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Exercice 1. Identités de polarisation ♥ [Corrigé] FFFFF

Montrer que, pour tout (x, y) ∈ Rn × Rn, on a :

〈x | y〉 =
1

2

(
‖x+ y‖2 − ‖x‖2 − ‖y‖2

)
=

1

2

(
‖x‖2 + ‖y‖2 − ‖x− y‖2

)
=

1

4

(
‖x+ y‖2 − ‖x− y‖2

)
.

Exercice 2. Identité du parallélogramme [Corrigé] FFFFF

Montrer que, pour tout (x, y) ∈ Rn × Rn, on a ‖x+ y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
.

Exercice 3. ♥ [Corrigé] FFFFF

1. Déterminer une équation de la sphère S de l’espace de rayon 2 et de centre Ω(1, 1, 1).

2. Vérifier que le point A(2, 2, 1 +
√

2) appartient à la sphère.

3. Déterminer une équation cartésienne du plan P tangent à la sphère S au point A.

Exercice 4. [Corrigé] FFFFF

Montrer que, pour toute matrice symétrique A ∈ Sn(R), la matrice A+ iIn ∈ GLn(C).
On pourra considérer le spectre de A.

Exercice 5. ♥ [Corrigé] FFFF

Montrer les propriétés suivantes :

1. ∀(x1, . . . , xn) ∈ Rn,

(
n∑

k=1

xk

)2

6 n

(
n∑

k=1

x2
k

)
.

2. ∀(x1, . . . , xn) ∈
(
R∗+
)n
,

n∑
k=1

xk = 1⇒
n∑

k=1

1

xk
> n2.

Exercice 6. ♥ [Corrigé] FFFF

Pour chacune des matrices A ci-dessous, déterminer une matrice carrée P telle que PTAP
soit une matrice diagonale.

A1 =

(
4 3
3 −4

)
A2 =

3 2 4
2 0 2
4 2 3

 A3

1 0 1
0 2 0
1 0 1

 A4 =

 2 2 −1
2 −1 2
−1 2 2



Exercice 7. Orthogonal d’une partie ♥ [Corrigé] FFFF

Pour toute partie A de E = Rn, on note A⊥ l’ensemble des vecteurs de Rn orthogonaux à
tout vecteur de A :

A⊥ = {x ∈ Rn | ∀a ∈ A, 〈x | a〉 = 0}.

1. Déterminer {0E}⊥ et E⊥.

2. Soient A et B des parties de Rn.

a. Montrer que A⊥ est un sous-espace vectoriel de Rn.

b. Montrer que A ⊂
(
A⊥
)⊥.

c. Montrer l’implication : A ⊂ B ⇒ B⊥ ⊂ A⊥.
d. Vérifier l’égalité A⊥ = Vect(A)⊥.

Exercice 8. Matrice d’une projection orthogonale ♥ [Corrigé] FFFF

Soit F le plan de R3 d’équation x− 2y + z = 0.
Déterminer la matrice de la projection orthogonale sur F dans la base canonique.

Exercice 9. Distance à un sous-espace vectoriel ♥ [Corrigé] FFFF

Soit F le sous-espace vectoriel de R3 engendré par les vecteurs e1 = (1, 2, 2) et e2 = (2, 1,−2).

1. Montrer que la famille (e1, e2) est orthogonale.

2. Déterminer la matrice de la projection orthogonale p sur F dans la base canonique de R3.

3. Montrer que la famille B définie ci-dessous est une base orthonormée de R3 :

B =

((
1

3
,

2

3
,

2

3

)
,

(
2

3
,

1

3
,−2

3

)
,

(
−2

3
,

2

3
,−1

3

))
4. Déterminer la matrice de p dans cette base.

5. Calculer la distance du point A de coordonnées (1, 1, 1) au plan F .

Exercice 10. ♥ [Corrigé] FFF

1. Soit F 6= {0} un sous-espace vectoriel de Rn et soit p la projection orthogonale sur F .
Montrer que pour tout x ∈ Rn, ‖p (x)‖ 6 ‖x‖.

