Mathématiques Géométrie euclidienne BCPST 2 J-B. Say

Remarque 1 (Identification point/vecteur dans R")
—
Si on se donne un point O de R™, ’application qui & tout point M de R™ associe le vecteur OM est une bijection.
I1 est donc équivalent de parler de points ou de vecteurs dans R™, en ayant préalablement fixé un point (I’origine).

1 Produit scalaire dans R"
1.1 Deéfinition et premiéres propriétés
Définition 2

Soient ¥ = (X1y...,@y) et v = (Y1, ..., Yyn) deux vecteurs de R™.
On appelle produit scalaire de U et U le réel noté o - ¥ défini par :

=1

La notation du produit scalaire peut varier dans la littérature : on peut trouver (o | @), (W, V) ou (¥ | ¥).

Exemple 3 (Calcul de produits scalaires)
Calculons le produit scalaire de @ et ¥ dans les différents cas suivants :

(i) 7 =(1,0,1), ¥ = (—2,3,4) (i) @ =(0,1,2,3), ¥ = (4,3,2,1)

Proposition 4 (Propriétés du produit scalaire)
Soient @, U et W trois vecteurs de R™ et A € R. Alors :

() 7-0=0-7=0

(i) -7 =0 - U (symétrie du produit scalaire)

(iii) (¥ +AW) -« =0 -« + A0 - U (linéarité par rapport a la premiére variable)
) W
) W
)

(7 +AW) =7 -7V + A\ - @ (linéarité par rapport a la seconde variable)

(iv
(v > 0 (positivité du produit scalaire)

Vi) ¥ d=0ed= I (le produit scalaire est défini).

Démonstration admise.

Remarque 5
L’application (7,7) — U - U est dite bilinéaire (i.e linéaire par rapport a chacune de ses variables),

symétrique, définie positive.

Corollaire 6 (Bilinéarité du produit scalaire)

Soient (p,q) € (N*)%, (Ay,...,Ap) un p-uplet de réels et (1, .., ig) un g-uplet de réels.
Soient (17{, .. ,17;) un p-uplet de vecteurs de R™ et (U_1>, ... ,v_q>) un g-uplet de vecteurs de R™. Alors :

p q p g
(Z /M@) AD o w vy | =0 i - v
i=1 j=1

i=1 j=1

Démonstration admise.
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1.2 Norme euclidienne
Définition 7

Soit @ un vecteur de R”.
On appelle norme euclidienne (ou plus simplement norme) du vecteur @ le réel noté || || défini par :

|| =V -a.

Exemple 8 (Calcul de norme)
Calculons la norme du vecteur o représenté dans le repére orthonormé ci-dessous :

Proposition 9

Soient @ un vecteur de R™ et \ un réel. Alors :

() 2] >0 (i) [AZ] = A2 (it) | 7] =0 @ =0.

Démonstration admise.

Théoréme 10 (Inégalité de Cauchy-Schwarz)

Pour tous vecteurs @ et ¥ de R™ on a :

-7 < T -

De plus, il y a égalité si, et seulement si, les vecteurs U et W sont colinéaires.

Démonstration.
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Exemple 11 (Application de ’inégalité de Cauchy-Schwarz)
H Montrons que, pour tout (z,y,2) € R?, 24y + 2 < /322 + 3y2 + 322,

Théoréme 12 (Inégalité triangulaire)

Pour tous vecteurs @ et ¥ de R™ on a :

I+ 7| <)+ 7]

Démonstration.

1.3 Orthogonalité
Définition 13
On dit que deux vecteurs U et U de R" sont orthogonaux si w7 =0.

Exemple 14
Les vecteurs @ et U représentés dans le repére orthonormé ci-dessous sont-ils orthogonaux 7

Remarque 15
La bilinéarité du produit scalaire assure que, si deux vecteurs U et ¥ de R™ sont orthogonaux, alors, pour tous
réels A et p, AU et ,u7 sont orthogonaux.
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Exemple 16
Comparer U-Vetd W (en supposant que les vecteurs U et W sont colinéaires).

Définition 17

On dit qu’une (UZ)ZG ; de vecteurs de R" est une famille orthogonale si les vecteurs de cette famille sont deux-a-
deux orthogonaux, i.e.

On dit qu'une (Uf)le ; de vecteurs de R" est une famille orthonormée (on dit aussi orthonormale) si elle est
orthogonale et si tous ses vecteurs sont de norme égale a 1.

Exemple 18

H La base canonique de R” est une famille orthonormée.

Proposition 19 (Liberté d’une famille orthogonale)

Toute famille orthogonale de vecteurs non nuls de R™ est libre.

