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[Corrigé] v

Exercice 1. Identités de polarisation ©
Moutrer que, pour tout (z,y) € R™® x R™, on a :

(Il +l* = llll* = llyll*)

(Il + 1y l1* = llz = ylI*)

(z]y)

(Il +yll* = llz = 9l?) -

=N =N

[Corrigé| vy
Montrer que, pour tout (z,y) € R" X R™, on a ||z + y||® + |z — y[|* = 2 ([|=[* + [|y[|?).

Exercice 2. Identité du parallélogramme

[Corrigé| v v

Exercice 3. ©
1. Déterminer une équation de la sphére S de 'espace de rayon 2 et de centre Q(1,1,1).
2. Veérifier que le point A(2,2,1 -+ 1/2) appartient & la sphére.

3. Déterminer une équation cartésienne du plan P tangent a la sphére S au point A.

[Corrigé| Hvvr
Montrer que, pour toute matrice symétrique A € S, (R), la matrice A +il,, € GL,(C).

Exercice 4.
On pourra considérer le spectre de A.

[Corrigé| Je¥

Exercice 5. ©
Montrer les propriétés suivantes :

n 2
1. Y(x1,...,2,) € R, (Zwk> <n<2x2>.
k=1 k=1

3

n
1

2
— =n”.
Ty

2. Y(x1,...,2,) € (RY)", ka =1=
k=1 k=1

[Corrigé| ¥

Pour chacune des matrices A ci-dessous, déterminer une matrice carrée P telle que PT AP
soit une matrice diagonale.

43
4w )

Exercice 6. QO

[Corrigé] ¥
Pour toute partie A de £ = R”, on note A+ 'ensemble des vecteurs de R™ orthogonaux a
tout vecteur de A :

Exercice 7. Orthogonal d’une partie ¢

At ={z €R" |Vac A, (z]a)=0}.
1. Déterminer {Og}* et E+.
2. Soient A et B des parties de R"”.

a. Montrer que AL est un sous-espace vectoriel de R”.

b. Montrer que A C (AL)L.
c. Montrer I'implication : A ¢ B = B+ C AL,
d. Vérifier I'égalitée AL = Vect(A)= .

[Corrigé| k=

Exercice 8. Matrice d’une projection orthogonale ¢
Soit F le plan de R3 d’équation = — 2y 4+ z = 0.
Déterminer la matrice de la projection orthogonale sur F' dans la base canonique.

Exercice 9. Distance & un sous-espace vectoriel O

[Corrigé| Jed

Soit F le sous-espace vectoriel de R? engendré par les vecteurs e; = (1,2,2) et ex = (2,1, —2).
1. Montrer que la famille (eq,e2) est orthogonale.
2. Déterminer la matrice de la projection orthogonale p sur F' dans la base canonique de R3.

3. Montrer que la famille B définie ci-dessous est une base orthonormée de R :

g ((L22) (21 2\ .22 1
- \\3’3’3/’\3’3> 3)’\ 33 3

4. Déterminer la matrice de p dans cette base.
5. Calculer la distance du point A de coordonnées (1,1,1) au plan F.
Exercice 10. © [Corrigé] Yk

1. Soit F' # {0} un sous-espace vectoriel de R™ et soit p la projection orthogonale sur F'.
Montrer que pour tout z € R™, |p (z)| < ||z

2. Soit f un endomorphisme de R™ vérifiant fo f = f et : Vo € R, | f (z)| < ||z

a. Montrer que pour tout y € Im f, f(y) =y.
b. Montrer que le projeté orthogonal sur Ker f de tout vecteur de Im f est le vecteur nul.

c. En déduire que f est la projection orthogonale sur Im f.
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Exercice 11. Etude d’une symétrie de R? [Corrigé| %% ¢ Exercice 15. [Corrigé] Y%k
On considére I'endomorphisme s de R? dont la matrice dans la base canonique est : On considére la fonction suivante :
1 (6 —3 2 f R SR
A=-|-3 -2 -6 (r,y) = Qrt+y-12+(@@-3y?’+(y-1)°
-2 -6 3

Le but de cet exercice est de montrer que la fonction f admet un minimum sur R2.
1. Montrer que s conserve les distances (on dit que s est une isométrie), i.e. :

1. Premiére méthode : géométrique euclidienne.

Vo € R?, ||s ()l = |12l
a. Montrer que, pour tout (z,y) € R?, il existe un vecteur u, , € R* dépendant de (z,y)
2. Déterminer I'ensemble F' des points fixes de s. et un vecteur v indépendant de (z,y) tel que f(z,y) = ||lug,, — v|*

3. Déterminer 'application s o s. Que peut-on en déduire ? b. Identifier I'ensemble F' = {Uacy eR?, (z,9) € RQ}-

1 c. En déduire que f admet un minimum en un point de R? qu’on déterminera.
4. Montrer que I'application p = 3 (s + Id) est une projection orthogonale sur un sous-espace
vectoriel de R? & déterminer (en fonction de s). 2. Seconde méthode : étude des points critiques.

a. Justifier que f est de classe C!.

