
Mathématiques Variables aléatoires à densité BCPST 2 J-B. Say

Exercice 1. [Corrigé] FFFFF

Soit X une variable aléatoire suivant la loi uniforme sur [−1, 1] et soit Y = X2.

1. Montrer que Y est une variable aléatoire à densité et en déterminer une densité.

2. La variable aléatoire Y admet-elle une espérance ? une variance ? Si oui, les calculer.

Exercice 2. [Corrigé] FFFFF

Soit X une variable aléatoire suivant la loi exponentielle de paramètre λ > 0.

1. Déterminer la loi de Y =
√
X.

2. Déterminer une densité de X2.

3. Déterminer une densité de X3.

Exercice 3. ♥ [Corrigé] FFFFF

Soient X1, X2, . . . , Xn n variables aléatoires indépendantes suivant la même loi uniforme
sur [0, 1]. Déterminer la loi de Y = min(X1, X2, . . . , Xn) et en donner une densité.

Exercice 4. [Corrigé] FFFFF

On suppose que la distance en mètres parcourue par un javelot suit une loi normale de
paramètres inconnus N (m,σ2). Au cours d’un entraînement, on constate que :

• 10% des javelots atteignent plus de 75 mètres.

• 25% des javelots parcourent moins de 50 mètres.

Calculer la longueur moyenne parcourue par un javelot ainsi que l’écart-type.
On utilisera une table de la loi normale centrée réduite.

Exercice 5. Loi log-normale [Corrigé] FFFF

1. Montrer que la fonction f : x 7→ 1

x
√

2π
e−

1
2 (ln x)

2

1]0,+∞[(x) est une densité.

2. Soit X une variable aléatoire de densité f . Calculer E(X) et E(lnX).

Exercice 6. [Corrigé] FFFF

Soit F la fonction définie sur R par F (x) =
1

1 + e−x
.

1. Montrer que la fonction F est la fonction de répartition d’une variable aléatoire X à
densité. Déterminer une densité de X.

2. Reconnaitre la loi de la variable Y =
eX − 1

eX + 1
.

Préciser si la variable Y admet une espérance et une variance. Les calculer le cas échéant.

Exercice 7. Loi du χ2 [Corrigé] FFFF

Soit X une variable aléatoire suivant la loi normale centrée réduite et soit Y = X2.

1. Montrer que Y est une variable aléatoire à densité et en déterminer une densité.

2. Montrer que Y admet une espérance et une variance qu’on calculera.

3. a. En posant t =
λ

2
(1 + sin θ), montrer que pour tout λ > 0,

∫ λ

0

dt√
t(λ− t)

= π.

b. Soient U et V deux variables aléatoires indépendantes de loi normale centrée réduite.
Montrer que U2 + V 2 suit une loi exponentielle dont on déterminera le paramètre.

Exercice 8. Loi de Cauchy [Corrigé] FFFF

1. Déterminer la valeur a ∈ R pour laquelle la fonction f : t 7→ a

1 + t2
est une densité.

2. Soit X une variable aléatoire de densité f . On dit que X suit la loi de Cauchy.

a. Déterminer la fonction de répartition de X.
b. Calculer les probabilités suivantes : P(X 6 0), P(X > 0), P(X 6 −1) et P(X > 1).
c. Étudier l’existence de l’espérance de X et la calculer le cas échéant.

3. Soit V une variable suivant la loi uniforme sur
]
−π

2
,
π

2

[
.

Montrer que tanV suit la loi de Cauchy.

Exercice 9. [Corrigé] FFFF

1. Montrer que la fonction f : x 7→ xe−x1[0,+∞[(x) est une densité de probabilité.

2. Trois personnes, qu’on notera A, B et C, arrivent devant deux guichets. La personne C
laisse passer les personnes A et B, et attend que le premier guichet se libère pour passer.
On note TA et TB les variables aléatoires égales aux temps de passage respectifs des per-
sonnes A et B. On suppose que TA et TB sont des variables aléatoires indépendantes de
même loi, et admettant f pour densité.

a. La variable aléatoire TA admet-elle une espérance ? Si oui, la calculer.
b. Déterminer la loi du temps d’attente U de la personne C.
c. Quelle est la probabilité que le guichet A se libère avant le B ? Retrouver le résultat

par le calcul.

1



Mathématiques Variables aléatoires à densité BCPST 2 J-B. Say

Exercice 10. Loi Gamma [Corrigé] FFFF

Soit (Xn)n>1 une suite de variables aléatoires indépendantes de loi E(λ), où λ > 0.

Montrer que, pour tout n ∈ N∗, la fonction fn : z 7→ λe−λz (λz)
n−1

(n− 1)!
1[0,+∞[(z) est une densité

de la variable aléatoire Sn =
n∑
k=1

Xk.

Exercice 11. [Corrigé] FFFF

Soient X une variable aléatoire de loi normale centrée réduite et ε une variable aléatoire de
loi uniforme sur {−1; 1}. On suppose que X et ε sont indépendantes.

1. Déterminer la loi de Y = εX.

2. Déterminer l’espérance et la variance - si elles existent - de la variable aléatoire Y − 2X.

Exercice 12. Produits de convolution [Corrigé] FFFF

1. Soient X et Y deux variables aléatoires indépendantes suivant la loi E(1).

a. Déterminer la loi de la variable aléatoire U = X + Y .

b. Déterminer la loi de la variable aléatoire V = X − Y .

2. Soient X et Y deux variables aléatoires indépendantes suivant la loi uniforme sur [0, 1].

Montrer que la variable aléatoire Z = X2 − Y admet pour densité la fonction :

h : z 7→


√
z + 1 si − 1 6 z 6 0

1−
√
z si 0 < z 6 1

0 sinon.