Démonstration.
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Théoréme 20 (Théoréme de Pythagore)

Soient U et U deux vecteurs de R”. Les vecteurs ¥ et ¥ sont orthogonaux si, et seulement si :

I+ 2N = )+ 7))

Démonstration.

2 Bases orthonormées

2.1 Existence et premiéres propriétés

Théoréme 21 (admis)

. . -
Tout sous-espace vectoriel de R™ différent de { 0 } admet une base orthonormée, pouvant étre complétée en une
base orthonormée de R™.

Définition 22
L1 Y1
Soient X = | 1 | et Y = | ! | deux matrices-colonnes de M, 1(R). On appelle produit scalaire de X et Y,

Tn Yn
généralement noté (X,Y), le réel :

= sz‘yi = XTY (en identifiant M;(R) a R).

Proposition 23 (Ecriture matricielle du produit scalaire)

Soit B = (€f,...,e,) une base orthonormée de R". Soient Z et 3 deux vecteurs de R™ et soient (21,...,2,) et
I Y

(y1,-..,Yn) leurs coordonnées respectives dans B. On note X = | et Y =] : | les matrices-colonnes des
In Yn

coordonnées respectives de @ et 3 dans B. En identifiant M;(R) a R, on a alors :

) WY = miyi=XTY = (X,Y); (i) 17 Zl‘ = XX = || X
=1

Démonstration.
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Remarque 24
La propriété précédente assure que le produit scalaire et la norme se calculent de la méme maniére dans toutes
les bases orthonormées

Proposition 25

Soit B = (€], ..., &,) une base orthonormée de R” et soit @ € R™.
En notant (z1,...,x,) les coordonnées de 7 dans la base B, on a:

Vi € [1,n], ;= - €.

En particulier, on a :

=

)

(T-e)e et (W)= (&)

1 i=1

n n

Démonstration.

Remarque 26
Le résultat précédent permet de déterminer les coordonnées de tout vecteur dans une base orthonormée en
calculant n produits scalaires.

Remarque 27

" : . X . PR s ) o
Le méme raisonnement s’applique a un sous-espace vectoriel de R™ non réduit a { 0 }, comme énoncé ci-dessous.

Soit B = (ef,..., &) une base orthonormée d'un sous-espace vectoriel F # {0} de R".
Alors, pour tout vecteur U de F,ona:

7:§pj<7-a>a.

i=1

Exemple 28
31 1 V3
Soient W = (2,3), & <\f > et & = ( f) trois vecteurs de R2.

272 22
1. Montrons que (e_f, e_2>) est une base orthonormée de R2.

2. Déduisons-en les coordonnées de i dans cette base.

3. On note 6_3> = 26_5. Vérifier que (e_f, e_3>) est une base orthogonale de R2.

W

. A-t-on légalité : U = (U -ef) el + (U -e3)e3 ?
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Proposition 29

— —
Soient B = (e—f, e 51)) une base orthonormée de R™ et By = (fl, e fn) une famille de vecteurs de R™.
La famille Bs est une base orthonormée de R™ si, et seulement si, la matrice P de By dans la base B vérifie :

PP =1,.

En particulier, la matrice de passage d’une base orthonormée de R™ dans une autre (base orthonormée de R™) est
une matrice inversible de M,,(R) et son inverse est sa transposée.
On dit que P est une matrice (de passage) orthogonale.

Démonstration.

Remarque 30
‘ On utilisera trés souvent ce résultat pour passer de la base canonique de R™ & une autre base orthonormée de R".



Mathématiques Géométrie euclidienne BCPST 2 J-B. Say

Exemple 31 (Matrice de rotation)

On représente ci-dessous les vecteurs ef = (1,0), e3 = (0,1) 5> de R? (construits par rotation d'un angle

de mesure § € R). Déterminons la matrice P de passage de (e1,e3) & (f1, f2) puis son inverse P~1.

_>
fa 2
_>
0 1
0
e

2.2 Diagonalisation des matrices symétriques réelles

Proposition 32

Soit A € M,,(R) une matrice symétrique (on note A € S,,(R)).
Deux vecteurs propres de A associés & des valeurs propres distinctes sont orthogonaux.

Remarque 33
‘ On dit que les espaces propres d’une matrice symétrique réelles sont deux-a-deux orthogonaux.

Théoréme 34 (Théoréme spectral - diagonalisation des matrices symétriques réelles)

Pour toute matrice symétrique réelle A € M,,(R), il existe une matrice inversible P € M, (R) et une matrice
diagonale D € M, (R) telles que :

A= PDPT
p-1=pT,

Démonstration admise.