Exercice 12. |Corrigé] Jedk'c o ,

Soit A € M, (R) telle que N = A+ AT soit nilpotente, i.e. il existe p € N tel que N? = 0,,. b. Montrer que f admet un point critique qu’on déterminera.
En identifiant une matrice symétrique, montrer que A € A,(R), i.e. AT = —A. c. En déduire que f admet un minimum.

Exercice 13. [Corrigé] Jek K

Soient f un endomorphisme de R™ et A sa matrice dans la base canonique. On suppose que
A vérifie A + AT = 21,,.

1. Soit X € Mnyl(R)
Déterminer & quel espace appartient X7 AX puis en déduire que XTAX = XTATX.
2. Déterminer Ker f.

3. En déduire que f admet au plus une valeur propre.

Exercice 14. [Corrigé| Y%k

1. Soit A € M, (R). Montrer que S = AT A est diagonalisable et que toutes ses valeurs
propres sont positives ou nulles.

2. Soit S une matrice symétrique de M, (R) dont toutes les valeurs propres sont positives
ou nulles. On note S € S;F(R). Montrer qu’il existe une matrice A € M, (R) telle que
S =ATA.

3. Application : déterminer une matrice A € M, (R) telle que AT A = <? ;)
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Corrigé de I’exercice 1. [Enoncé]
Soit (z,y) € R™ x R™. Puisque ||z +y[|* = [|z[|* + 2(z [ y) + [ly[|*, on trouve :

1
(@ ly) =5 (lz+l* = ll=l* = lly?)
De la méme maniére, puisque ||z — y||* = [|z[|* — 2(z [ y) + [|ly[*, on a
{@ly) =5 (||£EH2 +lyl* = [l = yl*) -
En additionnant les égalités (1) et (2), on trouve :
1 2 2
20z |y) = 5 (e +yl” = llz = y) -
On en déduit que :
1 2 2
(@ly) =7 (lz+yl* = llz = yl)
Corrigé de I’exercice 2. [Enoncé]

Pour tout (z,y) € R™ x R", on a

lz+ylI* + e = yl* = (l2l® + 26z [ y) + Iyll*) + (l21* = 262 | ) + [lyl?)
=2 (lll* + llyll*) -
Corrigé de I’exercice 3. [Enoncd]

1. Soit M(z,y, z) un point de l'espace.

MeS<& QM =2

< Ja]
2
= |jan] -
SE-1)2+@y-12+(z-1)>*=4.
On en déduit que (z — 1)% + (y — 1) + (2 — 1)? = 4 est une équation de la sphére S.

2. Puisque (2 — 1)?
la sphére.

+ (2 —1)?

+ ((1+v2) - 1)2 = 4, le point A(2,2,1+ /2) appartient &

3. Soit M(zx,y,z) un point de l'espace.

MEP@(ﬁet /T]\?sont orthogonaux
@ﬂ-mzo

+(y—-2)+vV2(2-1-v2)=0

Sr+y+vV22-6-v2=0

< (z—2)

2)

Une équation cartésienne du plan P tangent a la sphére S au point A est :
x+y+\/§z—6—\/§:O.

Corrigé de I’exercice 4. [Enoncé]
Puisque la matrice A est symétrique réelle, elle est diagonalisable dans M, (R). En parti-
culier, toutes ses valeurs propres sont réelles. Puisque —i n’est pas valeur propre de A, la

matrice A + i1, est inversible, i.e. A+ iI, € GL,(C).

Corrigé de l’exercice 5. [Enoncé]

Zn)etv=_(1,...
%, ie

1. Soit (z1,...,2,) € R™. Considérons les deux vecteurs v = (z1,..., , 1)

de R™. D’aprés I'inégalité de Cauchy-Schwarz, on a (u | v)? = ||ul|?||v

(&) (&)

S (Ri)n tel que ka =1.

