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Remarque 1 (Identification point/vecteur dans Rn)

Si on se donne un point O de Rn, l’application qui à tout point M de Rn associe le vecteur
−−→
OM est une bijection.

Il est donc équivalent de parler de points ou de vecteurs dans Rn, en ayant préalablement fixé un point (l’origine).

1 Produit scalaire dans Rn

1.1 Définition et premières propriétés
Définition 2

Soient −→u = (x1, . . . , xn) et −→v = (y1, . . . , yn) deux vecteurs de Rn.
On appelle produit scalaire de −→u et −→v le réel noté −→u · −→v défini par :

−→u · −→v =

n∑
i=1

xiyi.

La notation du produit scalaire peut varier dans la littérature : on peut trouver (−→u | −→v ), 〈−→u ,−→v 〉 ou 〈−→u | −→v 〉.

Exemple 3 (Calcul de produits scalaires)
Calculons le produit scalaire de −→u et −→v dans les différents cas suivants :

(i) −→u = (1, 0, 1), −→v = (−2, 3, 4) (ii) −→u = (0, 1, 2, 3), −→v = (4, 3, 2, 1)

Proposition 4 (Propriétés du produit scalaire)

Soient −→u , −→v et −→w trois vecteurs de Rn et λ ∈ R. Alors :

(i) −→u · −→0 =
−→
0 · −→u = 0

(ii) −→u · −→v = −→v · −→u (symétrie du produit scalaire)

(iii) (−→v + λ−→w ) · −→u = −→v · −→u + λ−→w · −→u (linéarité par rapport à la première variable)

(iv) −→u · (−→v + λ−→w ) = −→u · −→v + λ−→u · −→w (linéarité par rapport à la seconde variable)

(v) −→u · −→u > 0 (positivité du produit scalaire)

(vi) −→u · −→u = 0⇔ −→u =
−→
0 (le produit scalaire est défini).

Démonstration admise.

Remarque 5
L’application (−→u ,−→v ) 7→ −→u · −→v est dite bilinéaire (i.e linéaire par rapport à chacune de ses variables),
symétrique, définie positive.

Corollaire 6 (Bilinéarité du produit scalaire)

Soient (p, q) ∈ (N∗)2, (λ1, . . . , λp) un p-uplet de réels et (µ1, . . . , µq) un q-uplet de réels.
Soient (−→u1, . . . ,−→up) un p-uplet de vecteurs de Rn et (−→v1 , . . . ,−→vq ) un q-uplet de vecteurs de Rn. Alors :(

p∑
i=1

λi
−→ui

)
·

 q∑
j=1

µj
−→vj

 =

p∑
i=1

q∑
j=1

λiµj
−→ui · −→vj

Démonstration admise.
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1.2 Norme euclidienne
Définition 7

Soit −→u un vecteur de Rn.
On appelle norme euclidienne (ou plus simplement norme) du vecteur −→u le réel noté ‖−→u ‖ défini par :

‖−→u ‖ =
√−→u · −→u .

Exemple 8 (Calcul de norme)
Calculons la norme du vecteur −→u représenté dans le repère orthonormé ci-dessous :

O
−→
i

−→
j

−→
k

−→u

Proposition 9

Soient −→u un vecteur de Rn et λ un réel. Alors :

(i) ‖−→u ‖ > 0 (ii) ‖λ−→u ‖ = |λ| ‖−→u ‖ (iii) ‖−→u ‖ = 0⇔ −→u =
−→
0 .

Démonstration admise.

Théorème 10 (Inégalité de Cauchy-Schwarz )

Pour tous vecteurs −→u et −→v de Rn, on a :
|−→u · −→v | 6 ‖−→u ‖ ‖−→v ‖ .

De plus, il y a égalité si, et seulement si, les vecteurs −→u et −→v sont colinéaires.

Démonstration.
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Exemple 11 (Application de l’inégalité de Cauchy-Schwarz)
Montrons que, pour tout (x, y, z) ∈ R3, x+ y + z 6

√
3x2 + 3y2 + 3z2.

Théorème 12 (Inégalité triangulaire)

Pour tous vecteurs −→u et −→v de Rn, on a :

‖−→u +−→v ‖ 6 ‖−→u ‖+ ‖−→v ‖ .

