t2)

t2
dt = lim

ε→1

∫ ε

0

ln(1− t2)

t2
dt = −2 ln 2.

4. La fonction (t 7→ e−t cos t) est continue sur R+ et :

∀t ∈ R+,
∣∣e−t cos t

∣∣ 6 e−t.

Puisque l’intégrale de référence
∫ +∞

0

e−t dt converge, l’intégrale
∫ +∞

0

e−t cos tdt con-

verge absolument par comparaison de fonctions positives, donc converge.

Les fonctions (t 7→ e−t) et sin sont C1 sur [0,+∞[. Puisque, pour tout t ∈ R+, 0 6
|e−t sin t| 6 e−t, lim

t→+∞
e−t sin t = 0. On a, par intégration par parties (ce résultat garan-

tit la convergence de la seconde intégrale) :∫ +∞

0

e−t cos tdt =
[
e−t sin t

]+∞
0

+

∫ +∞

0

e−t sin tdt. =

∫ +∞

0

e−t sin tdt.

Les fonctions (t 7→ e−t) et − cos sont C1 sur [0,+∞[. Puisque lim
t→+∞

−e−t cos t = 0, le

théorème d’intégration par parties assure que (remarquons que toutes les intégrales con-
vergent d’après ce qui précède) :∫ +∞

0

e−t sin tdt =
[
− e−t cos t

]+∞
0
−
∫ +∞

0

e−t cos tdt

=

∫ +∞

0

e−t sin tdt

= 1−
∫ +∞

0

e−t cos tdt.

On en déduit alors que
∫ +∞

0

e−t cos tdt =
1

2
.

Corrigé de l’exercice 16. [Énoncé]

1. La fonction
(
t 7→ dt

(et + 1)(e−t + 1)

)
est continue sur R+.

La fonction exp est C1 et strictement croissante sur R+ et exp(R+) = [1,+∞[. Posons
u = et. On a alors du = et dt. Sous réserve de convergence, on a, par changement de
variable : ∫ +∞

0

dt

(et + 1)(e−t + 1)
=

∫ +∞

0

et

(et + 1)2
dt =

u=et

∫ +∞

1

du

(u+ 1)2
.

1Une intégration par parties sur ]0, 1[ n’était pas possible car l’intégrale
∫ ε

0

2 dt

1− t2
diverge.
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Soit A ∈ [1,+∞[.

∫ A

1

du

(u+ 1)2
=

[
− 1

u+ 1

]A
1

=
1

2
− 1

A+ 1
−→

A→+∞

1

2
.

On en déduit que l’intégrale
∫ +∞

1

du

(u+ 1)2
converge. L’intégrale

∫ +∞

0

dt

(et + 1)(e−t + 1)
converge donc par changement de variables et :∫ +∞

0

dt

(et + 1)(e−t + 1)
=

1

2
.

2. La fonction

(
t 7→ e−

√
t

√
t

)
est continue sur R∗+.

La fonction u : t 7→
√
t est C1 et strictement croissante sur R∗+ et u

(
R∗+
)

= R∗+.

Posons x =
√
t. On a alors dx =

dt

2
√
t
. Sous réserve de convergence, on a, par changement

de variable : ∫ +∞

0

e−
√
t

√
t

dt =

∫ +∞

0

2e−
√
t dt

2
√
t

=
x=
√
t

∫ +∞

0

2e−x dx.

Puisque l’intégrale de référence
∫ +∞

0

e−x dx converge et vaut 1, l’intégrale
∫ +∞

0

e−
√
t

√
t

dt

converge par changement de variables et :∫ +∞

0

e−
√
t

√
t

dt = 2.

3. La fonction (t 7→ sin t ln (sin t)) est continue sur
]
0,
π

2

]
.

La fonction cos est C1 et strictement décroissante sur
]
0,
π

2

]
et cos

(]
0,
π

2

])
=]0, 1].

Posons x = cos t. On a alors dx = − sin tdt. Sous réserve de convergence, on a, par
changement de variable :∫ π

2

0

sin t ln (sin t) dt =

∫ π
2

0

− ln
(√

1− cos2 t
)

(− sin t) dt =
x=cos t

∫ 1

0

ln
(√

1− x2
)

dx.