2. Soit (z1,...,%,)

k=1
1 1
Considérons les deux vecteurs u = (\/21,...,v/Tp) et v = —, ..., de R™.
(Vi) et o= (= )
D’apres I'inégalité de Cauchy—Schwarz, on a (u|v)? = ||ul]?||v]]? ie
s ) < (S (54
k=1 Tk k=1

n

1
ie. Z — >n? On en déduit donc que :
— Tk

1 Y 1>2
k=1

Y(z1,...,2n) €

(R3)"

T
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Corrigé de ’exercice 6.
Apreés calculs, on trouve :

(i) Ay =PD,Pl ou P = P! D, =

(ii) Ay = PoDyPf ou Pf = Pyt Dy

(iii) As = PsDsP] ou Pf = Py, D3

(iv) Ay = PyD,P] ot P} = P, D,

Corrigé de ’exercice 7.

1. On trouve immédiatement que :

Soit x € E. Par définition, on a :

{0p}t ={z e R" | (2| 0g) =0} =R".

Ya € E, (x|a)=0.

1 (3 1
0 5)‘3“31 m<1 3)
1 —4
-1 0 0 i
0 -1 0)etP=|F% -2
0 0 8 0 2=
000 L1
02 0fetePs=—1[0 o0
00 2 2\-1 1
1 2
~3 0 0 5
0 3 0)etpP=|2 &
1
0 0 3 ..

WM W= Wl

[ %
S0 [ o o
SEMEL 2

En particulier pour a = z, on trouve que (z | 2) = 0, i.e. ||z]|> =0, ie. z = 0g. On en

déduit que E+ C {0g}.

Réciproquement, le vecteur nul Og est orthogonal & tout vecteur de F, il appartient donc
bien & E+. On en déduit donc que E+ = {0g}.

2. a. Par définition, A C R”. De plus, le vecteur nul Oz est orthogonal & tout vecteur de

A, il appartient donc bien & A™’.
Soient A € R et (z,y) € (AL)Q.

On en déduit que Az +y € AL,

Vae A, (AM+y|a)=XNz|a)+(y|a)=0.

L’ensemble AL est donc bien un sous-espace vectoriel de R™.

. 1 .
b. Soit x € A. Montrons que x € (AL) , c’est-a-dire que x est orthogonal & tout vecteur

de AL. Or par définition, tout vecteur de AL est orthogonal a tout vecteur de A, donc
en particulier au vecteur x.

On en déduit que A C (AL)L.

. Supposons que A C B et montrons que B+ C AL.

Soit & € Bt. Montrons que x € AL, Soit y € A. Puisque A C B, y € B et ainsi
x et y sont orthogonaux. Puisque le vecteur = est orthogonal & tout vecteur de A, il
appartient & AL,

On en déduit que A C B = B+ C A+,

. Puisque A C Vect(A), Vect(A)~ C A+. ’aprés la question précédente. Montrons

I’inclusion réciproque.
Soit # € A+, Soit y € Vect(A). Il existe alors (Mg, ...
tel que y = A\ag + -+ + A\pan.

<I|y>zz>\k<$|ak>:0.
=1

JAn) € R™ et (ag,...,a,) € A™

Le vecteur = est orthogonal & tout vecteur de Vect(A), il appartient donc a Vect(A)=.
Vérifier 'égalité A+ = Vect(A)*.

Corrigé de I’exercice 8. [Enoncé]

On propose ici deux méthodes : la premiére est la méthode classique, la seconde consiste a
déterminer le projeté orthogonal sur la droite orthogonale au plan F'.

e Premiére méthode (via une base orthonormée de F).

Déterminons une base orthonormée de F'.

Les vecteurs e; = (2,1,0) et e3 = (—1,0,1) appartiennent au plan F' (leurs coordon-
nées vérifient ’équation définissant F'). Puisqu’ils ne sont pas colinéaires, il forment
une famille libre donc une base de F' par un argument de cardinalité.

Soit (a,b) € R%.
(aey +bea | e1) =0 < aller]|® +bley | e2) =04 5a —2b=0

Le vecteur u = 2e; + 5es = (—1,2,5) est donc orthogonal & e; (et appartient a F).
Posons : 1 ! 1 1
fl = —€e1 = 7(2, 1,0) et f2 = —Uu= 7(—1,2,5).
lleal] V5 llull = /30
Par construction f; et fy sont orthogonaux ; ils forment donc une base orthonormée
de F puisque : F' = Vect(ey, ea) = Vect(e1, 2e; + beg) = Vect(eq, u) = Vect(fy, f2).