Démonstration.

1.3 Orthogonalité
Définition 13

On dit que deux vecteurs −→u et −→v de Rn sont orthogonaux si −→u · −→v = 0.

Exemple 14
Les vecteurs −→u et −→v représentés dans le repère orthonormé ci-dessous sont-ils orthogonaux ?

O
−→
i

−→
j

−→
k

−→u

−→v

Remarque 15
La bilinéarité du produit scalaire assure que, si deux vecteurs −→u et −→v de Rn sont orthogonaux, alors, pour tous
réels λ et µ, λ−→u et µ−→v sont orthogonaux.

3



Mathématiques Géométrie euclidienne BCPST 2 J-B. Say

Exemple 16
Comparer −→u · −→v et −→u · −→w (en supposant que les vecteurs −→u et −→w sont colinéaires).

−→w −→u

−→
t−→v

Définition 17

On dit qu’une (−→ui)i∈I de vecteurs de Rn est une famille orthogonale si les vecteurs de cette famille sont deux-à-
deux orthogonaux, i.e.

∀(i, j) ∈ I2, i 6= j ⇒ −→ui · −→uj = 0.

On dit qu’une (−→ui)i∈I de vecteurs de Rn est une famille orthonormée (on dit aussi orthonormale) si elle est
orthogonale et si tous ses vecteurs sont de norme égale à 1.

Exemple 18
La base canonique de Rn est une famille orthonormée.

Proposition 19 (Liberté d’une famille orthogonale)
Toute famille orthogonale de vecteurs non nuls de Rn est libre.

Démonstration.
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Théorème 20 (Théorème de Pythagore)

Soient −→u et −→v deux vecteurs de Rn. Les vecteurs −→u et −→v sont orthogonaux si, et seulement si :

‖−→u +−→v ‖2 = ‖−→u ‖2 + ‖−→v ‖2 .

Démonstration.

2 Bases orthonormées

2.1 Existence et premières propriétés
Théorème 21 (admis)

Tout sous-espace vectoriel de Rn différent de {−→0 } admet une base orthonormée, pouvant être complétée en une
base orthonormée de Rn.

Définition 22

Soient X =

x1...
xn

 et Y =

y1...
yn

 deux matrices-colonnes de Mn,1(R). On appelle produit scalaire de X et Y ,

généralement noté 〈X,Y 〉, le réel :

〈X,Y 〉 =
n∑

i=1

xiyi = XTY (en identifiantM1(R) à R).

Proposition 23 (Écriture matricielle du produit scalaire)

Soit B = (−→e1 , . . . ,−→en) une base orthonormée de Rn. Soient −→x et −→y deux vecteurs de Rn et soient (x1, . . . , xn) et

(y1, . . . , yn) leurs coordonnées respectives dans B. On note X =

x1...
xn

 et Y =

y1...
yn

 les matrices-colonnes des

coordonnées respectives de −→x et −→y dans B. En identifiantM1(R) à R, on a alors :

(i) −→x · −→y =
n∑

i=1

xiyi = XTY = 〈X,Y 〉; (ii) ‖−→x ‖2 =
n∑

i=1

x2i = XTX = ‖X‖2.

Démonstration.
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Remarque 24
La propriété précédente assure que le produit scalaire et la norme se calculent de la même manière dans toutes
les bases orthonormées

Proposition 25

Soit B = (−→e1 , . . . ,−→en) une base orthonormée de Rn et soit −→u ∈ Rn.
En notant (x1, . . . , xn) les coordonnées de −→u dans la base B, on a :

∀i ∈ J1, nK, xi = −→u · −→ei .

En particulier, on a :
−→u =

n∑
i=1

(−→u · −→ei )−→ei et ‖−→u ‖2 =
n∑

i=1

(−→u · −→ei )2 .

Démonstration.

Remarque 26
Le résultat précédent permet de déterminer les coordonnées de tout vecteur dans une base orthonormée en
calculant n produits scalaires.

Remarque 27

Le même raisonnement s’applique à un sous-espace vectoriel de Rn non réduit à
{−→
0
}
, comme énoncé ci-dessous.

