Mathématiques

Variables aléatoires a densité

BCPST 2 J-B. Say

[Corrigé] v

Soit X une variable aléatoire suivant la loi uniforme sur [—1,1] et soit Y = X?2.

Exercice 1.

1. Montrer que Y est une variable aléatoire a densité et en déterminer une densité.

2. La variable aléatoire Y admet-elle une espérance ? une variance ? Si oui, les calculer.

Exercice 2.

[Corrigé] v vr

Soit X une variable aléatoire suivant la loi exponentielle de paramétre A > 0.

1. Déterminer la loi de Y = v X.
2. Déterminer une densité de X?2.

3. Déterminer une densité de X3.

Exercice 3. Q [Corrigé| vy

Soient X7, Xa,..., X, mn variables aléatoires indépendantes suivant la méme loi uniforme
sur [0, 1]. Déterminer la loi de Y = min(X;, Xo,..., X,) et en donner une densité.

Exercice 4.

[Corrigé| vy
On suppose que la distance en métres parcourue par un javelot suit une loi normale de
parameétres inconnus N (m, 02). Au cours d’un entrainement, on constate que :

e 10% des javelots atteignent plus de 75 métres.

e 25% des javelots parcourent moins de 50 métres.

Calculer la longueur moyenne parcourue par un javelot ainsi que ’écart-type.
On utilisera une table de la loi normale centrée réduite.

Exercice 5. Loi log-normale

[Corrigé| ek

1
e—%(lnw)2]1]0’+oo[(x) est une densité.

V2w

2. Soit X une variable aléatoire de densité f. Calculer E(X) et E(ln X).

1. Montrer que la fonction f : x —

Exercice 6.

[Corrigé| ¥

1
Soit F' la fonction définie sur R par F(x) = Tree
o

1. Montrer que la fonction F' est la fonction de répartition d’une variable aléatoire X a
densité. Déterminer une densité de X.

eX -1

eX +1

Préciser si la variable Y admet une espérance et une variance. Les calculer le cas échéant.
[Corrigé| ¥
Soit X une variable aléatoire suivant la loi normale centrée réduite et soit Y = X2.

2. Reconnaitre la loi de la variable Y =

Exercice 7. Loi du 2

1. Montrer que Y est une variable aléatoire & densité et en déterminer une densité.
2. Montrer que Y admet une espérance et une variance qu’on calculera.

dt

[ ——

Vi —1t)

b. Soient U et V deux variables aléatoires indépendantes de loi normale centrée réduite.
Montrer que U? + V2 suit une loi exponentielle dont on déterminera le paramétre.

[Corrigé| Jed

A A
3. a. En posant t = 5(1 + sin #), montrer que pour tout A > 0, /
0

Exercice 8. Loi de Cauchy

1. Déterminer la valeur a € R pour laquelle la fonction f : ¢ +— est une densité.

_e
1+1¢2
2. Soit X une variable aléatoire de densité f. On dit que X suit la loi de Cauchy.

a. Déterminer la fonction de répartition de X.
b. Calculer les probabilités suivantes : P(X < 0), P(X > 0), P(X < —1) et P(X > 1).

c. Etudier Pexistence de I'espérance de X et la calculer le cas échéant.

3. Soit V' une variable suivant la loi uniforme sur }—g, g {

Montrer que tan V' suit la loi de Cauchy.

Exercice 9.

[Corrigé] Jed ¢

1. Montrer que la fonction f : x — xe™ "1y 4oo[(2) est une densité de probabilité.

2. Trois personnes, qu'on notera A, B et C, arrivent devant deux guichets. La personne C
laisse passer les personnes A et B, et attend que le premier guichet se libére pour passer.

On note T4 et Tp les variables aléatoires égales aux temps de passage respectifs des per-
sonnes A et B. On suppose que T4 et Ts sont des variables aléatoires indépendantes de
méme loi, et admettant f pour densité.

a. La variable aléatoire Ty admet-elle une espérance ? Si oui, la calculer.
b. Déterminer la loi du temps d’attente U de la personne C'.

c. Quelle est la probabilité que le guichet A se libére avant le B ? Retrouver le résultat
par le calcul.



Mathématiques

Variables aléatoires a densité

BCPST 2 J-B. Say

[Corrigé| ¥

Soit (Xp)n>1 une suite de variables aléatoires indépendantes de loi £(X), ou A > 0.

Ae = ()"
(n—1)!

Exercice 10. Loi Gamma

Montrer que, pour tout n € N*| la fonction f,, : z — 1[0,400[(2) est une densité

de la variable aléatoire S,, = > Xj.
k=1

Exercice 11.

[Corrige] ek
Soient X une variable aléatoire de loi normale centrée réduite et € une variable aléatoire de
loi uniforme sur {—1;1}. On suppose que X et € sont indépendantes.