3. Soient V1, . . . , Vn+1 des variables aléatoires indépendantes suivant la loi uniforme sur [0, 1].

a. Déterminer la loi de la variable aléatoire Mn = max(V1, . . . , Vn).

b. Montrer que la variable aléatoire Mn − Vn+1 est à densité et déterminer une densité.

c. En déduire P(Vn+1 > Mn).

Exercice 13. [Corrigé] FFFF

Roméo et une Juliette se donnent rendez-vous à minuit (sous un balcon). L’heure d’arrivée
de la Juliette suit la loi normale d’espérance minuit et d’écart-type 4 minutes. L’heure
d’arrivée de Roméo suit la loi normale d’espérance minuit et cinq minutes (il a envie de se
faire attendre) et d’écart-type 3 minutes. Juliette est prête à attendre au plus 10 minutes,

alors que Roméo n’est prêt qu’à attendre au plus 5 minutes. Quelle est la probabilité que
cette grande histoire d’amour ne commence jamais ? On utilisera une table de la loi normale
centrée réduite.

Exercice 14. Somme de lois normales indépendantes [Corrigé] FFF

Montrer que la somme de deux variables aléatoires indépendantes suivant des lois normales
suit encore une loi normale (dont on précisera les paramètres).

Exercice 15. Oral Agro 2008 [Corrigé] FFF
1. Soit α un réel. Déterminer, en fonction de α, l’ensemble des solutions réelles de

l’inéquation x2 + x + 1 − α 6 0. Lorsque l’intervalle I des solutions est non vide, on
précisera son intersection avec l’intervalle [0, 1].

2. Soit X une variable aléatoire suivant la loi uniforme sur [0, 1].
Déterminer la fonction de répartition de Y = X2 +X + 1. En déduire une densité de Y .

3. Calculer l’espérance de Y en utilisant cette densité. Retrouver l’espérance en utilisant la
définition de Y .

Exercice 16. Entropie [Corrigé] FFF

Si une variable aléatoireX admet une densité f , on appelle entropie deX la quantité suivante
(lorsqu’elle existe) :

h(X) =

∫ +∞

−∞
−f(x) ln(f(x)) dx.

Puisque lim
x→0+

x ln(x) = 0, on convient que ln(f(x))f(x) = 0 pour tout réel x tel que f(x) = 0.
1. Montrer que, pour tout x > 0, lnx 6 x− 1.

2. Soit X une variable suivant la loi N (m,σ2). Montrer que h(X) =
1

2

[
1 + ln

(
2πσ2

)]
.

3. On souhaite prouver que, parmi toutes les variables aléatoires à densité, admettant une
entropie de variance donnée σ2, celles suivants les lois normales sont celles qui admettent
une entropie maximale. On note ϕ une densité de la loi N (m,σ2).

a. Soit Y une variable aléatoire d’espérance m, de variance σ2 et de densité f telle que

la fonction x 7→ f(x) ln

(
f(x)

ϕ(x)

)
soit intégrable sur R. Vérifier que :

h(Y ) = −
∫
R
f(x) ln

(
f(x)

ϕ(x)

)
dx−

∫
R
f(x) ln (ϕ(x)) dx.

b. En déduire que h(Y ) 6
1

2

[
1 + ln

(
2πσ2

)]
. Conclure.

2
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Corrigé de l’exercice 1. [Énoncé]

1. X(Ω) = [−1, 1] donc Y (Ω) = [0, 1]. Ainsi, pour tout y < 0, P(Y 6 y) = 0 et pour tout
y > 1, P(Y 6 y) = 1. Soit y ∈ [0, 1].

P(Y 6 y) = P(X2 6 y)

= P(−√y 6 X 6
√
y) (car

√
y ∈ [0, 1])

= P(X 6
√
y)− P(X 6 −√y)

=

√
y + 1

2
−
−√y + 1

2
=
√
y (car X ↪→ U([−1, 1]).

La fonction de répartition de Y est donc la fonction :

FY : y 7→


0 si y < 0
√
y si 0 6 y 6 1

1 si y > 1.

La fonction FY est C1 sur ] −∞, 0[, ]0, 1[ et ]1,+∞[ ; étudions la continuité de FY en 0
et 1. Remarquons que :

lim
0−

FY = lim
y→0−

0 = 0

lim
0+

FY = lim
y→0+

√
y = 0

FY (0) = 0

et


lim
1−

FY = lim
y→1−

√
y = 1

lim
1+

FY = lim
y→1+

1 = 1

FY (1) = 1.

On en déduit que FY est continue en 0 et 1, et donc sur R. Puisque FY est C1 sur R sauf
éventuellement en 0 et 1, Y est une variable à densité, dont une densité est :

fY : y 7→


1

2
√
y

si 0 < y 6 1

0 sinon.

2. Première méthode : via la loi de Y .
La fonction fY est à support borné (dans [0, 1]), donc Y admet une espérance et un
moment d’ordre 2.

E(Y ) =

∫ +∞

−∞
yfY (y) dy =

∫ 1

0

1

2

√
y dy =

[
1

3
y

3
2

]1
0

=
1

3
.

De même :

E
(
Y 2
)

=

∫ +∞

−∞
y2fY (y) dy =

∫ 1

0

1

2
y

3
2 dy =

[
1

5
y

5
2

]1
0

=
1

5
.

La formule de König-Huygens assure que Y admet une variance et :

V(Y ) = E
(
Y 2
)
− E(Y )2 =

4

45
.

Seconde méthode : via le théorème du transfert.

La variable aléatoire X est bornée donc X admet un moment d’ordre 2 et d’ordre 4, i.e.
Y = X2 admet un moment d’ordre 1 et d’ordre 2. Le théorème du transfert assure que :

E(Y ) = E
(
X2
)

=

∫ +∞

−∞
x2fX(x) dx =

∫ 1

−1

1

2
x2 dx =

[
1

6
x3
]1
−1

=
1

3
.

et :

E
(
Y 2
)

= E
(
X4
)

=

∫ +∞

−∞
x4fX(x) dx =

∫ 1

−1

1

2
x4 dx =

[
1

10
x5
]1
−1

=
1

5
.