Soit B = (−→e1 , . . . ,−→ep) une base orthonormée d’un sous-espace vectoriel F 6= {−→0 } de Rn.
Alors, pour tout vecteur −→u de F , on a :

−→u =

p∑
i=1

(−→u · −→ei )−→ei .

Exemple 28

Soient −→u = (2, 3), −→e1 =

(√
3

2
,
1

2

)
et −→e2 =

(
−1

2
,

√
3

2

)
trois vecteurs de R2.

1. Montrons que (−→e1 ,−→e2) est une base orthonormée de R2.

2. Déduisons-en les coordonnées de −→u dans cette base.

3. On note −→e3 = 2−→e2 . Vérifier que (−→e1 ,−→e3) est une base orthogonale de R2.

4. A-t-on l’égalité : −→u = (−→u · −→e1)−→e1 + (−→u · −→e3)−→e3 ?
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Proposition 29

Soient B1 = (−→e1 , . . . ,−→en) une base orthonormée de Rn et B2 =
(−→
f1 , . . . ,

−→
fn

)
une famille de vecteurs de Rn.

La famille B2 est une base orthonormée de Rn si, et seulement si, la matrice P de B2 dans la base B1 vérifie :

P TP = In.

En particulier, la matrice de passage d’une base orthonormée de Rn dans une autre (base orthonormée de Rn) est
une matrice inversible deMn(R) et son inverse est sa transposée.
On dit que P est une matrice (de passage) orthogonale.

Démonstration.

Remarque 30
On utilisera très souvent ce résultat pour passer de la base canonique de Rn à une autre base orthonormée de Rn.
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Exemple 31 (Matrice de rotation)

On représente ci-dessous les vecteurs −→e1 = (1, 0), −→e2 = (0, 1),
−→
f1 et

−→
f2 de R2 (construits par rotation d’un angle

de mesure θ ∈ R). Déterminons la matrice P de passage de (−→e1 ,−→e2) à (
−→
f1 ,
−→
f2) puis son inverse P−1.

−→e1

−→e2

−→
f1

−→
f2

θ

θ

2.2 Diagonalisation des matrices symétriques réelles
Proposition 32

Soit A ∈Mn(R) une matrice symétrique (on note A ∈ Sn(R)).
Deux vecteurs propres de A associés à des valeurs propres distinctes sont orthogonaux.

Remarque 33
On dit que les espaces propres d’une matrice symétrique réelles sont deux-à-deux orthogonaux.

Théorème 34 (Théorème spectral - diagonalisation des matrices symétriques réelles)

Pour toute matrice symétrique réelle A ∈ Mn(R), il existe une matrice inversible P ∈ Mn(R) et une matrice
diagonale D ∈Mn(R) telles que : {

A = PDP T

P−1 = P T .

Démonstration admise.

Remarque 35 À retenir
Tout matrice symétrique réelle est diagonalisable via une matrice de passage orthogonale.
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Exemple 36

Diagonalisons la matrice A =

 1 −2 2
−2 1 −2
2 −2 1

 via une matrice de passage orthogonale.
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2.3 Projection orthogonale
Définition 37

On appelle orthogonal d’un sous-espace vectoriel F de Rn, l’ensemble, noté F⊥, des vecteurs de Rn orthogonaux
à tout vecteur de F :

F⊥ =
{−→v ∈ Rn | ∀−→u ∈ F, −→u · −→v = 0

}
.

Exemple 38

Déterminer F⊥ dans le cas où F =
{−→
0
}

puis F = Rn.

Proposition 39

Si F un sous-espace vectoriel de Rn, alors F⊥ est un sous-espace vectoriel de Rn.

Théorème 40 (Décomposition d’un vecteur sur F et F⊥)
Soit F un sous-espace vectoriel de Rn.
Pour tout vecteur x ∈ Rn, il existe un unique couple (xF , xF⊥) ∈ F × F⊥ vérifiant x = xF + xF⊥ .
Le vecteur xF est appelé projeté orthogonal de x sur F .

F

x

xF

xF⊥

Démonstration.
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Corollaire 41
Soit F un sous-espace vectoriel de Rn. Alors :

dimF + dimF⊥ = n.