1. Déterminer la loi de Y = eX.
2. Déterminer I'espérance et la variance - si elles existent - de la variable aléatoire Y — 2X.
Exercice 12. Produits de convolution [Corrigé]| Hk =y

1. Soient X et Y deux variables aléatoires indépendantes suivant la loi £(1).

a. Déterminer la loi de la variable aléatoire U = X + Y.

b. Déterminer la loi de la variable aléatoire V =X — Y.

2. Soient X et Y deux variables aléatoires indépendantes suivant la loi uniforme sur [0, 1].

Montrer que la variable aléatoire Z = X2 — Y admet pour densité la fonction :

vVz+1l si —1<2<0
1-vz si0<z<1
0 sinon.

h:zw—

3. Soient Vi, ..., V, 11 des variables aléatoires indépendantes suivant la loi uniforme sur [0, 1].

V).
b. Montrer que la variable aléatoire M,, — V;, ;1 est a densité et déterminer une densité.
c. En déduire P(V,,+1 > M,,).

a. Déterminer la loi de la variable aléatoire M,, = max(V1,...

Exercice 13. [Corrigé| ¢
Roméo et une Juliette se donnent rendez-vous & minuit (sous un balcon). L’heure d’arrivée
de la Juliette suit la loi normale d’espérance minuit et d’écart-type 4 minutes. L’heure
d’arrivée de Roméo suit la loi normale d’espérance minuit et cinq minutes (il a envie de se

faire attendre) et d’écart-type 3 minutes. Juliette est préte a attendre au plus 10 minutes,

alors que Roméo n’est prét qu’a attendre au plus 5 minutes. Quelle est la probabilité que
cette grande histoire d’amour ne commence jamais 7 On utilisera une table de la loi normale
centrée réduite.

[Corrigé| Y%k
Montrer que la somme de deux variables aléatoires indépendantes suivant des lois normales
suit encore une loi normale (dont on précisera les paramétres).

Exercice 14. Somme de lois normales indépendantes

Exercice 15. Oral Agro 2008 [Corrigé]| Yk %k
1. Soit « un réel. Déterminer, en fonction de «, ’ensemble des solutions réelles de

Iinéquation 22 +  + 1 — a < 0. Lorsque lintervalle I des solutions est non vide, on
précisera son intersection avec 'intervalle [0, 1].

2. Soit X une variable aléatoire suivant la loi uniforme sur [0, 1].
Déterminer la fonction de répartition de Y = X2 + X + 1. En déduire une densité de Y.

3. Calculer 'espérance de Y en utilisant cette densité. Retrouver 'espérance en utilisant la
définition de Y.

[Corrigé] Jeve %
Si une variable aléatoire X admet une densité f, on appelle entropie de X la quantité suivante
(lorsqu’elle existe) :

Exercice 16. Entropie

“+o0
B(X) = / (@) In(f(2)) de.

— 00
Puisque lirél+ zIn(z) = 0, on convient que In(f(z)) f(x) = 0 pour tout réel x tel que f(x) = 0.
T—

1. Montrer que, pour tout x >0, Inxz < x — 1.

1
2. Soit X une variable suivant la loi N'(m,c?). Montrer que h(X) = 3 [1+1n (2m0?)].

3. On souhaite prouver que, parmi toutes les variables aléatoires a densité, admettant une
entropie de variance donnée o2, celles suivants les lois normales sont celles qui admettent
une entropie maximale. On note ¢ une densité de la loi N'(m, 0?).

a. Soit Y une variable aléatoire d’espérance m, de variance o2 et de densité f telle que

la fonction = — f(x)In (f(x)) soit intégrable sur R. Vérifier que :

o(z)
hY) = —/Rf(:c) In (ig) dz — /Rf(:c) In (¢p(z)) da.

1
b. En déduire que h(Y") < 3 [1+1In (270?)]. Conclure.
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Corrigé de ’exercice 1.

1.

[Enoncé|

X(Q) = [-1,1] donc Y(92) = [0,1]. Ainsi, pour tout y < 0, P(Y < y) = 0 et pour tout
y>1, P(Y <y)=1. Soit y € [0,1].

P(Y <y) =P(X*<y)
y< X <.y (car /ye€l0,1])
=PX <Vvy) -P(X < =V)

i+l —yg+1
=T T T g W

La fonction de répartition de Y est donc la fonction :

(car X — U([-1,1)).

0 siy <0
Fy:y—=qyy si0<y<1
1 siy > 1.
La fonction Fy est C* sur | — 00, 0[, ]0,1[ et |1, +o0| ; étudions la continuité de Fy en 0
et 1. Remarquons que :
limFy = lim 0=0 limFy = lim /y=1
0- y—0- 1- y—1-
lim Fy = i =0 et limFy = lim 1=1
Py = Jim 7 ip Py = Jim,
Py (0) =0 Fy(1) = 1.

On en déduit que Fy est continue en 0 et 1, et donc sur R. Puisque Fy est C! sur R sauf
éventuellement en 0 et 1, Y est une variable & densité, dont une densité est :

1

2y

0 sinon.

f si0<y<1
Yy [ Yy —

. Premiére méthode : via la loi de Y.