La fonction
(
x 7→ ln

(√
1− x2

))
est continue sur [0, 1[. Soit A ∈ [0, 1[.∫ A

0

ln
(√

1− x2
)

dx =
1

2

∫ A

0

[ln(1− x) + ln(1 + x)] dx

=
1

2

[
− (1− x) ln(1− x)− x+ (1 + x) ln(1 + x)− x

]A
0

=
1

2

[
− (1−A) ln(1−A)−A+ (1 +A) ln(1 +A)−A

]A
0

−→
A→+∞

ln 2− 1 (par croissances comparées).

On en déduit que l’intégrale
∫ 1

0

ln
(√

1− x2
)

dx converge, donc, par changement de vari-

ables, que l’intégrale
∫ π

2

0

sin t ln (sin t) dt converge aussi et :

∫ π
2

0

sin t ln (sin t) dt = ln 2− 1.

4. La fonction
(
t 7→ ln t√

1− t

)
est continue sur ]0, 1[.

La fonction u : t 7→
√

1− t est C1 et strictement décroissante sur ]0, 1[ et u (]0, 1[) =]0, 1[.

Posons x =
√

1− t. On a alors dx = − dt

2
√

1− t
. Sous réserve de convergence, on a, par

changement de variable :∫ 1

0

ln t√
1− t

dt =

∫ 1

0

−2 ln t

(
− 1

2
√

1− t

)
dt =

x=
√
1−t

∫ 1

0

2 ln(1− u2).

On sait d’après la question précédente que l’intégrale
∫ 1

0

ln
(
1− x2

)
dx converge (et vaut

2(ln 2 − 1)), donc, par changement de variables, que l’intégrale
∫ 1

0

ln t√
1− t

dt converge

aussi et : ∫ 1

0

ln t√
1− t

dt = 4 ln 2− 4.

Corrigé de l’exercice 17. [Énoncé]

1. On commence par remarquer que, pour tout t > 0, tα−1e−
t
2 > 0.

De plus lim
t→+∞

tα−1e−
t
2 = 0 par croissances comparées. Il existe donc un réel A > 0 tel

que, pour tout t > 1, tα−1e−
t
2 6 1. On en déduit que, pour tout t > A, 0 6 tα−1e−

t
2 6 1.
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2. Soit α > 0. La fonction f : t 7→ tα−1e−
t
2 est continue sur ]0,+∞[. Fixons A > 0.

• Étudions l’existence de l’intégrale de f sur ]0, A].

∀t ∈]0, A], 0 6 tα−1e−t 6
1

t1−α
.

Puisque 1 − α < 1, l’intégrale de Riemann
∫ 1

0

dt

t1−α
converge (à démontrer - cf ex-

ercice 13) donc
∫ A

0

dt

t1−α
aussi. Par comparaison de fonctions positives, l’intégrale∫ 1

0

tα−1e−
t
2 dt converge aussi.

• Étudions l’existence de l’intégrale de f sur [A,+∞[. D’après la question précédente,
on trouve que :

∀t > A, 0 6 tα−1e−t 6 e−
t
2 .

Puisque l’intégrale de référence
∫ +∞

0

e−x dx converge, on peut montrer par le

changement de variable x =
t

2
que l’intégrale

∫ +∞

0

e−
t
2 dt converge, et enfin que

l’intégrale
∫ +∞

A

e−
t
2 dt converge. Par comparaison de fonctions positives, l’intégrale∫ +∞

A

tα−1e−
t
2 dt converge aussi.

On en déduit que l’intégrale
∫ +∞

0

tα−1e−t dt converge pour tout α > 0.

3. Soit α un réel strictement positif. Les fonctions
(
t 7→ tα

α

)
et (t 7→ e−t) sont C1 sur R∗+.

Puisque α > 0, lim
t→0

tα

α
e−t = 0. Par croissances comparées, lim

t→+∞

tα

α
e−t = 0.

Le théorème d’intégration par parties assure que l’intégrale
∫ +∞

0

1

α
tαe−t dt converge et :

∫ +∞

0

tα−1e−t dt =

[
tα

α
e−t
]+∞
0

+

∫ +∞

0

1

α
tαe−t dt.