2. Soit f un endomorphisme de Rn vérifiant f ◦ f = f et : ∀x ∈ Rn, ‖f (x)‖ 6 ‖x‖.

a. Montrer que pour tout y ∈ Im f, f (y) = y.
b. Montrer que le projeté orthogonal sur Ker f de tout vecteur de Im f est le vecteur nul.
c. En déduire que f est la projection orthogonale sur Im f .
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Exercice 11. Étude d’une symétrie de R3 [Corrigé] FFFF

On considère l’endomorphisme s de R3 dont la matrice dans la base canonique est :

A =
1

7

 6 −3 −2
−3 −2 −6
−2 −6 3


1. Montrer que s conserve les distances (on dit que s est une isométrie), i.e. :

∀x ∈ R3, ‖s (x)‖ = ‖x‖ .

2. Déterminer l’ensemble F des points fixes de s.

3. Déterminer l’application s ◦ s. Que peut-on en déduire ?

4. Montrer que l’application p =
1

2
(s+ Id) est une projection orthogonale sur un sous-espace

vectoriel de R3 à déterminer (en fonction de s).

Exercice 12. [Corrigé] FFFF

Soit A ∈Mn(R) telle que N = A+AT soit nilpotente, i.e. il existe p ∈ N tel que Np = 0n.
En identifiant une matrice symétrique, montrer que A ∈ An(R), i.e. AT = −A.

Exercice 13. [Corrigé] FFF

Soient f un endomorphisme de Rn et A sa matrice dans la base canonique. On suppose que
A vérifie A+AT = 2In.

1. Soit X ∈Mn,1(R).
Déterminer à quel espace appartient XTAX puis en déduire que XTAX = XTATX.

2. Déterminer Ker f .

3. En déduire que f admet au plus une valeur propre.

Exercice 14. [Corrigé] FFF

1. Soit A ∈ Mn(R). Montrer que S = ATA est diagonalisable et que toutes ses valeurs
propres sont positives ou nulles.

2. Soit S une matrice symétrique de Mn(R) dont toutes les valeurs propres sont positives
ou nulles. On note S ∈ S+

n (R). Montrer qu’il existe une matrice A ∈ Mn(R) telle que
S = ATA.

3. Application : déterminer une matrice A ∈Mn(R) telle que ATA =

(
2 1
1 2

)
.

Exercice 15. [Corrigé] FFF

On considère la fonction suivante :

f R2 → R
(x, y) 7→ (2x+ y − 1)2 + (x− 3y)2 + (y − 1)2

Le but de cet exercice est de montrer que la fonction f admet un minimum sur R2.

1. Première méthode : géométrique euclidienne.

a. Montrer que, pour tout (x, y) ∈ R2, il existe un vecteur ux,y ∈ R3 dépendant de (x, y)
et un vecteur v indépendant de (x, y) tel que f(x, y) = ‖ux,y − v‖2.

b. Identifier l’ensemble F =
{
ux,y ∈ R3, (x, y) ∈ R2

}
.

c. En déduire que f admet un minimum en un point de R2 qu’on déterminera.

2. Seconde méthode : étude des points critiques.

a. Justifier que f est de classe C1.

b. Montrer que f admet un point critique qu’on déterminera.

c. En déduire que f admet un minimum.
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Corrigé de l’exercice 1. [Énoncé]
Soit (x, y) ∈ Rn × Rn. Puisque ‖x+ y‖2 = ‖x‖2 + 2〈x | y〉+ ‖y‖2, on trouve :

〈x | y〉 =
1

2

(
‖x+ y‖2 − ‖x‖2 − ‖y‖2

)
. (1)

De la même manière, puisque ‖x− y‖2 = ‖x‖2 − 2〈x | y〉+ ‖y‖2, on a :

〈x | y〉 =
1

2

(
‖x‖2 + ‖y‖2 − ‖x− y‖2

)
. (2)

En additionnant les égalités (1) et (2), on trouve :

2〈x | y〉 =
1

2

(
‖x+ y‖2 − ‖x− y‖2

)
.

On en déduit que :

〈x | y〉 =
1

4

(
‖x+ y‖2 − ‖x− y‖2

)
.

Corrigé de l’exercice 2. [Énoncé]
Pour tout (x, y) ∈ Rn × Rn, on a

‖x+ y‖2 + ‖x− y‖2 =
(
‖x‖2 + 2〈x | y〉+ ‖y‖2

)
+
(
‖x‖2 − 2〈x | y〉+ ‖y‖2

)
= 2

(
‖x‖2 + ‖y‖2

)
.

Corrigé de l’exercice 3. [Énoncé]

1. Soit M(x, y, z) un point de l’espace.

M ∈ S ⇔ ΩM = 2

⇔
∥∥∥−−→ΩM

∥∥∥ = 2

⇔
∥∥∥−−→ΩM

∥∥∥2

= 4

⇔ (x− 1)2 + (y − 1)2 + (z − 1)2 = 4.