La fonction fy est a support borné (dans [0,1]), donc Y admet une espérance et un
moment d’ordre 2.

De méme :

La formule de Konig-Huygens assure que Y admet une variance et :

4

VY)=E(Y?) -EY)* = R

Seconde méthode : via le théoréme du transfert.

La variable aléatoire X est bornée donc X admet un moment d’ordre 2 et d’ordre 4, i.e.
Y = X? admet un moment d’ordre 1 et d’ordre 2. Le théoréme du transfert assure que :

o'} 1
]E(Y):E(X2):/+ xzfX(x)dx:/llézzdx: [émﬂ :%.
o B .

et :
—+oo

E(Y?) =E (X*) :/

—0o0

vt fx(z)dz = /_11 %x‘l dz = [1103:5} 11 = %
On conclut de la méme maniére pour obtenir la variance de Y.
Corrigé de I’exercice 2. [Enoncé]|
1. Puisque X (Q) =Ry, Y(Q) = R*. Pour tout y < 0, P(Y <y) =0.
Yy >0, P(Y <y) =P(VX <) :]P’(ngz):l—e_)‘y2 car y? > 0.

La fonction de répartition de Y est donc :

0 siy <0

Fyly’—> {1_6)\:[/2

siy = 0.

La fonction Fy est C! sur ] — 0o, 0[ et ]0, +-00[. Etudions la continuité de Fy en 0.

limFy = lim 0=0

0~ y—0— ,
imFy = lim 1 —e ™ =0
0+ y—0t

Fy(0) =0.

La fonction Fy est donc continue en 0, et donc sur R. Puisque Fy est aussi C' sur R sauf
éventuellement en 0, Y est une variable a densité, dont une densité est :

0 siy <0

T d
fY Y {2)\y€)‘y2

siy > 0.
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2. Des calculs analogues & ceux réalisés a la question précédente nous assurent que la fonction

de répartition de X2 est :

Corrigé de I’exercice 3. [Enoncé]
On trouve immédiatement que Y (2) = [0,1]. Ainsi :

BCPST 2 J-B. Say

Yy <0, P(Y <y)=0etVy>1, P(Y <y)=1.

Fos 1 0 sit<0

Xt 1—e i sit>0. Soit y € [0,1].
, P(Y <y) = 1-P(Y >y)
La fonction Fx2 est C! sur | — 0o, 0[ et ]0, +oc[. Etudions la continuité de Fxz en 0. S 1-P(Xy >y X, > )
lim Fiy> = lim 0=0 =1-P(X; >y)...P(X,, >y) parindépendance de X;,..., X,
0— t—0— =1— (1 _ y)n
lim Fy: = lim 1 —e 2t =0
or t=0v La fonction de répartition de Y est :
0 siy <0

La fonction Fx= est donc continue en 0, et donc sur R. Puisque Fx2 est aussi C' sur R Fy:y—=d1l—(1-y)™ siyel0,1]
sauf éventuellement en 0, X? est une variable & densité, dont une densité est : 1 siy > 1.

On vérifie sans difficulté que Fy est C! sur R sauf éventuellement en 0 et 1. On vérifie aussi
que Fy est continue en 0 et 1, ce qui assure que Fy est continue sur R. La variable aléatoire
est donc a densité, dont une densité est donnée par :

bty {n(l —y) siye o]

0 sit<0
iy { A v
2Vt

siy = 0.

3. Des calculs analogues & ceux réalisés a la question précédente nous assurent que la fonction
de répartition de X3 est :

0 sinon.

Corrigé de I’exercice 4. [Enoncé]

sit<0 Notons X la distance (en métres) parcoure par un javelot. Par hypothése, X < N(m,o?).

0
FX3 t— Y . —-m
{1 —e MV sit>0. suit la loi normale centrée réduite.

On en déduit que la variable X =

o
D’aprés I’énoncé, P(X > 75) = 0,1 et P(X < 50) = 0,25. On en déduit que :

La fonction Fs est C' sur | — 00, 0[ et ]0, +-o00[. Etudions la continuité de Fxs en 0.
]P’(X> 75_m) 0,1 etIP<X< 50_’”) — 0,25,
o o

limFys = lim 0=0

0- t—0- Ny ie

lim Fxs = lim 1 —e™ =0 e
- 75 — ~ —50

o+ t—0+ PlX < mn =0,9et P Xém =0,75.

Fx3(0) =0. o o

Une table de la loi normale centrée réduite assure alors que :
La fonction Fys est donc continue en 0, et donc sur R. Puisque Fys est aussi C! sur R 75— m m—50
sauf éventuellement en 0, X3 est une variable a densité, dont une densité est :

=1,28 et

=0, 67.

0 sit<0 On en déduit aprés calculs qu’un javelot parcourt en moyenne environ 58,6 métres, avec un
I\ écart-type de 12,8 métres.