On conclut de la même manière pour obtenir la variance de Y .

Corrigé de l’exercice 2. [Énoncé]

1. Puisque X(Ω) = R+, Y (Ω) = R+. Pour tout y < 0, P(Y 6 y) = 0.

∀y > 0, P(Y 6 y) = P(
√
X 6 y) = P(X 6 y2) = 1− e−λy

2

car y2 > 0.

La fonction de répartition de Y est donc :

FY : y 7→

{
0 si y < 0

1− e−λy2 si y > 0.

La fonction FY est C1 sur ]−∞, 0[ et ]0,+∞[. Étudions la continuité de FY en 0.
lim
0−

FY = lim
y→0−

0 = 0

lim
0+

FY = lim
y→0+

1− e−λy2 = 0

FY (0) = 0.

La fonction FY est donc continue en 0, et donc sur R. Puisque FY est aussi C1 sur R sauf
éventuellement en 0, Y est une variable à densité, dont une densité est :

fY : y 7→

{
0 si y < 0

2λye−λy
2

si y > 0.
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2. Des calculs analogues à ceux réalisés à la question précédente nous assurent que la fonction
de répartition de X2 est :

FX2 : t 7→

{
0 si t < 0

1− e−λ
√
t si t > 0.

La fonction FX2 est C1 sur ]−∞, 0[ et ]0,+∞[. Étudions la continuité de FX2 en 0.
lim
0−

FX2 = lim
t→0−

0 = 0

lim
0+

FX2 = lim
t→0+

1− e−λ
√
t = 0

FX2(0) = 0.

La fonction FX2 est donc continue en 0, et donc sur R. Puisque FX2 est aussi C1 sur R
sauf éventuellement en 0, X2 est une variable à densité, dont une densité est :

fX2 : y 7→

0 si t < 0
λ

2
√
t
e−λ
√
t si y > 0.

3. Des calculs analogues à ceux réalisés à la question précédente nous assurent que la fonction
de répartition de X3 est :

FX3 : t 7→

{
0 si t < 0

1− e−λ
3√t si t > 0.

La fonction FX3 est C1 sur ]−∞, 0[ et ]0,+∞[. Étudions la continuité de FX3 en 0.
lim
0−

FX3 = lim
t→0−

0 = 0

lim
0+

FX3 = lim
t→0+

1− e−λ
3√t = 0

FX3(0) = 0.

La fonction FX3 est donc continue en 0, et donc sur R. Puisque FX3 est aussi C1 sur R
sauf éventuellement en 0, X3 est une variable à densité, dont une densité est :

fX3 : y 7→

0 si t < 0
λ

3
t−

2
3 e−λ

√
t si y > 0.

Corrigé de l’exercice 3. [Énoncé]
On trouve immédiatement que Y (Ω) = [0, 1]. Ainsi :

∀y < 0, P(Y 6 y) = 0 et ∀y > 1, P(Y 6 y) = 1.

Soit y ∈ [0, 1].

P(Y 6 y) = 1− P(Y > y)

= 1− P(X1 > y, . . . ,Xn > y)

= 1− P(X1 > y) . . .P(Xn > y) par indépendance de X1, . . . , Xn

= 1− (1− y)n.

La fonction de répartition de Y est :

FY : y 7→


0 si y < 0

1− (1− y)n si y ∈ [0, 1]

1 si y > 1.

On vérifie sans difficulté que FY est C1 sur R sauf éventuellement en 0 et 1. On vérifie aussi
que FY est continue en 0 et 1, ce qui assure que FY est continue sur R. La variable aléatoire
est donc à densité, dont une densité est donnée par :

fY : y 7→

{
n(1− y)n−1 si y ∈ [0, 1]

0 sinon.

Corrigé de l’exercice 4. [Énoncé]
Notons X la distance (en mètres) parcoure par un javelot. Par hypothèse, X ↪→ N (m,σ2).

On en déduit que la variable X̃ =
X −m
σ

suit la loi normale centrée réduite.

D’après l’énoncé, P(X > 75) = 0, 1 et P(X 6 50) = 0, 25. On en déduit que :

P
(
X̃ >

75−m
σ

)
= 0, 1 et P

(
X̃ 6

50−m
σ

)
= 0, 25,

i.e.
P
(
X̃ 6

75−m
σ

)
= 0, 9 et P

(
X̃ 6

m− 50

σ

)
= 0, 75.

Une table de la loi normale centrée réduite assure alors que :
75−m
σ

= 1, 28 et
m− 50

σ
= 0, 67.

On en déduit après calculs qu’un javelot parcourt en moyenne environ 58,6 mètres, avec un
écart-type de 12,8 mètres.
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Corrigé de l’exercice 5. [Énoncé]

1. La fonction f est positive sur R et continue sur R sauf éventuellement en 0. Étudions la

nature de l’intégrale
∫
R
f .

• Puisque f = 0 sur ]−∞, 0], l’intégrale
∫ 0

−∞
f(x) dx converge et vaut 0.

• Étudions l’intégrale
∫ +∞

0

f(x) dx.

La fonction ln est C1 et strictement croissante sur R∗+. En posant t = lnx, on ob-

tient dt =
dx

x
. Sous réserve de convergence, le théorème de changement de variables

assure que :∫ +∞

0

f(x) dx =

∫ +∞

0

1

x
√

2π
e−

1
2 (ln x)

2

dx =
t=ln x

∫ +∞

−∞

1√
2π
e−

t2

2 dt.

Or l’intégrale
∫ +∞

−∞

1√
2π
e−

t2

2 dt converge et vaut 1, donc l’intégrale
∫ +∞

0

f(x) dx

converge et vaut 1.

On en déduit que
∫ +∞

−∞
f converge et vaut 1, ce qui assure que f est une densité.