On trouve alors que :

∀α > 0, Γ(α) =
1

α
Γ(α+ 1) i.e. Γ(α+ 1) = αΓ(α).

4. Puisque Γ(1) = 1 = 0!, un raisonnement par récurrence montre que, pour tout entier
naturel n non nul, Γ(n) = (n− 1)!.

Corrigé de l’exercice 18. [Énoncé]

1. On commence par remarquer que, pour tout t > 0, te−t > 0.

De plus lim
t→+∞

te−t = 0 par croissances comparées. Il existe donc un réel A > 0 tel que,

pour tout t > 0, te−t 6 1. On en déduit que, pour tout t > A, 0 6 te−t 6 1.

2. Soit x ∈ R∗+ La fonction g : t 7→ e−t

t
est continue sur ]0,+∞[, donc sur [x,+∞[. Pour

tout t > A, 0 6
e−t

t
6

1

t2
.

Puisque l’intégrale de Riemann
∫ +∞

1

dt

t2
converge,

∫ +∞

A

dt

t2
converge aussi. Par com-

paraison de fonctions positives, l’intégrale
∫ +∞

A

e−t

t
dt converge.

Par continuité de g sur ]0,+∞[, l’intégrale
∫ +∞

x

e−t

t
dt converge pour tout x > 0, i.e.

F (x) est bien défini pour tout x > 0.

3. D’après la relation de Chasles, on a :

∀x > 0, F (x) =

∫ +∞

x

g(t) dt =

∫ 1

x

g(t) dt+

∫ +∞

1

g(t) dt = F (1)−
∫ x

1

g(t) dt.

Puisque g est continue sur R∗+, g admet une primitive G sur R∗+. Ainsi :

∀x > 0, F (x) = F (1)−G(x) +G(1).

Puisque G est C1 sur R∗+, F l’est aussi par théorèmes opératoires et :

∀x > 0, F ′(x) = −G′(x) = −g(x) = −e
−x

x
.

4. Soit x ∈ R∗+. Remarquons que

xF (x) =

∫ +∞

x

x

t
e−t dt.
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Or, pour tout t > x, 0 6
x

t
e−t 6 e−t. Puisque l’intégrale

∫ +∞

0

e−t dt converge, l’intégrale

de référence
∫ +∞

x

e−t dt converge aussi. Par croissance de l’intégrale, on trouve que :

0 6 xF (x) 6
∫ +∞

x

e−t dt.

Puisque lim
x→+∞

∫ +∞

x

e−t dt = 0 (convergence vers 0 du reste d’une intégrale généralisée),

le théorème d’encadrement assure que lim
x→+∞

xF (x) = 0.

Soit x ∈]0, 1]. La relation de Chasles permet aussi d’écrire :

xF (x) = x

∫ 1

x

dt

t
e−t + x

∫ +∞

1

dt

t
e−t = x

∫ 1

x

dt

t
e−t + xF (1).

Pour tout t ∈ [x, 1],
e−t

t
6

1

t
. Par croissance de l’intégrale, on trouve que :

∫ 1

x

dt

t
e−t 6

∫ 1

x

1

t
= − lnx.

On en déduit que : ∀x ∈]0, 1], 0 6 xF (x) 6 −x lnx+ xF (1). Les croissances comparées
et le théorème d’encadrement permettent de conclure : lim

x→0
xF (x) = 0.

5. Les fonctions (x 7→ 1) et F étant C1 sur R+. Puisque lim
x→+∞

xF (x) = 0 et lim
x→0+

xF (x) = 0,

le théorème d’intégration par parties assure alors que les intégrales :∫ +∞

0

F (x) dx et
∫ +∞

0

xf(x) dx

sont de même nature. Or :

∀x ∈]0,+∞[, xf(x) = e−x.

L’intégrale de référence
∫ +∞

0

e−x dx étant convergente, l’intégrale
∫ +∞

0

F (x) dx est aussi

convergente.

Corrigé de l’exercice 19. [Énoncé]

1. a. Par définition de la limite, il existe A > 0 tel que, pour tout t > A, tγf(t) 6 1. Ainsi :

∀t > A, 0 6 f(t) 6
1

tγ
.