On en déduit que (x− 1)2 + (y − 1)2 + (z − 1)2 = 4 est une équation de la sphère S.

2. Puisque (2 − 1)2 + (2 − 1)2 +
(
(1 +

√
2)− 1

)2
= 4, le point A(2, 2, 1 +

√
2) appartient à

la sphère.

3. Soit M(x, y, z) un point de l’espace.

M ∈ P ⇔
−→
ΩA et

−−→
AM sont orthogonaux

⇔
−→
ΩA ·

−−→
AM = 0

⇔ (x− 2) + (y − 2) +
√

2(z − 1−
√

2) = 0

⇔ x+ y +
√

2z − 6−
√

2 = 0

Une équation cartésienne du plan P tangent à la sphère S au point A est :

x+ y +
√

2z − 6−
√

2 = 0.

Corrigé de l’exercice 4. [Énoncé]
Puisque la matrice A est symétrique réelle, elle est diagonalisable dans Mn(R). En parti-
culier, toutes ses valeurs propres sont réelles. Puisque −i n’est pas valeur propre de A, la
matrice A+ iIn est inversible, i.e. A+ iIn ∈ GLn(C).

Corrigé de l’exercice 5. [Énoncé]

1. Soit (x1, . . . , xn) ∈ Rn. Considérons les deux vecteurs u = (x1, . . . , xn) et v = (1, . . . , 1)
de Rn. D’après l’inégalité de Cauchy-Schwarz, on a 〈u | v〉2 = ‖u‖2‖v‖2, i.e. :

(
n∑

k=1

xk

)2

6 n

(
n∑

k=1

x2
k

)
.

2. Soit (x1, . . . , xn) ∈
(
R∗+
)n tel que

n∑
k=1

xk = 1.

Considérons les deux vecteurs u = (
√
x1, . . . ,

√
xn) et v =

(
1
√
x1
, . . . ,

1
√
xn

)
de Rn.

D’après l’inégalité de Cauchy-Schwarz, on a 〈u | v〉2 = ‖u‖2‖v‖2, i.e. :(
n∑

k=1

√
xk

1
√
xk

)2

6

(
n∑

k=1

√
xk

2

)(
n∑

k=1

1
√
xk

2

)
,

i.e.
n∑

k=1

1

xk
> n2. On en déduit donc que :

∀(x1, . . . , xn) ∈
(
R∗+
)n
,

n∑
k=1

xk = 1⇒
n∑

k=1

1

xk
> n2.
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Corrigé de l’exercice 6. [Énoncé]
Après calculs, on trouve :

(i) A1 = P1D1P
T
1 où PT

1 = P−1
1 , D1 =

(
5 0
0 −5

)
et P1 =

1√
10

(
3 1
1 −3

)
;

(ii) A2 = P2D2P
T
2 où PT

2 = P−1
2 , D2 =

−1 0 0
0 −1 0
0 0 8

 et P2 =


1√
5

−4
3
√

5
2
3

−2√
5

−2
3
√

5
1
3

0 5
3
√

5
2
3

 ;

(iii) A3 = P3D3P
T
3 où PT

3 = P−1
3 , D3 =

0 0 0
0 2 0
0 0 2

 et P3 =
1√
2

 1 1 0

0 0
√

2
−1 1 0

 ;

(iv) A4 = P4D4P
T
4 où PT

4 = P−1
4 , D4 =

−3 0 0
0 3 0
0 0 3

 et P4 =


1√
6

2√
5

−1√
30

−2√
6

1√
5

2√
30

1√
6

0 5√
30

.

Corrigé de l’exercice 7. [Énoncé]

1. On trouve immédiatement que :

{0E}⊥ = {x ∈ Rn | 〈x | 0E〉 = 0} = Rn.

Soit x ∈ E⊥. Par définition, on a :

∀a ∈ E, 〈x | a〉 = 0.

En particulier pour a = x, on trouve que 〈x | x〉 = 0, i.e. ‖x‖2 = 0, i.e. x = 0E . On en
déduit que E⊥ ⊂ {0E}.
Réciproquement, le vecteur nul 0E est orthogonal à tout vecteur de E, il appartient donc
bien à E⊥. On en déduit donc que E⊥ = {0E}.