2. L’étude de l’existence (et le calcul) de E(X)) amène à étudier la nature de l’intégrale :∫ +∞

0

1√
2π
e−

1
2 (ln x)

2

dx.

Appliquons le même changement de variable qu’à la question précédente. Sous réserve de
convergence, on obtient :∫ +∞

0

xf(x) dx =

∫ +∞

0

1√
2π
e−

1
2 (ln x)

2

dx =
t=ln x

∫ +∞

−∞

1√
2π
e−

t2

2 +t dt.

Remarquons que :

∀t ∈ R, − t
2

2
+ t = −1

2

[
(t− 1)

2 − 1
]
.

La fonction (t 7→ t− 1) est strictement croissante et C1 sur R. On pose u = t − 1. Sous
réserve de convergence, on a :∫ +∞

−∞

1√
2π
e−

t2

2 +t dt =
u=t−1

∫ +∞

−∞

1√
2π
e−

u2

2 + 1
2 du =

√
e

∫ +∞

−∞

1√
2π
e−

u2

2 du.

Puisque l’intégrale
∫ +∞

−∞

1√
2π
e−

u2

2 du converge, l’intégrale
∫ +∞

−∞

1√
2π
e−

u2

2 + 1
2 du con-

verge aussi par linéarité. On en déduit donc que l’intégrale
∫ +∞

−∞

1√
2π
e−

t2

2 +t dt converge

donc
∫ +∞

0

1√
2π
e−

1
2 (ln x)

2

dx aussi. Il vient alors que l’intégrale
∫ +∞

0

xf(x) dx converge

absolument, i.e. X admet une espérance et :

E(X) =

∫ +∞

0

1√
2π
e−

1
2 (ln x)

2

dx =

∫ +∞

−∞

1√
2π
e−

t2

2 +t dt
√
e

∫ +∞

−∞

1√
2π
e−

u2

2 du =
√
e.

Corrigé de l’exercice 6. [Énoncé]

1. Pour tout x ∈ R, 1 + e−x 6= 0, donc la fonction F est dérivable (et même C1) sur R et :

∀x ∈ R, F ′(x) =
e−x

(1 + e−x)2
> 0.

La fonction F est donc croissante sur R. Puisque lim
−∞

F = 0 et lim
+∞

F = 1, la fonction F
est donc la fonction de répartition d’une variable aléatoire réelle X.
Puisque F est C1 sur R, la variable X est à densité, de densité F ′.

2. La fonction g : x 7→ ex − 1

ex + 1
est strictement croissante sur R. Puisque lim

−∞
g = −1 et

lim
+∞

g = 1, g(R) =]− 1, 1[. Ainsi : ∀y 6 −1, P(Y 6 y) = 0 et ∀y > 1, P(Y 6 y) = 1.

Soit y ∈]− 1, 1[.

P(Y 6 y) = P
(
eX − 1

eX + 1
6 y

)
= P

(
eX − 1 6 y(eX + 1)

)
car eX + 1 > 0

= P(eX(1− y) 6 1 + y)

= P
(
eX 6

1 + y

1− y

)
car 1− y > 0

= P
(
X 6 ln

(
1 + y

1− y

))
par croissance de la fonction exp sur R

= F

(
ln

(
1 + y

1− y

))
=

1 + y

2
=
y − (−1)

1− (−1)

5
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On reconnait la fonction de répartition d’une loi usuelle : Y suit la loi uniforme sur ]−1, 1[.

Ainsi, Y admet espérance et variance : E(Y ) = 0 et V(Y ) =
1

3
.

Corrigé de l’exercice 7. [Énoncé]
Corrigé de l’exercice 8. [Énoncé]

1. On vérifie sans difficulté que la fonction
(
t 7→ 1

1 + t2

)
est continue et positive sur R. On

vérifie rapidement que l’intégrale
∫ +∞

−∞

dt

1 + t2
converge et vaut π.

Ainsi, f est une densité de probabilité si, et seulement si, a =
1

π
.

2. a. Soit x ∈ R. Calculons P(X 6 x) =

∫ x

−∞
f(t) dt. Soit A ∈ R.

∫ x

A

f(t) dt =

[
1

π
arctan t

]x
A

=
1

π
(arctanx− arctanA) −→

A→−∞

1

π

(
arctanx+

π

2

)
.

La fonction de répartition de X est donc la fonction
(
x 7→ 1

π

(
arctanx+

π

2

))
.

b. Il vient immédiatement que :

• P(X 6 0) = P(X > 0) =
1

2
(on pouvait le retrouver sans connaitre la fonction de

répartition de X grâce à la parité de la densité f) ;

• P(X 6 −1) = P(X > 1) =
1

4
.

c. Étudions la nature de l’intégrale
∫ +∞

−∞

∣∣∣∣ t

π(1 + t2)

∣∣∣∣dt. L’intégrande étant paire sur R,

cette intégrale est de même nature que
∫ +∞

0

∣∣∣∣ t

π(1 + t2)

∣∣∣∣dt. Soit A ∈ R+.

∫ A

0

∣∣∣∣ t

π(1 + t2)

∣∣∣∣dt =

∫ A

0

t

π(1 + t2)
dt =

[
1

2
ln
∣∣1 + t2

∣∣]A
0

=
1

2
ln
(
1 +A2

)
−→

A→+∞
+∞.

L’intégrale
∫ +∞

0

∣∣∣∣ t

π(1 + t2)

∣∣∣∣dt diverge, donc ∫ +∞

−∞

∣∣∣∣ t

π(1 + t2)

∣∣∣∣dt aussi.
On en déduit que X n’admet pas d’espérance.

3. Notons T = tanV . Puisque V (Ω) =
]
−π

2
,
π

2

[
, T (Ω) = R.

∀t ∈ R, P(T 6 t) = P(tanV 6 t)

= P(V 6 arctan t) (la fonction arctan étant croissante sur R)

=
1

π

(
arctan t+

π

2

)
.