2

fxs:y—
X gt*Ee*’\ﬁ siy = 0.
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Corrigé de I’exercice 5. [Enoncé]

1. La fonction f est positive sur R et continue sur R sauf éventuellement en 0. Etudions la

nature de I'intégrale | f.
R

0

e Puisque f =0 sur | — o0, 0], U'intégrale / f(z) dz converge et vaut 0.

— 0o

- +Oo
e Etudions l'intégrale / f(z)dz.
0
La fonction In est C! et strictement croissante sur R%. En posant ¢ = Inz, on ob-

: dx :
tient dt = —. Sous réserve de convergence, le théoréme de changement de variables
x
assure que !

+oo +oo 1 11 )2 +oo 1 t2
r)dr = ——e 2P dyr = / e~ 2 dt.
/0 /(@) /0 V2T t=lnz | o /27

+oo - —+o00
1 2
Or lintégrale / e~ 2 dt converge et vaut 1, donc l'intégrale / f(z)dx
oo V2T 0

converge et vaut 1.

—+oo

On en déduit que / f converge et vaut 1, ce qui assure que f est une densité.

2. L’étude de lexistence (et le calcul) de E(X)) améne & étudier la nature de l'intégrale :
+
/ T L -tmar gy,
0 v 2

Appliquons le méme changement de variable qu’a la question précédente. Sous réserve de
convergence, on obtient :

+oo d +oo 1 1(1 )2 d +oo 1 .2 +td
zf(x)dx = ——e 2" dy = ez t.
-/0 /(@) ,/0 V2T t=Inz ./_oo V2T

Remarquons que :

2

VtER, —%th:—% [(t—1)2—1]

La fonction (¢ — t — 1) est strictement croissante et C! sur R. On pose u =t — 1. Sous

réserve de convergence, on a :

+o0 1

+o0 1 u2+1 d \/» +o0 1 w2 J
—€ e 2 "2du=+/e e 2 du.
—c0 V 27'( u=t—1 /700 vV 27T /700 V 27T

Corrigé de ’exercice 6.

. La fonction ¢ : = —

teo e +oo
Puisque l’intégrale / e 2 du converge, 'intégrale /

1
oo V2T oo V2T

+oo

_ﬁ_;'_l
e~ 2 72du con-

2
verge aussi par linéarité. On en déduit donc que I'intégrale / - e~ Tt dt converge
o T

+oo 1

+oo
donc 5 e~ 2M2)” 4y aussi. 11 vient alors que l'intégrale / xf(x)dx converge
0 us 0

absolument, i.e. X admet une espérance et :

2

—+oo +oo +oo
E(X) = / Lefé(h”ﬁ)2 dz = / 1 o dt\/é/ L e” 2 du = e
0 V2T o V2T oo V2T

[Enoncé]

1. Pour tout x € R, 1+ e~ # 0, donc la fonction F est dérivable (et méme C!) sur R et :

e—ac

La fonction F' est donc croissante sur R. Puisque lim F' = 0 et EmF =1, la fonction F
—0o0 o0

est donc la fonction de répartition d’une variable aléatoire réelle X.

Puisque F est C! sur R, la variable X est & densité, de densité F”.

x

T est strictement croissante sur R. Puisque limg = —1 et
€ —0o0
limg =1, g(R) =] = 1,1[ Ainsi: Vy < =1, P(Y Sy) =0et Vy > 1, P(Y <y) = 1.

Soit y €] — 1,1].
eX —1
PY <y =P <
Y <y) (eX—l—l y)
=P(eX —1<y(e¥+1)) care® +1>0
=P(e(1-y) <1+y)
1
P(exgw) car 1 —y >0
l-y

1
P (X <In (1+y)> par croissance de la fonction exp sur R
-y

()
1ty _y—(=1
2 1-(-1)

N——
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On reconnait la fonction de répartition d'une loi usuelle : Y suit la loi uniforme sur |—1, 1].
1
Ainsi, Y admet espérance et variance : E(Y) =0et V(Y) = 3
Corrigé de I’exercice 7. [Enoncé]
Corrigé de I’exercice 8. [Enoncé|

1. On vérifie sans difficulté que la fonction (t ) est continue et positive sur R. On

Hi
1+ t2
Too dt

1-1-7252 converge et vaut .

vérifie rapidement que 'intégrale /

— 00

1
Ainsi, f est une densité de probabilité si, et seulement si, a = —.
71'

2. a. Soit z € R. Calculons P(X < z) = / f(t)dt. Soit A € R.

1 T
— - (arctanm + 5) .

A——o0 T0

e 1 |
/ f)dt = [ arctan t] = — (arctanz — arctan A)
A s A s

1
La fonction de répartition de X est donc la fonction (m — — (arctanx + g))
7r

b. Il vient immédiatement que :

1
e P(X 0)=P(X >20) = 3 (on pouvait le retrouver sans connaitre la fonction de

répartition de X grace a la parité de la densité f) ;

¢ P(X < —1)=P(X >1) = .