2. a. Par définition, A⊥ ⊂ Rn. De plus, le vecteur nul 0E est orthogonal à tout vecteur de
A, il appartient donc bien à A⊥.
Soient λ ∈ R et (x, y) ∈

(
A⊥
)2.

∀a ∈ A, 〈λx+ y | a〉 = λ〈x | a〉+ 〈y | a〉 = 0.

On en déduit que λx+ y ∈ A⊥.
L’ensemble A⊥ est donc bien un sous-espace vectoriel de Rn.

b. Soit x ∈ A. Montrons que x ∈
(
A⊥
)⊥, c’est-à-dire que x est orthogonal à tout vecteur

de A⊥. Or par définition, tout vecteur de A⊥ est orthogonal à tout vecteur de A, donc
en particulier au vecteur x.
On en déduit que A ⊂

(
A⊥
)⊥.

c. Supposons que A ⊂ B et montrons que B⊥ ⊂ A⊥.
Soit x ∈ B⊥. Montrons que x ∈ A⊥. Soit y ∈ A. Puisque A ⊂ B, y ∈ B et ainsi
x et y sont orthogonaux. Puisque le vecteur x est orthogonal à tout vecteur de A, il
appartient à A⊥.
On en déduit que A ⊂ B ⇒ B⊥ ⊂ A⊥.

d. Puisque A ⊂ Vect(A), Vect(A)⊥ ⊂ A⊥. ’après la question précédente. Montrons
l’inclusion réciproque.
Soit x ∈ A⊥. Soit y ∈ Vect(A). Il existe alors (λ1, . . . , λn) ∈ Rn et (a1, . . . , an) ∈ An

tel que y = λ1a1 + · · ·+ λnan.

〈x | y〉 =

n∑
k=1

λk〈x | ak〉 = 0.

Le vecteur x est orthogonal à tout vecteur de Vect(A), il appartient donc à Vect(A)⊥.
Vérifier l’égalité A⊥ = Vect(A)⊥.

Corrigé de l’exercice 8. [Énoncé]
On propose ici deux méthodes : la première est la méthode classique, la seconde consiste à
déterminer le projeté orthogonal sur la droite orthogonale au plan F .

• Première méthode (via une base orthonormée de F).
Déterminons une base orthonormée de F .
Les vecteurs e1 = (2, 1, 0) et e2 = (−1, 0, 1) appartiennent au plan F (leurs coordon-
nées vérifient l’équation définissant F ). Puisqu’ils ne sont pas colinéaires, il forment
une famille libre donc une base de F par un argument de cardinalité.
Soit (a, b) ∈ R2.

〈ae1 + be2 | e1〉 = 0⇔ a‖e1‖2 + b〈e1 | e2〉 = 0⇔ 5a− 2b = 0

Le vecteur u = 2e1 + 5e2 = (−1, 2, 5) est donc orthogonal à e1 (et appartient à F ).
Posons :

f1 =
1

‖e1‖
e1 =

1√
5

(2, 1, 0) et f2 =
1

‖u‖
u =

1√
30

(−1, 2, 5).

Par construction f1 et f2 sont orthogonaux ; ils forment donc une base orthonormée
de F puisque : F = Vect(e1, e2) = Vect(e1, 2e1 + 5e2) = Vect(e1, u) = Vect(f1, f2).
On a alors l’expression du projeté de tout vecteur orthogonal sur F :

∀pF (u) = 〈u | f1〉f1 + 〈u | f2〉f2.

4
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Après calculs, on trouve :

pF ((1, 0, 0)) =
1

6
(5, 2,−1), pF ((0, 1, 0)) =

1

6
(2, 2, 2) et pF ((0, 1, 0)) =

1

6
(−1, 2, 5).

La matrice de la projection orthogonale sur F est donc :

1

6

 5 2 −1
2 2 2
−1 2 5


• Seconde méthode (via une base orthonormée de F⊥).

Le vecteur b = (1,−2, 1) est normal au plan F . Il dirige donc une droite qu’on notera

∆. Notons a =
1

‖b‖
b =

1√
6

(1,−2, 1). Le vecteur a forme une base orthonormée de ∆.

Soit u de R3. Notons p∆(u) le projeté orthogonal sur ∆. Montrons que u− p∆(u) est
le projeté orthogonal sur F :

• le vecteur u− p∆(u) appartient à F puisqu’il est orthogonal à tout vecteur de ∆ ;

• le vecteur p∆(u) = u− (u− p∆(u)) appartient à ∆, il est donc orthogonal à tout
vecteur de F .