On reconnait cette fonction de répartition (cf. question 2.a) : tanV suit la loi de Cauchy.

Corrigé de l’exercice 9. [Énoncé]

1. La fonction f est positive sur R et continue sur R sauf éventuellement en 0.

On sait qu’une variable suivant la loi exponentielle de paramètre 1 admet une espérance

égale à 1, donc l’intégrale
∫
R
f converge et vaut 1.

La fonction f est donc bien une densité de probabilité.

2. a. Étudions la convergence absolue de l’intégrale :∫ +∞

−∞
xf(x) dx =

∫ +∞

0

x2e−x dx.

On reconnait le moment d’ordre 2 d’une variable aléatoireX suivant la loi exponentielle

de paramètre 1. On en déduit que l’intégrale
∫ +∞

−∞
xf(x) dx converge absolument, i.e.

TA admet une espérance et :

E(TA) = E
(
X2
)

= V(X) + E(X)2 = 2.

b. Le temps d’attente de la personne C est le minimum des temps de passages des per-
sonnes A et B : U = min(TA, TB). Ainsi U(Ω) = R+. Soit t ∈ R+.

P(U 6 t) = 1− P(U > t)

= 1− P(TA > t, TB > t)

= 1− P(TA > t)P(TB > t) par indépendance de TA et TB .

Or, après intégration par parties, on trouve :

P(TA > t) = P(TB > t) =

∫ +∞

t

xe−x dx = (t+ 1)e−t.
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La fonction de répartition de U est donc :

FU : t 7→

{
0 si t < 0

1− (t+ 1)2e−2t si t > 0.

On vérifie sans difficulté que U est une variable à densité, dont une densité est donné
par la fonction :

fU : t 7→

{
0 si t < 0

2(t2 + t)e−2t si t > 0.

c. Par symétrie des rôles des personnes A et B (les lois de TA et TB sont identique), le

guichet A se libère avant le B avec la probabilité
1

2
.

On peut montrer sans difficulté que la fonction g : x 7→ −xex1]−∞,0](x) est une densité
de −TA.
Puisque les variables aléatoires TB et −TA sont à densité et indépendantes (par le
lemme des coalitions), leur somme TB − TA est une variable aléatoire à densité, de
densité h donnée par le produit de convolution :

h : t 7→
∫ +∞

−∞
f(t− x)g(x) dx

Or :

f(t− x)g(x) 6= 0⇔

{
t− x > 0

x 6 0

{
x 6 t

x 6 0.

Si t > 0, alors :

h(t) =

∫ 0

−∞
−(t− x)e−(t−x)xex dx =

∫ 0

−∞
(x2 − tx)e2x−t dx.

Après deux intégration par parties successives, on trouve que :

∀t > 0, h(t) =
t+ 1

4
e−t.

Il est inutile de déterminer h sur R− car :

P(TA 6 TB) = P(TB − TA > 0) =

∫ +∞

0

h(t) dt

Puisque la loi E(1) admet une espérance, on peut appliquer la linéarité de l’intégrale :

P(TA 6 TB) =
1

4

∫ +∞

0

te−t dt+
1

4

∫ +∞

0

e−t dt =
1

4
+

1

4
=

1

2
.

Corrigé de l’exercice 10. [Énoncé]
Montrons le résultat par récurrence sur n ∈ N∗.

• La fonction f1 : z 7→ λe−λz (λz)
1−1

(1− 1)!
1[0,+∞[(z) = λe−λz1[0,+∞[(z) est bien une densité

de la variable aléatoire S1 = X1.

• Soit n ∈ N∗. Supposons que la fonction fn soit une densité de la variable Sn. Re-
marquons que Sn+1 = Sn + Xn+1. D’après le lemme des coalitions, Sn et Xn+1 sont
indépendantes. Puisque ces deux variables sont à densité, une densité g de leur somme
Sn+1 est donnée par le produit de convolution :

g : z 7→
∫ +∞

−∞
fn(x)f1(z − x) dx.

Or :

fn(x)f1(z − x) 6= 0⇔

{
x > 0

z − x > 0
⇔ 0 6 x 6 z.

Distinguons alors deux cas.

– Premier cas : si z < 0, pour tout x ∈ R, fn(x)f1(z − x) = 0 et ainsi :

g(z) = 0 = fn+1(z).

– Second cas : si z > 0, on a alors :

g(z) =

∫ z

0

fn(x)f1(z − x) dx

=

∫ z

0

λe−λx (λx)
n−1

(n− 1)!
λe−λ(z−x) dx

=
λn+1

(n− 1)!
e−λz

∫ z

0

xn−1λ dx

=
λn+1

(n− 1)!
e−λz

zn

n

= fn+1(z).

On en déduit que g = fn+1 (sur R), i.e. fn+1 est une densité de Sn+1.

7
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On a donc prouvé par récurrence que la fonction fn : z 7→ λe−λz (λz)
n−1

(n− 1)!
1[0,+∞[(z) est une

densité de la variable aléatoire Sn pour tout n ∈ N∗.

Corrigé de l’exercice 11. [Énoncé]

1. Soit y ∈ R. Puisque ([ε = −1], [ε = 1]) forme un système complet d’événements, on peut
appliquer la formule des probabilités totales :

P(Y 6 y) = P(ε = −1, Y 6 y) + P(ε = 1, Y 6 y)

= P(ε = −1,−X 6 y) + P(ε = 1, X 6 y)

= P(ε = −1)P(−X 6 y) + P(ε = 1)P(X 6 y) par indépendance de X et ε

=
1

2
(P(X > −y) + P(X 6 y))

= P(X 6 y) car X ↪→ N (0, 1)

Les variables X et Y ont la même fonction de répartition donc Y suit la loi normale
centrée réduite.