On a alors 'expression du projeté de tout vecteur orthogonal sur F :

Vpr(u) = (u | f1)fi + (u| f2) fo.
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Apres calculs, on trouve :

pe((1,0,0)) = 2(5,2,

£(5.2,-1), pr((0,1,0)) = £(2.2,2) et pr((0,1,0)) = £(~1,25).

La matrice de la projection orthogonale sur F' est donc :

1 5 2 -1
5 2 2 2
-1 2 5

e Seconde méthode (via une base orthonormée de F).
Le vecteur b = (1,—2,1) est normal au plan F. Il dirige donc une droite qu’on notera

1 1
A. Notons a = —b=—

1l V6
Soit u de R3. Notons pa(u) le projeté orthogonal sur A. Montrons que u — pa(u) est
le projeté orthogonal sur F' :

(1,—2,1). Le vecteur a forme une base orthonormée de A.

e le vecteur u — pa (u) appartient a F' puisqu’il est orthogonal a tout vecteur de A ;

e le vecteur pa(u) = u — (u— pa(u)) appartient & A, il est donc orthogonal a tout
vecteur de F'.

On en déduit que le projeté orthogonal de usur F' vérifie :

pr(u) =u—pa(u) =u— (u| a)a.
la derniére égalité étant obtenue puisque (a) est une base orthonormée de A.
Calculons :

pF<(1,070)) =(1,0,0) — %(17 -2,1) = é(5727 —1);

pr((0,1,0)) = (0,1,0) + %(1, —9.1) = é(2,2,2);

pi((0,1,0)) = (0,0,1) — %(1,_2, 1) = é(_1,2,5).

La matrice de la projection orthogonale sur F' est donc :
5 2 -1
1
-2 2 2
6\-1 2 5

Corrigé de I’exercice 9. [Enoncé]

Corrigé de I’exercice 10. [Enoncé]

1. Soit z € R™
Pythagore :

lz]I* = lIp(2) + (z = p(@)) I = lp(@)|* + |2 = p(=)[* > llp(=)]1*.

Par positivité de la norme, on obtient le résultat : pour tout x € R3, ||z|| > ||p(z)]|.

Puisque p(x) et x — p(z) sont orthogonaux, on utilise le théoréme de

2. Soit f un endomorphisme de R™ vérifiant fo f = f et
vz e R, [If ()] < =]

a. Soit y € Im f. Il existe € R™ tel que y = f(z). Ainsi f(y) = fo f(z) = f(z) =y.
On obtient le résultat attendu : pour tout y € Im f, f (y) = y.

b. Soit p la projection orthogonale sur Ker f et soit y € Im f.
Puisque p(y) et y — p(y) sont orthogonaux, on trouve, par le méme argument qu’a la

question précédente,

I I2.

lyll* = llpw)II* + lly — p(y)

Par hypothése sur f, on obtient alors :

lyll® = lpw)I? + ILf (v — @) 117 = eI + 11£ () — FR@)II® = lp@)II” + [[y]1*.

On en déduit que ||p(y)||* =0, i.e. p(y) = 0.
Le projeté orthogonal sur Ker f de tout vecteur de Im f est donc bien le vecteur nul.
c. Soit # € R®. Montrons que f(z) est le projeté orthogonal de x sur Im f :

o f(x)elmf ;

e vérifions que z — f(x) est orthogonal a tout vecteur de Im f. Puisque f(z— f(z)) =
f(x) — f2(z) = 0, x — f(x) appartient & Ker f. Or d’aprés la question précédente,
tout vecteur de Ker f est orthogonal & tout vecteur de Im f. Donc z — f(x) est
orthogonal & tout vecteur de Im f.

On a donc bien prouvé que f(x) est le projeté orthogonal de x sur Im f pour tout
vecteur x € R™. L’endomorphisme f est donc bien la projection orthogonale sur Im f.

Corrigé de I’exercice 11. |[Enoncé]
T

1. Soit ¢ = (21, x2,x3) € R3. Notons X = | z5 | la matrice des coordonnées de z dans la
T3

base canonique de R3. Les coordonnées de s(x) dans cette base sont données par :

6561 — 3(E2 — 2.’E3
—31‘1 — 2!,62 — 6(E3
—2x1 — 622 + 373

AX =1
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Ainsi :
Is(2)]|* = (AX)" (AX)
1

=5 ((6z1 — 3z — 223)% + (—3x1 — 222 — 623)* + (—221 — 622 + 373)?)
=2t a3t
= [l

On en déduit que s est une isométrie.