4
B Foo t
c. Etudions la nature de l'intégrale / —— | dt. L’intégrande étant paire sur R,
oo |T(L+17)
+oo t
cette intégrale est de méme nature que / ———|dt. Soit A € Ry.
0 (14 t2)

Al A 1 4
—|dt = —dt=|=In|1 +¢# =_—In(1+4%?) — .
/0 112 /0 112 {2 nft+ ‘]0 g (L+A4%) o oo
+oo t +oo t
L’intégrale / ——— | dt diverge, donc / ——— | dt aussi.
o |m(1+1t?) oo |T(1+17)

On en déduit que X n’admet pas d’espérance.

3. Notons T = tan V. Puisque V() = } _rr { T(Q) = R.

VteR, P(T <t) =P(tanV < ¢)

=P(V < arctant) (la fonction arctan étant croissante sur R)

1 s
— (arctant + 7) .
T 2

On reconnait cette fonction de répartition (cf. question 2.a) : tanV suit la loi de Cauchy.

Corrigé de I’exercice 9. [Enoncé]

1. La fonction f est positive sur R et continue sur R sauf éventuellement en 0.
On sait qu’une variable suivant la loi exponentielle de paramétre 1 admet une espérance

égale a 1, donc l'intégrale / f converge et vaut 1.
R
La fonction f est donc bien une densité de probabilité.

2. a. Etudions la convergence absolue de l'intégrale :

+o0 +oo
/ zf(x)dx = / 2™ dx.
0

— o0

On reconnait le moment d’ordre 2 d’une variable aléatoire X suivant la loi exponentielle
+oo

de parameétre 1. On en déduit que l'intégrale / xf(x) dx converge absolument, i.e.

— 00

T4 admet une espérance et :
E(Ta) =E (X?) = V(X) +E(X)* =2.

b. Le temps d’attente de la personne C est le minimum des temps de passages des per-
sonnes A et B : U =min(Tx,Tp). Ainsi U(Q) = R,. Soit t € R;.

PU<Lt)=1-PU >1t)
=1-P(Ta >t,Tp > 1)

=1—-P(T4 >t)P(Tp >t) parindépendance de Ty et Tp.

Or, aprés intégration par parties, on trouve :

+oo
P(Ta > t) = P(Tp > ) :/ ve T de = (t+ Ve,
t
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La fonction de répartition de U est donc : Corrigé de I’exercice 10. [Enoncé
) Montrons le résultat par récurrence sur n € N*,
sit<0
Fy:t— 9 _o .
1—(t+1)%72 sit>0. e (Az) !

e La fonction f; : z — W1[0’+m[(Z) = Ae™ 1y 4oo(2) est bien une densité

On vérifie sans difficulté que U est une variable & densité, dont une densité est donné . L
de la variable aléatoire S; = X;.

par la fonction :

fuit— {0 ) o S% t<0 e Soit n € N*. Supposons que la fonction f, soit une densité de la variable S,. Re-
2(t° +1¢) sit>0. marquons que Sp4+1 = Sy, + Xp+1. D’aprés le lemme des coalitions, S, et X, 1 sont
indépendantes. Puisque ces deux variables sont a densité, une densité g de leur somme

c. Par symétrie des roles des personnes A et B (les lois de T4 et T sont identique), le i . .
Sp+1 est donnée par le produit de convolution :

guichet A se libére avant le B avec la probabilité 3

gen p;ut montrer sans difficulté que la fonction g :  +— —2e"1)_ o)(z) est une densité g:zes /+OO 2)f(z — z) da.
—Ta.

Puisque les variables aléatoires Tp et —T'4 sont a densité et indépendantes (par le

lemme des coalitions), leur somme T — T4 est une variable aléatoire a densité, de Or :

densité h donnée par le produit de convolution :

+oo
h:tH[ ft—x)g(x)dx

\
o

fn(ﬂf)fl(z—ﬂf)#()@{x>0 s0<r <.
Z2—x =

Distinguons alors deux cas.

Or:
t—z>=0 <t — Premier cas : si z <0, pour tout x € R, f,(x)f1(z —x) =0 et ainsi :
F(t - 2)glw) £ 0
<0 r < 0.
z)=0= z).
Sit >0, alors : 9(2) frt1(2)
0 0 — Second cas : si z > 0, on a alors :
h(t) = / —(t— x)ef(t—z)mez de — / (2% — tz)e2 ! dx. 1z n T
Apreés deux intégration par parties successives, on trouve que : 9(2) = /0 fo(@) fi(z — x)da
t 1 —\z n—1
Vit > 0, h(t) = Left. — )\6 ()\J]) M S PR P —A(z—x) dx
y o (n—1)
Il est inutile de déterminer h sur R_ car : _ At / =1y dg
+00 B TL — 1
P(TA < TB) = ]P’(TB —Ty > 0) = / h(t) dt B AL Z
° (1) ¢ n
Puisque la loi £(1) admet une espérance, on peut appliquer la linéarité de I'intégrale : = fog1(2).