2. Par linéarité de l’espérance, Y − 2X admet une espérance puisque X et Y admettent une
espérance et E(Y − 2X) = 0.

Remarquons que (Y −2X)2 = (ε−2)2X2. Puisque (ε−2)2 admet une espérance (c’est une
variable aléatoire finie) et X2 aussi, (Y − 2X)2 admet une espérance par indépendance
de (ε− 2)2 et X2 (lemme des coalitions) et :

E
(
(Y − 2X)2

)
= E

(
(ε− 2)2

)
E
(
X2
)

= 5.

On conclut via la formule de König-Hyugens : Y − 2X admet une variance égale à 5.

Corrigé de l’exercice 12. [Énoncé]

1. a. Notons f : x 7→ e−x1[0,+∞[(x) une densité de X et Y . La variable aléatoire U = X+Y
est la somme de deux variables aléatoires indépendantes et à densité, elle est donc à
densité, de densité donnée par le produit de convolution :

fU : z 7→
∫ +∞

−∞
f(x)f(z − x) dx.

Or :

f(x)f(z − x) 6= 0⇔

{
0 6 x

0 6 z − x
⇔ 0 6 x 6 z

• Si z < 0, f(x)f(z − x) = 0 pour tout réel x et donc fU (z) = 0.
• Si z > 0, alors :

fU (z) =

∫ z

0

e−xe−(z−x) dx = e−z
∫ z

0

dx = ze−z.

Une densité de la variable aléatoire U = X + Y est donc donnée par la fonction :

fU : z 7→

{
0 si z < 0

ze−z si z > 0

b. On montre sans difficulté que −Y est à densité, de densité donnée par la fonction :
f−Y : y 7→ ey1]∞,0](y) . La variable aléatoire V = X+(−Y ) est la somme de deux vari-
ables aléatoires indépendantes et à densité, elle est donc à densité, de densité donnée
par le produit de convolution :

fV : z 7→
∫ +∞

−∞
f(z − y)f−Y (y) dy.

Or :

f(z − y)f−Y (y) 6= 0⇔

{
z − y > 0

y 6 0
⇔

{
y 6 z

y 6 0.

• Si z < 0, alors :

fV (z) =

∫ z

−∞
e−(z−y)ey dy = e−z

∫ z

−∞
e2y dy = e−z

[
e2z

2

]z
−∞

=
ez

2
.

• Si z > 0, alors :

fV (z) =

∫ 0

−∞
e−(z−y)ey dy = e−z

∫ 0

−∞
e2y dy = e−z

[
e2z

2

]0
−∞

=
e−z

2
.

Une densité de la variable aléatoire V = X − Y est donc donnée par la fonction :

fV : z 7→


ez

2
si z < 0

e−z

2
si z > 0.

2. Déterminons la fonction FX2 de répartition de la variable aléatoire X2. Soit x ∈ R.
Si x < 0, FX2(x) = P (X2 6 x) = 0 car X(Ω) = [0, 1].

Si x > 0, FX2(x) = P (X2 6 x) = P (X 6
√
x) car X(Ω) = [0, 1].

8



Mathématiques Variables aléatoires à densité BCPST 2 J-B. Say

La fonction de répartition de la variable X2 est la fonction

x 7→


0 si x < 0
√
x si 0 6 x 6 1

1 si x > 1.

La fonction de répartition FX2 est continue sur R, de classe C1 sur R sauf éventuellement

en 0 et 1, donc X2 est une variable à densité et f : x 7→ 1

2
√
x
1]0,1](x) en est une densité.

La variable aléatoire −Y suit la loi uniforme sur [−1, 0] (la vérification est immédiate).
On en déduit que la fonction g = 1[−1,0] est une densité de −Y .

Puisque X et Y sont indépendantes, alors X2 et −Y le sont aussi par le lemme des coali-
tions. Ainsi X2 et −Y sont deux variables aléatoires indépendantes à densité, donc leur
somme U est une variable aléatoire à densité, dont une densité h est donnée par le produit
de convolution des fonctions f et g :

h : z 7→
∫ +∞

−∞
f(x)g(z − x) dx.

Or :

(S) : f(x)g(z − x) 6= 0⇔

{
0 6 x 6 1

−1 6 z − x 6 0
⇔

{
0 6 x 6 1

z 6 x 6 z + 1

• Si −1 6 z 6 0, (S)⇔ 0 6 x 6 z + 1 et :

h(z) =

∫ z+1

0

1

2
√
x

dx =
√
z + 1.

• Si 0 6 z 6 1, (S)⇔ z 6 x 6 1 et :

h(z) =

∫ 1

z

1

2
√
x

dx = 1−
√
z.

• sinon, pour toute autre valeur de z, (S) n’admet pas de solution et h(z) = 0.

On en déduit qu’une densité de X2 − Y est donnée par la fonction :

h : z 7→


√
z + 1 si − 1 6 z 6 0

1−
√
z si 0 6 z 6 1

0 sinon.

3. a. Déterminons la fonction de répartition de Mn. Soit x ∈ R.

P(Mn 6 x) = P (V1 6 x, . . . , Vn 6 x)

= P (V1 6 x) . . .P (Vn 6 x) par indépendance des variables V1, . . . , Vn
= P (V1 6 x)

n puisque V1, . . . , Vn suivent la même loi

=


0 si x < 0

xn si 0 6 x 6 1

1 si x > 1.

On vérifie sans difficulté que Mn est à densité, de densité donnée par :

fMn
: x 7→

{
nxn−1 si 0 6 x 6 1

0 sinon.

b. Les variables aléatoires Mn et −Vn+1 sont des variables aléatoires indépendantes par
le lemme des coalitions puisque V1, . . . , Vn+1 sont indépendantes.
La variable aléatoire Mn − Vn+1 est alors la somme de deux variables aléatoires in-
dépendantes et à densité (−Vn+1 suit la loi uniforme sur [−1, 0], de densité g = 1[−1,0]),
elle est donc à densité, de densité h donnée par le produit de convolution :

h : z 7→
∫ +∞

−∞
fMn

(x)g(z − x) dx

Or :

fMn
(x)g(z − x) 6= 0⇔

{
0 6 x 6 1

−1 6 z − x 6 0
⇔

{
0 6 x 6 1

z 6 x 6 z + 1

• Si z < −1 ou si z > 1, fMn
(x)g(z − x) = 0 pour tout réel x et donc h(z) = 0.