2. On cherche I'ensemble vecteurs x = (x1,z2,73) de R? tels que s(z) = z. Or :
6$1 — 3$2 — 21‘3 = 72131

—3{,C1 - 2(E2 - 6.’E3 = 71’2
—2x1 — 69 + 33 = Tx3

s(z) =z &

—I] — 31’2 — 2%3 =0
< =321 — 929 — 623 =0
—21‘1 — 63?2 — 4(1’53 =0

& 1 = —3x9 — 223.

On en déduit que I’ensemble des points fixes de s est le plan :

-3 -2
F =Ker(s — Id) = Vect 11,10
0 1
3. Un rapide calcul montre que A2 = I3, i.e. sos = Id. On en déduit que s est un

automorphisme de R? et sa propre réciproque, i.e. s~ = s.

4. Raisonnons par analyse-synthése.
1
Analyse. Supposons que 'application p = 3 (s + Id) est une projection orthogonale. On

sait alors que p est la projection orthogonale sur Imp = Ker(p — Id). Or :

p—1Id= (5+Id)—Id:%(s—Id).

N =

On en déduit que p est la projection orthogonale sur Ker(s —Id) = F.

Synthése. Montrons que p est la projection orthogonale sur F. Soit v € R3.

e p(u) € F puisque F = Imp.

e Montrons que u — p(u) est orthogonal a tout vecteur de F. Soit v un vecteur de
1
5 (s —Id) (w). Notons W la

matrice des coordonnées de w dans la base canonique et U celle de u.

(=) [ o) = (5 (5= 10 (W) | 5 (5= 10) ()

F = Imp. Il existe alors w € R3 tel que v = p(w) =

((s =1d)(w) | (s = 1d)(w))

(A+ I)U)T (A - T)W)

e e el R e

UT(A+ I3)T(A - )W

UT(A+L)(A—I;3)W

|
Q
N

(A% — I)W
=0.
Le vecteur u — p(u) est orthogonal a tout vecteur de F'.

On en déduit que p(u) est le projeté orthogonal de u sur F. Ainsi p est la projection
orthogonale sur F' = Ker(s — Id).

Corrigé de I’exercice 12. [Enoncg]
Corrigé de l’exercice 13. [Enoncé]
Corrigé de I’exercice 14. [Enoncé]
Corrigé de I’exercice 15. [Enoncé]

1. Premiére méthode : géométrique euclidienne.
a. Pour tout (z,y) € R? on a:
fla,y) = Qo t+y =17+ (@ =39 + (y = 1)* = [lugy — vl
ol Uy, = (22 +y,z — 3y,y) et v=(1,0,1).
b. F = {uyy €R? (z,y) eR?*} = {2z +y,x—3y,y) € R®, (z,y) € R*} = Vect(a,b)
otta=(21,0) et b=(1,-31).
c. Remarquons que :

(o, F)? = inf [lu—v]]* = f(@,).

inf

inf Up oy — V|7 =
iz = ol = inf

(z,y)€
D’aprés le cours, on sait que cette borne inférieure est atteinte lorsque u est le projeté
orthogonal de v sur F, qu’on notera p(v). On en déduit que la fonction f admet un
minimum, égal a d(v, F)?.
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Un rapide calcul montre que la famille (¢, d), ot ¢ = (2,1,0)etd = (7,—14,5),

1 1
V5 3v/30
forme une base orthonormée de F'.
On a alors :

p(v)=(v]|c)e+ (v]|dyd= é(lO,—Q,?).

2
On en déduit que le minimum de f sur R? est : nﬂ"gnf = [v—p)|]? = 3
2. Seconde méthode : étude des points critiques.
a. La fonction f est polynomiale en ses deux variables donc de classe C' sur R2.

b. Soit (z,y) € R2.

= (z,y) = 42r4+y—1)=0+2(z—3y) =0
gfllg(xvy): <:>{2(2$+y_1)_6($—3y)—|—2(y_1):0
10z — 2y =4
—2x 422y =4
P
AT
S

4 2
On en déduit que f admet pour unique pour critique le point (g, yo) = (9, 9).

2
c¢. Remarquons que f(xo,y0) = 3 Pour tout (h,k) € R?, on a :

2 2 9
f(930+hv1/0+k)f(xoyyo)<2h+k+$> +<h3k§) +<k;) _2

= 5h% 4+ 11k% — 2hk
= (h—k)?>+4h*> +10k* > 0

2
On en déduit que f admet un minimum, atteint en (xo,yo), égal & f(xo,y0) = 3