Puisque l’intégrale de Riemann
∫ +∞

1

dt

tγ
converge (γ > 1), l’intégrale

∫ +∞

A

dt

tγ
con-

verge et, par comparaison de fonctions positives, l’intégrale
∫ +∞

A

f(t) dt converge aussi.

On en déduit que l’intégrale
∫ +∞

A

f(t) dt converge.

b. Par définition de la limite, il existe B > 0 tel que, pour tout t > B, tγf(t) 6 1. Ainsi :

∀t > B, f(t) >
1

tγ
.

Puisque l’intégrale de Riemann
∫ +∞

1

dt

tγ
diverge (γ 6 1), l’intégrale

∫ +∞

B

dt

tγ
diverge

et, par comparaison de fonctions positives, l’intégrale
∫ +∞

B

f(t) dt diverge aussi.

On en déduit que l’intégrale
∫ +∞

a

f(t) dt diverge.

2. a. Puisque la fonction f : t 7→ 1

tα (ln t)
β
est continue positive sur [e,+∞[, on peut appli-

quer les résultats des questions précédentes.
• Si α > 1, considérons un réel γ ∈]1, α[.

∀t > 0, tγf(t) =
1

tα−γ(ln t)β
.

Puisque lim
t→+∞

tγf(t) = 0, le résultat de la question 1.a assure alors que∫ +∞

e

dt

tα (ln t)
β
converge.

• Si α < 1, considérons un réel γ ∈]α, 1[.

∀t > 0, tγf(t) =
tγ−α

(ln t)β
.

Par croissances comparées lim
t→+∞

tγf(t) = +∞. Le résultat de la question 1.b

assure alors que
∫ +∞

e

dt

tα (ln t)
β
diverge.
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b. La fonction ln est C1 et strictement croissante sur [e,+∞[. Posons x = ln t. On a alors

dx =
dt

t
. Le théorème de changement de variable assure alors que les intégrales :∫ +∞

e

dt

t (ln t)
β

et
∫ +∞

1

dx

xβ

sont de même nature. Puisque l’intégrale de Riemann
∫ +∞

1

dx

xβ
converge si, et seule-

ment si, β > 1, l’intégrale
∫ +∞

e

dt

t (ln t)
β
converge si, et seulement si, β > 1.

Corrigé de l’exercice 20. [Énoncé]

1. La fonction f est décroissante sur R+, elle admet donc une limite en +∞ d’après le
théorème de la limite monotone.

• Si lim
x→+∞

f(x) = −∞, il existe A > 0 tel que, pour tout x > A, f(x) 6 −1, et donc

|f(x)| > 1. Puisque l’intégrale
∫ +∞

0

dx diverge, l’intégrale
∫ +∞

0

|f(x)|dx diverge

aussi par comparaison de fonction positives, ce qui est absurde.
• Posons ` = lim

x→+∞
f(x) ∈ R.

Si ` 6= 0, il existe A > 0 tel que, pour tout x > A, f(x) >
`

2
si ` > 0 et f(x) 6 − `

2
si ` > 0. Ainsi :

∀x > A, |f(x)| > l

2

Puisque l’intégrale
∫ +∞

0

`

2
dx diverge, l’intégrale

∫ +∞

0

|f(x)|dx diverge aussi par

comparaison de fonction positives, ce qui est absurde.
On en déduit donc que f tend vers 0 en +∞.

2. Puisque f est décroissante sur R+ et tend vers 0 en +∞, elle est positive sur R+.
Soit x > 0. Puisque la fonction f est décroissante sur R+, on a :

∀t ∈
[x

2
, x
]
, f(t) > f(x) > 0.

Par croissance de l’intégrale, on a :∫ x

x
2

f(t) dt >
x

2
f(x) > 0.

Puisque : ∫ x

x
2

f(t) dt =

∫ +∞

x
2

f(t) dt−
∫ +∞

x

f(t) dt,

la convergence du reste d’une intégrale convergence assure que :

lim
x→+∞

∫ x

x
2

f(t) dt = 0.

On en déduit alors que lim
x→+∞

xf(x) = 0 par encadrement.
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