• Si z ∈ [−1, 0], alors :

h(z) =

∫ z+1

0

nxn−1 dx = (z + 1)n.

• Si z ∈ [0, 1], alors :

h(z) =

∫ 1

z

nxn−1 dx = 1− zn.

Une densité de Mn − Vn+1 est donc donnée par la fonction :

h : z 7→


(z + 1)n si − 1 6 z 6 0

1− zn si 0 6 z 6 1

0 sinon.

9



Mathématiques Variables aléatoires à densité BCPST 2 J-B. Say

c. Utilisons le fait qu’on connaisse une densité de Mn − Vn+1 :

P(Vn+1 > Mn) = P(Mn − Vn+1 < 0) =

∫ 0

−∞
h(z) dz =

∫ 0

−1
(z + 1)n dz =

1

n+ 1
.

Corrigé de l’exercice 13. [Énoncé]
Notons R et J les différences de temps (en minutes) entre les temps d’arrivée respectifs de
Roméo et Juliette et minuit. D’après l’énoncé, R ↪→ N (5, 9) et R ↪→ N (0, 16)

Par linéarité de l’espérance, R− J admet une espérance, égale à 5. Par indépendance (sup-
posée) de R et J , R − J admet une variance égale à 25. Puisque R et J suivent des lois
normales indépendantes, R − J suit la loi normale d’espérance 5 et d’écart-type 5. Ainsi la

variable X =
R− J − 5

5
suit la loi normale centrée réduite.

Remarquons maintenant que leur histoire ne commencera pas ce soir-là si et seulement si les
événements [R > J + 10] ou [J > R+ 5] sont réalisés. Or, d’après une table de la loi normale
centrée réduite, on a :

P(R > J + 10) = P(X > 1) = 1− P(X 6 1) = 0, 1587

et P(J > R+ 5) = P(X < −2) = 1− P(X 6 2) = 0, 0228

Par incompatibilité des événements [R > J + 10] ou [J > R + 5], la probabilité que cette
grande histoire d’amour ne commence jamais est égale à 0,1815.

Corrigé de l’exercice 14. [Énoncé]
Soient X1 et X2 deux variables aléatoires indépendantes suivant respectivement les lois nor-
males N (m1, σ

2
1) et N (m2, σ

2
2). Notons f1 et f2 des densités respectives de X1 et X2, et

Y = X1 + X2. Puisque X1 et X2 sont des variables aléatoires indépendantes à densité, Y
est une variable à densité, dont une densité g est donnée par le produit de convolution :

∀z ∈ R, g(z) =

∫ +∞

−∞
f1(z − x)f2(x) dx

=

∫ +∞

−∞

1

σ1
√

2π
e
− (z−x−m1)2

2σ21
1

σ2
√

2π
e
− (x−m2)2

2σ22 dx

=
1

2σ1σ2π

∫ +∞

−∞
exp

(
−σ

2
2(x−m1)2 + σ2

1(z − x−m2)2

2σ2
1σ

2
2

)
dx.

Exprimons le polynôme en x à l’intérieur de l’exponentielle sous forme canonique :

∀x ∈ R, σ2
2(x−m1)2 + σ2

1(z − x−m2)2

=
(
σ2
1 + σ2

2

) [
x− σ2

2(z −m1) + σ2
1m2

σ2
1 + σ2

2

]2
+
σ2
1σ

2
2(z −m1 −m2)2

σ2
1 + σ2

2

On en déduit donc que :

∀z ∈ R, g(z) =
e
− (z−m1−m2)2

2(σ21+σ22)

2σ1σ2π

∫ +∞

−∞
exp

(
−σ

2
1 + σ2

2

2σ2
1σ

2
2

(
x− σ2

2(z −m1) + σ2
1m2

σ2
1 + σ2

2

)2
)

dx.

Réalisons le changement de variable t =

√
σ2
1 + σ2

2

σ1σ2

(
x− σ2

2(z −m1) + σ2
1m2

σ2
1 + σ2

2

)
(possible car

la fonction associée est strictement croissante et C1 sur R). On trouve alors :

∀z ∈ R, g(z) =
e
− (z−m1−m2)2

2(σ21+σ22)

2σ1σ2π

∫ +∞

−∞
exp

(
− t

2

2

)
σ1σ2√
σ2
1 + σ2

2

dt

=
1√

2π (σ2
1 + σ2

2)
e
− (z−(m1+m2))2

2(σ21+σ22)

∫ +∞

−∞

1√
2π
e−

t2

2 dt

=
1√

2π (σ2
1 + σ2

2)
e
− (z−(m1+m2))2

2(σ21+σ22) .

On reconnait une densité connue : X1 + X2 suit la loi normale d’espérance m1 + m2 et de
variance σ2

1 + σ2
2 .

Corrigé de l’exercice 15. [Énoncé]

1. Notons I l’ensemble des solutions de cette inéquation du second degré. Son discriminant
est ∆ = 4α− 3.

• Si α <
3

4
, I = ∅.

• Si α =
3

4
, I =

{
−1

2

}
. Remarquons que I ∩ [0, 1] = ∅.

• Si α >
3

4
, I =

[
−1−

√
4α− 3

2
,
−1 +

√
4α− 3

2

]
.

Remarquons que
−1−

√
4α− 3

2
< 0. De plus, on trouve après calculs que :

−1 +
√

4α− 3

2
> 0⇔ α > 1 et

−1 +
√

4α− 3

2
6 1⇔ α 6 3.