Remarque 35 A retenir

Tout matrice symétrique réelle est diagonalisable via une matrice de passage orthogonale.
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Exemple 36
1 -2 2
Diagonalisons la matrice A= | —2 1 —2 | via une matrice de passage orthogonale.
2 -2 1
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2.3 Projection orthogonale
Définition 37

On appelle orthogonal d’un sous-espace vectoriel F' de R™, I’ensemble, noté F*, des vecteurs de R” orthogonaux
A tout vecteur de F' :

Ft={VeR"|VZ €F, ¥ -7 =0}

Exemple 38
H Déterminer F- dans le cas ou F = {6)} puis F' = R".

Proposition 39

Si F un sous-espace vectoriel de R”, alors F- est un sous-espace vectoriel de R™.

Théoréme 40 (Décomposition d’un vecteur sur F et F1)

Soit F' un sous-espace vectoriel de R"™.
Pour tout vecteur z € R”, il existe un unique couple (zp,xp1) € F x F* vérifiant © = xp + zp..
Le vecteur zf est appelé projeté orthogonal de x sur F.

/ |

TpL

TF

Démonstration.

10
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Corollaire 41

Soit F' un sous-espace vectoriel de R™. Alors :

dim F + dim F+ = n.

Démonstration admise.
Définition 42
Soit F' un sous-espace vectoriel de R™. On appelle projection orthogonale sur F' I’application qui, & tout vecteur
de R™ associe son projeté orthogonal sur F'.

Théoréme 43 (Ecriture du projeté orthogonal dans une base orthonormée)

Soit B = (e_1>, ey e_q>) une base orthonormée d’un sous-espace vectoriel F' de R™.

En notant p la projection orthogonale sur F', on a :

VU € R”, p(ﬁ)zij(ﬁ-a?)zz.

=1

Démonstration. cf démonstration du théoréme 40.

11
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Théoréme 44 (Caractérisation de la projection orthogonale)

La projection orthogonale sur un sous-espace vectoriel F' de R™ est I'unique endomorphisme p de R™ vérifiant :

bpoep=p
Im(p) = F
Ker(p) = F*.

12
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Exemple 45

Déterminons le projeté orthogonal du vecteur U = (1,0,1) € R3? sur le sous-espace vectoriel F' = Vect(e_f, 6—2>) de

R3 ou e = (1,—1,0) et &5 = (0,0,1).

Exemple 46

1
Soit f I’endomorphisme de R? canoniquement associé a la matrice A = 1 (\33 \{§>

1. Montrer que f est une projection orthogonale sur un sous-espace vectoriel & identifier.

2. Justifier que A est diagonalisable puis la diagonaliser. Pouvait-on prévoir la forme de la matrice diagonale 7

13
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2.4 Distance
Définition 47
Soient U et ¥ deux vecteurs de R”. On appelle distance entre U et U le réel noté d(?, 7) défini par :

A7, 7)) =7 - 7.

Définition 48

Soient @ un vecteur de R et A une partie non vide de R".
On appelle distance entre @ et A le réel noté d(, A) défini par :

d(d,A) = inf (=l (: gd(ﬁ, 7)) :

Remarque 49
La borne inférieure existe bien car ’ensemble { |7 — V| eR, | ¥ € A} est bien non vide et minoré (par 0).

Théoréme 50 (Caractérisation de la distance a un sous-espace vectoriel par la projection orthogonale)

Soient F' un sous-espace vectoriel de R™ non réduit a { 0 } et p la projection orthogonale sur F'.

Pour tout vecteur o € R™ on a:

d(d,F) =2 —p(d).

Démonstration.

14
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Exemple 51
H Déterminons la distance du vecteur @ = (5,—2) € R? a la droite (vectorielle) F' d’équation v/3x — 3y = 0.

Remarque 52. Interprétation géométrique de ’ajustement affine par la méthode des moindres carrés
On considére un nuage de points {(z;,¥:)}1<i<n (d’abscisses deux-a-deux distinctes). Déterminer la droite de
régression linéaire par la méthode des moindres carrés revient a déterminer un couple de réels (a,b) qui minimise

la quantité :
n

Fla.b) = 3" (s — (az; +b))*.
=1

En posant o = (x1,...,%,), ¥y = (Y1,---,Yn), et u = (1,...,1) € R, on remarque que f(a,b) = ||y — (azx + bu)|?

pour tout (a,b) € R?. En notant, F' = Vect(x,u), il vient alors que :

' b)= min |ly— (az +bu)|* = minlly - o|* = d(y, F)*.
(a%lenR2f(a,) (G%IEHRQHQ (az + bu)|| {)Ig;l”y V| (y, F)

S

~ 7 . .. . L. A xT > — A— N .
Pour rappel, le couple (@, b) qui minimise f sur R? vérifie 4 = S—Qy et b =y — aw, ol sy est la covariance du
x

couple (z,y) et s2 la variance de .
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