1 [t 1 [t
P(T4 <Tg) = f/ te”tdt + Z/ e~tdt =
0 0

4 On en déduit que g = f4+1 (sur R), i.e. f,,11 est une densité de Sp41.

»N»—*
yM»-*
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Ae— M () 1 i — = 6 = 0.
On a donc prouvé par récurrence que la fonction f, : z +— L]1[0 +oo[(2) est une * Siz <0, f(@)f(z = z) = 0 pour tout réel z et donc fu(z) =0

(n—1)! e Siz >0, alors:
densité de la variable aléatoire S,, pour tout n € N*.

. fulz) = / e Te (T g = efz/ dz = ze™ %,
Corrigé de l’exercice 11. [Enoncé 0 0

Une densité de la variable aléatoire U = X 4+ Y est donc donnée par la fonction :

1. Soit y € R. Puisque ([¢ = —1], [¢ = 1]) forme un systéme complet d’événements, on peut
appliquer la formule des probabilités totales : 0 siz<0
fuoiz—=9 _

PY<y)=Pe=-1Y <y +PEe=1Y <y) e osEz
=Ple=-1-X<y)+Pe=1,X<y) b. On montre sans difficulté que —Y est a densité, de densité donnée par la fonction :
=Pe=-1)P(—X < y) +P(e =1)P(X < y) par indépendance de X et ¢ -y 1y Y1) 0)(y) . La variable aléatoire V = X 4-(—Y’) est la somme de deux vari-

1 ables aléatoires indépendantes et & densité, elle est donc & densité, de densité donnée

- LB > )+ P <))
=P(X <y) car X — N(0,1)

par le produit de convolution :

+o0o
fvize— /_ fz=y)f-v(y)d

Les variables X et Y ont la méme fonction de répartition donc Y suit la loi normale
centrée réduite.

Or:
2. Par linéarité de 'espérance, Y — 2X admet une espérance puisque X et Y admettent une Fz—y)fy(y) £0 < z—y=0 oY S%
espérance et E(Y —2X) = 0. < y < 0.
Remarquons que (Y —2X)? = (¢—2)2X2. Puisque (¢—2)? admet une espérance (c’est une e Siz <0, alors:

variable aléatoire finie) et X2 aussi, (Y — 2X)? admet une espérance par indépendance
de (e — 2)? et X? (lemme des coalitions) et :

fv(z)

z z 62z Z e
/ e~ Vel dy = efz/ eVdy=e* { ] = —.
oo oo 2 ] _5 2

E((Y —2X)*) =E (e —2)*)E(X?) =5.
e Siz >0, alors:
On conclut via la formule de Konig-Hyugens : ¥ — 2X admet une variance égale a 5.

0 ( ) 0 ) 622 0 e %
) = “(=Y)e¥ qy = ¢~ ? Ydy = e ? —
Corrigé de ’exercice 12. [Enoncé] fv(z) [m c cfdy =e [m crdy=e { 2 ]Oo 2
1. a. Notons f : 2 — e “1g 4 o(2) une densité de X et Y. La variable aléatoire U = X +Y Une densité de la variable aléatoire V= X — Y est donc donnée par la fonction :
est la somme de deux variables aléatoires indépendantes et a densité, elle est donc a .
densité, de densité donnée par le produit de convolution : siz <0
+ fv L2 e—?
o siz > 0.
fU:z+—>/ f(z)f(z — x)da. -
—00
Or - 2. Déterminons la fonction Fy2 de répartition de la variable aléatoire X2. Soit = € R.

Siz <0, Fxz2(r) = P(X? < z) =0 car X(Q2) = [0,1].
Siz >0, Fx2(x) = P(X? < 1) = P(X < /Z) car X(Q) = [0,1].

//\ //\
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La fonction de répartition de la variable X2 est la fonction

0 sixz <0
x>/ si0<z <1
1 six > 1.

La fonction de répartition Fix2 est continue sur R, de classe C! sur R sauf éventuellement

1
en 0 et 1, donc X? est une variable & densité et f : z > 2\71]071] () en est une densité.
T
La variable aléatoire —Y suit la loi uniforme sur [—1,0] (la vérification est immédiate).
On en déduit que la fonction g = 1|_; ¢ est une densité de —Y.

Puisque X et Y sont indépendantes, alors X? et —Y le sont aussi par le lemme des coali-
tions. Ainsi X? et —Y sont deux variables aléatoires indépendantes & densité, donc leur
somme U est une variable aléatoire & densité, dont une densité h est donnée par le produit
de convolution des fonctions f et g :

+oo
h:zH[ f(x)g(z — x) da.

() f@)glz — o) £ 0 & {Of;’flmo = {O

VAS/AN
8 8
VAS/AN
IS

e Si—1<2<0, (S)e0<z<z+1et:

z+1
h(z):/o %dx:\/z 1.

e Si0<z<], (S)ez<r<let:

h(z):/ %dle—\/g.

e sinon, pour toute autre valeur de z, (S) n’admet pas de solution et h(z) = 0.