Ainsi :

I ∩ [0, 1] =


∅ si

3

4
< α < 1[

0,
−1 +

√
4α− 3

2

]
si 1 6 α 6 3

[0, 1] si α > 3.

10



Mathématiques Variables aléatoires à densité BCPST 2 J-B. Say

2. D’après la question précédente, la fonction de répartition de Y est :

FY : α 7→ P(Y 6 α) = P(X2 +X + 1− α 6 0) =


0 si α 6 1

−1 +
√

4α− 3

2
si 1 6 α 6 3

1 si α > 3.

On vérifie facilement que FY est C1 sur R sauf éventuellement en 1 et 3, et continue en 1
et 3, donc sur R. Ainsi, Y est une variable à densité, dont une densité est donnée par :

fY : α 7→


1√

4α− 3
si 1 6 α 6 3

0 sinon.

3. La variable Y admet une espérance car la densité fY est à support borné ([1, 3]) et :

E(Y ) =

∫ 3

1

α√
4α− 3

dα.

La fonction
(
α 7→

√
4α− 3

)
étant strictement croissante et de classe C1 sur [1, 3], on pose

le changement de variables x =
√

4α− 3. On a alors α =
1

4

(
x2 + 3

)
et dα =

x

2
dx.

Ainsi :

E(Y ) =

∫ 3

1

α√
4α− 3

dα =

∫ 3

1

x2 + 3

4x
× x

2
dx =

∫ 3

1

x2 + 3

8
dx =

[
x3

24
+

3

8
x

]3
1

=
11

6
.

On retrouve ce résultat en utilisant la linéarité de l’espérance (X est bornée donc admet
des moments d’ordre 1 et 2) :

E(Y ) = E
(
X2
)

+ E(X) + 1 =
1

3
+

1

2
+ 1 =

11

6
.

Corrigé de l’exercice 16. [Énoncé]
Si une variable aléatoireX admet une densité f , on appelle entropie deX la quantité suivante
(lorsqu’elle existe) :

h(X) =

∫ +∞

−∞
− ln(f(x))f(x) dx.

Puisque lim
x→0+

x ln(x) = 0, on convient que ln(f(x))f(x) = 0 pour tout réel x tel que f(x) = 0.

1. L’étude de la fonction (x 7→ lnx− (x− 1)) montre qu’elle est croissante sur ]0, 1] et
décroissante sur [1,+∞[, admettant ainsi un maximum atteint en 1. Ainsi :

∀x > 0, lnx− (x− 1) 6 0, i.e. lnx 6 x− 1.

2. Sous réserve de convergence, on a :

h(X) =

∫ +∞

−∞
− ln

(
1

σ
√

2π
e−

(t−m)2

2σ2

)
1

σ
√

2π
e−

(t−m)2

2σ2 dt

=

∫ +∞

−∞

[
1

2
ln
(
2πσ2

) 1

σ
√

2π
e−

(t−m)2

2σ2 +
(t−m)2

2σ2

1

σ
√

2π
e−

(t−m)2

2σ2

]
dt.

Or les intégrales
∫ +∞

−∞

1

σ
√

2π
e−

(t−m)2

2σ2 dt et
(t−m)2

σ
√

2π
e−

(t−m)2

2σ2 dt convergent et valent re-

spectivement 1 et V(X) (par définition de la variance), donc h(X) converge par linéarité
et vaut :

h(X) =
1

2
ln
(
2πσ2

) ∫ +∞

−∞

1

σ
√

2π
e−

(t−m)2

2σ2 +
1

2σ2

∫ +∞

−∞

(t−m)2

σ
√

2π
e−

(t−m)2

2σ2 dt

=
1

2
ln
(
2πσ2

)
+

V(X)

2σ2

=
1

2

[
1 + ln

(
2πσ2

)]
.

3. a. Avec la convention 0 ln 0 = 0, on a, pour tout x ∈ R :

−f(x) ln (f(x)) = −f(x) ln (f(x)) + f(x) ln (ϕ(x))− f(x) ln (ϕ(x))

= −f(x) ln

(
f(x)

ϕ(x)

)
− f(x) ln (ϕ(x))

= −f(x) ln

(
f(x)

ϕ(x)

)
+

1

2
ln
(
2πσ2

)
f(x) +

(x−m)2

2σ2
f(x).

Puisque f est une densité de probabilité et puisque Y admet pour espérance m et pour

variance σ2, les intégrales
∫
R

1

2
ln
(
2πσ2

)
f(x) dx et

∫
R

(x−m)2

2σ2
f(x) dx converge par

linéarité.
On en déduit que h(Y ) converge par linéarité, et :

h(Y ) = −
∫
R
f(x) ln

(
f(x)

ϕ(x)

)
dx−

∫
R
f(x) ln (ϕ(x)) dx(

= −
∫
R
f(x) ln

(
f(x)

ϕ(x)

)
dx+

1

2
ln
(
2πσ2

)
+

1

2

)
.
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b. La question 1 nous assure que, pour tout x ∈ R tel que f(x) 6= 0 :

−f(x) ln

(
f(x)

ϕ(x)

)
= f(x) ln

(
ϕ(x)

f(x)

)
6 ϕ(x)− f(x).

Par linéarité de l’intégrale, il vient que −
∫ +∞

−∞
f(x) ln

(
f(x)

ϕ(x)

)
dx 6 0.

On déduit de l’égalité de la question précédente que h(Y ) 6
1

2

[
1 + ln

(
2πσ2

)]
.

Concluons désormais. Remarquons que pour tout variable Y admettant espérance

et variance, son entropie existe si, et seulement si, l’intégrale
∫
R
f(x) ln

(
f(x)

ϕ(x)

)
dx

converge. On a donc prouvé que, parmi toutes les variables aléatoires à densité, ad-
mettant une entropie de variance donnée σ2, celles suivants les lois normales sont celles
qui admettent une entropie maximale.
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