Démonstration admise.

Définition 42
Soit F un sous-espace vectoriel de Rn. On appelle projection orthogonale sur F l’application qui, à tout vecteur
de Rn associe son projeté orthogonal sur F .

Théorème 43 (Écriture du projeté orthogonal dans une base orthonormée)

Soit B = (−→e1 , . . . ,−→eq ) une base orthonormée d’un sous-espace vectoriel F de Rn.
En notant p la projection orthogonale sur F , on a :

∀−→u ∈ Rn, p (−→u ) =
q∑

i=1

(−→u · −→ei )−→ei .

Démonstration. cf démonstration du théorème 40.
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Théorème 44 (Caractérisation de la projection orthogonale)
La projection orthogonale sur un sous-espace vectoriel F de Rn est l’unique endomorphisme p de Rn vérifiant :

p ◦ p = p

Im(p) = F

Ker(p) = F⊥.
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Exemple 45
Déterminons le projeté orthogonal du vecteur −→u = (1, 0, 1) ∈ R3 sur le sous-espace vectoriel F = Vect(−→e1 ,−→e2) de
R3 où −→e1 = (1,−1, 0) et −→e2 = (0, 0, 1).

Exemple 46

Soit f l’endomorphisme de R2 canoniquement associé à la matrice A =
1

4

(
3
√
3√

3 1

)
.

1. Montrer que f est une projection orthogonale sur un sous-espace vectoriel à identifier.

2. Justifier que A est diagonalisable puis la diagonaliser. Pouvait-on prévoir la forme de la matrice diagonale ?
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2.4 Distance
Définition 47

Soient −→u et −→v deux vecteurs de Rn. On appelle distance entre −→u et −→v le réel noté d(−→u ,−→v ) défini par :

d(−→u ,−→v ) = ‖−→u −−→v ‖ .

Définition 48

Soient −→u un vecteur de Rn et A une partie non vide de Rn.
On appelle distance entre −→u et A le réel noté d(−→u ,A) défini par :

d (−→u ,A) = inf
v∈A
‖−→u −−→v ‖

(
= inf

v∈A
d (−→u ,−→v )

)
.

Remarque 49

La borne inférieure existe bien car l’ensemble
{
‖−→u −−→v ‖ ∈ R, | −→v ∈ A

}
est bien non vide et minoré (par 0).

Théorème 50 (Caractérisation de la distance à un sous-espace vectoriel par la projection orthogonale)

Soient F un sous-espace vectoriel de Rn non réduit à
{−→
0
}

et p la projection orthogonale sur F .
Pour tout vecteur −→u ∈ Rn, on a :

d (−→u , F ) = ‖−→u − p (−→u )‖ .

Démonstration.

F

−→u

p(−→u )

−→v

−→u − p (−→u )

−→u −−→v

p(−→u )−−→v
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Exemple 51
Déterminons la distance du vecteur −→u = (5,−2) ∈ R2 à la droite (vectorielle) F d’équation

√
3x− 3y = 0.

Remarque 52. Interprétation géométrique de l’ajustement affine par la méthode des moindres carrés
On considère un nuage de points {(xi, yi)}16i6n (d’abscisses deux-à-deux distinctes). Déterminer la droite de
régression linéaire par la méthode des moindres carrés revient à déterminer un couple de réels (a, b) qui minimise
la quantité :

f(a, b) =
n∑

i=1

(yi − (axi + b))2.

En posant x = (x1, . . . , xn), y = (y1, . . . , yn), et u = (1, . . . , 1) ∈ Rn, on remarque que f(a, b) = ‖y − (ax+ bu)‖2
pour tout (a, b) ∈ R2. En notant, F = Vect(x, u), il vient alors que :

min
(a,b)∈R2

f(a, b) = min
(a,b)∈R2

‖y − (ax+ bu)‖2 = min
v∈F
‖y − v‖2 = d(y, F )2.

Pour rappel, le couple (â, b̂) qui minimise f sur R2 vérifie â =
sxy
s2x

et b̂ = y − âx, où sxy est la covariance du

couple (x, y) et s2x la variance de x.
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