On en déduit qu'une densité de X2 — Y est donnée par la fonction :

vVz+1l si —1<2<0
hiz—q1l—yz si0<2<1

0 sinon.

3. a. Déterminons la fonction de répartition de M,,. Soit x € R.

WM<, V, <)
x)...P(V, <z) parindépendance des variables Vi,...,V,

x)"  puisque Vi,...,V, suivent la méme loi

On vérifie sans difficulté que M,, est & densité, de densité donnée par :

nz" 1 si0<z<1

an::rr—>{

0 sinon.

. Les variables aléatoires M,, et —V,, 1 sont des variables aléatoires indépendantes par

le lemme des coalitions puisque Vi, ..., V, 41 sont indépendantes.

La variable aléatoire M,, — V11 est alors la somme de deux variables aléatoires in-
dépendantes et & densité (—V;,41 suit la loi uniforme sur [—1, 0], de densité g = 1;_1 q}),
elle est donc a densité, de densité h donnée par le produit de convolution :

h:zw— /+00 fa, (2)g(z — z) dz

0<z<1 O<sz<1
_ 0 =
far, (2)g(z — ) # {lézng {z<x<

e Siz< —lousiz>1, fa,(x)g(z —x) =0 pour tout réel z et donc h(z) = 0.
e Size[-1,0], alors :

z+1
h(z) = / nz" tde = (z 4+ 1)
0

e Size€[0,1], alors :
1
h(z) = / nz" tdr =1- 2"
Une densité de M,, — V41 est donc donnée par la fonction :

(z+1)™ si —1<2<0
h:z—<1—-2" si0<z<1

0 sinon.
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c. Utilisons le fait qu’on connaisse une densité de M, — V41 :
0

h(z)dz = /
—1

Notons R et J les différences de temps (en minutes) entre les temps d’arrivée respectifs de
Roméo et Juliette et minuit. D’apres 1’énoncé, R < N (5,9) et R — N (0, 16)

Par linéarité de l'espérance, R — J admet une espérance, égale a 5. Par indépendance (sup-
posée) de R et J, R — J admet une variance égale & 25. Puisque R et J suivent des lois

normales indépendantes, R — J suit la loi normale d’espérance 5 et d’écart-type 5. Ainsi la
. R—J-
variable X =

0 1

P(Vn+1 > MTL) - P(Mn — n+1 < O) - m

— 00

(z+1)"dz =

Corrigé de I’exercice 13. [Enoncé|

suit la loi normale centrée réduite.

Remarquons maintenant que leur histoire ne commencera pas ce soir-1a si et seulement si les

événements [R > J+10] ou [J > R+ 5] sont réalisés. Or, d’aprés une table de la loi normale
centrée réduite, on a :

P(R>J+10)=P(X>1)=1-P(X

et P(J>R+5)=PX<-2)=1-P(X

1) = 0,1587

<
<2) =0,0228

Par incompatibilité des événements [R > J + 10] ou [J > R + 5], la probabilité que cette
grande histoire d’amour ne commence jamais est égale a 0,1815.

Corrigé de l’exercice 14. [Enoncé]

Soient X7 et X5 deux variables aléatoires indépendantes suivant respectivement les lois nor-
males NV (my,0?) et N(mo,03). Notons f; et fo des densités respectives de X; et Xo, et
Y = X; + X5. Puisque X; et X5 sont des variables aléatoires indépendantes a densité, Y
est une variable & densité, dont une densité g est donnée par le produit de convolution :

+oo
vieR gl = [ G- n)h)d
+o0 (z—z—myp)? _ (z—mg)?
= / 1 e . ! e 2} dz
o O01V2T ooV 2T

2

1 op)

20109T

(x —m1)? +02(2 —z — ma)
2
2

+oo 2
/ exp (— ) dz.

Exprimons le polynéme en x a 'intérieur de I’exponentielle sous forme canonique :

]2

2
2070

Vr € R, o3(x —my)? +0i(z — 2 —my)?

(of + 03) [x— 73 0103 (2 —m —ma)*

U%—l—og

2 —my) + oZmy

U%—f—o’%

10

On en déduit donc que :

_(z=my—my)?

2(c2+02) 2

02(z —my) + o?my

2 2
o1 + 03

e 0% + o3

Vz eR, g(z) =

+oo
/.

Reéalisons le changement de variable ¢t =

exp (—

(x -
Voi+ o2 . 03(z —mq) + oims
0102 O’% + O’%
la fonction associée est strictement croissante et C' sur R). On trouve alors :

)

) (possible car

2 2
20109m 20705

_(z=my—mg)?

P, ( ) e 2(02+032) /+oo ( t2> 0109 &
z , g(z) = exp| ——= | ——
20109T oo 2/, /0’% + g’%
2
1 _ (z=(mi+m3g)) +oo 2
= ¢ 2("’%*"%) Le_% dt
27 (0% 4 03) —oo V2T
1 _ (z=(m1+m9y))?

2(c7+02)
27 (03 4 03)

On reconnait une densité connue : X; + X5 suit la loi normale d’espérance mq + mo et de
variance 0% + 03.

Corrigé de I’exercice 15. [Enoncd]

1. Notons I ’ensemble des solutions de cette inéquation du second degré. Son discriminant
est A =4a — 3.

3
Si -, I=0.
° 104<47 0
. 3 1
e Sia= T I= {2} Remarquons que 1N [0,1] = 0.
. 3 —-1—-+Vi4a—-3 —1++vV4a—3
e Sia>—, I= , .
4 2 2
-1 —+v4da —3

Remarquons que < 0. De plus, on trouve apreés calculs que :

2
%20@@21 et _l%mélﬁaé?).
Ainsi : 3
1] SiZ<a<1
Ino,1] = 0,_1%‘/40‘7_3 sil<a<3
[0,1] sia > 3.
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2. D’aprés la question précédente, la fonction de répartition de Y est :

0 sia<1
Fy:asPY <a)=P(X2+X+1-a<0)={ _Lfvia—3 V240‘—3 Sl<a<3
1 sia > 3.

On vérifie facilement que Fy est C! sur R sauf éventuellement en 1 et 3, et continue en 1
et 3, donc sur R. Ainsi, Y est une variable & densité, dont une densité est donnée par :

1
—— sil<a<3
friam < vda—3
0 sinon.

3. La variable Y admet une espérance car la densité fy est a support borné ([1,3]) et

@
Y)= ———da
) /1 Via — 3
La fonction (a — Vo — 3) étant strictement croissante et de classe C! sur [1, 3], on pose

1
le changement de variables = y/4a — 3. On a alors a = 1 (x2 + 3) et da = %dx.

Ainsi :

3 3.2 3 3
11
Y):/ o /x+3 Ex_/m+3dx [x+34 _u
. VAa 3 2 .8 24 78", 76

On retrouve ce résultat en utilisant la linéarité de l'espérance (X est bornée donc admet
des moments d’ordre 1 et 2) :

Corrigé de I’exercice 16. [Enoncé|
Si une variable aléatoire X admet une densité f, on appelle entropie de X la quantité suivante
(lorsqu’elle existe) :

+oo
W)= [~ (f@) () de,

—00

Puisque lim x1n(x) = 0, on convient que In(f(x)) f(x) = 0 pour tout réel x tel que f(x) = 0.

z—0t

11

1. L’¢tude de la fonction (x+— Inx — (z — 1)) montre qu’elle est croissante sur ]0,1] et

décroissante sur [1,+oo[, admettant ainsi un maximum atteint en 1. Ainsi :

Ve >0, nz—(x—1) <0, i.e. nz<<z—1.

2. Sous réserve de convergence, on a :

+oo 2
1 t—m 2 1 t—m 2
h(X)= / —In ( 2 ) e S dt
Lo o2 oV2mw

+o0o 2
1 1 _(t=m)? (t—m) 1 (t—m)?
= ZIn (2702 e 207 4L e 22 | dt.
/ [2 ( ) oV2r 202 o271

—o00
+oo 1 (t—m)2 t —m 2 (t— m,)

Or les intégrales / e 222 dtet ue dt convergent et valent re-
—oo OV2T o221

spectivement 1 et V(X) (par définition de la variance), donc h(X) converge par linéarité

et vaut :
1 +oo ]_ t—m 2 1 +oo t _ 2 t—m 2
h(X):fln(mez)/ e —a +72/ &6_(2(;; dt

2 o OV2T 202 |_ oV2rm
1 2y, V(X)

= §ln (271'(7 ) + =
1 2

=3 [1+1n(27ra )]

3. a. Avec la convention 0Iln0 = 0, on a, pour tout x € R :

@) W (F@) = @) I (F@) + () I (o)) — fz) In (o(x)
— f()In (f(x)) ~ f(@)In (p(2))

p(x)
=—f(z)In (%) + %hl (2m0?) f(z) + %f(m)

Puisque f est une densité de probabilité et puisque Y admet pour espérance m et pour

m)?

1 _
variance o2, les intégrales / 3 In (27r02) f(z)dx et / (xzif(x) dx converge par
R R

2
linéarité.
On en déduit que h(Y') converge par linéarité, et :

e oo
)))d +21n(27r0 )+%>.

(
(
= [rem (Z5)
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b. La question 1 nous assure que, pour tout z € R tel que f(x) #0 :

o (18 = som (52) < o) - 10

+oo
Par linéarité de U'intégrale, il vient que —/ f(z)In (j;ig) dz < 0.

1
On déduit de égalité de la question précédente que h(Y') < 3 [1 + In (27m2)].

— 00

Concluons désormais. Remarquons que pour tout variable Y admettant espérance

f(x)

et variance, son entropie existe si, et seulement si, l'intégrale / f(@)In <()> dz
R px

converge. On a donc prouvé que, parmi toutes les variables aléatoires & densité, ad-
mettant une entropie de variance donnée o2, celles suivants les lois normales sont celles
qui admettent une entropie maximale.

12