On en déduit que le projeté orthogonal de usur F vérifie :

pF (u) = u− p∆(u) = u− 〈u | a〉a.

la dernière égalité étant obtenue puisque (a) est une base orthonormée de ∆.

Calculons :

pF ((1, 0, 0)) = (1, 0, 0)− 1

6
(1,−2, 1) =

1

6
(5, 2,−1);

pF ((0, 1, 0)) = (0, 1, 0) +
2

6
(1,−2, 1) =

1

6
(2, 2, 2);

pF ((0, 1, 0)) = (0, 0, 1)− 1

6
(1,−2, 1) =

1

6
(−1, 2, 5).

La matrice de la projection orthogonale sur F est donc :

1

6

 5 2 −1
2 2 2
−1 2 5



Corrigé de l’exercice 9. [Énoncé]
Corrigé de l’exercice 10. [Énoncé]

1. Soit x ∈ Rn. Puisque p(x) et x − p(x) sont orthogonaux, on utilise le théorème de
Pythagore :

‖x‖2 = ‖p(x) + (x− p(x)) ‖2 = ‖p(x)‖2 + ‖x− p(x)‖2 > ‖p(x)‖2.

Par positivité de la norme, on obtient le résultat : pour tout x ∈ R3, ‖x‖ > ‖p(x)‖.

2. Soit f un endomorphisme de Rn vérifiant f ◦ f = f et

∀x ∈ Rn, ‖f (x)‖ 6 ‖x‖ .

a. Soit y ∈ Im f . Il existe x ∈ Rn tel que y = f(x). Ainsi f(y) = f ◦ f(x) = f(x) = y.
On obtient le résultat attendu : pour tout y ∈ Im f, f (y) = y.

b. Soit p la projection orthogonale sur Ker f et soit y ∈ Im f .
Puisque p(y) et y − p(y) sont orthogonaux, on trouve, par le même argument qu’à la
question précédente,

‖y‖2 = ‖p(y)‖2 + ‖y − p(y)‖2.
Par hypothèse sur f , on obtient alors :

‖y‖2 > ‖p(y)‖2 + ‖f (y − p(y)) ‖2 = ‖p(y)‖2 + ‖f(y)− f(p(y))‖2 = ‖p(y)‖2 + ‖y‖2.

On en déduit que ‖p(y)‖2 = 0, i.e. p(y) = 0.
Le projeté orthogonal sur Ker f de tout vecteur de Im f est donc bien le vecteur nul.

c. Soit x ∈ R3. Montrons que f(x) est le projeté orthogonal de x sur Im f :
• f(x) ∈ Im f ;
• vérifions que x−f(x) est orthogonal à tout vecteur de Im f . Puisque f(x−f(x)) =
f(x)− f2(x) = 0, x− f(x) appartient à Ker f . Or d’après la question précédente,
tout vecteur de Ker f est orthogonal à tout vecteur de Im f . Donc x − f(x) est
orthogonal à tout vecteur de Im f .

On a donc bien prouvé que f(x) est le projeté orthogonal de x sur Im f pour tout
vecteur x ∈ Rn. L’endomorphisme f est donc bien la projection orthogonale sur Im f .

Corrigé de l’exercice 11. [Énoncé]

1. Soit x = (x1, x2, x3) ∈ R3. Notons X =

x1

x2

x3

 la matrice des coordonnées de x dans la

base canonique de R3. Les coordonnées de s(x) dans cette base sont données par :

AX =
1

7

 6x1 − 3x2 − 2x3

−3x1 − 2x2 − 6x3

−2x1 − 6x2 + 3x3


5
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Ainsi :

‖s(x)‖2 = (AX)T (AX)

=
1

49

(
(6x1 − 3x2 − 2x3)2 + (−3x1 − 2x2 − 6x3)2 + (−2x1 − 6x2 + 3x3)2

)
= x2

1 + x2
2 + x2

3

= ‖x‖2.

On en déduit que s est une isométrie.

2. On cherche l’ensemble vecteurs x = (x1, x2, x3) de R3 tels que s(x) = x. Or :

s(x) = x⇔


6x1 − 3x2 − 2x3 = 7x1

−3x1 − 2x2 − 6x3 = 7x2

−2x1 − 6x2 + 3x3 = 7x3

⇔


−x1 − 3x2 − 2x3 = 0

−3x1 − 9x2 − 6x3 = 0

−2x1 − 6x2 − 4x3 = 0

⇔ x1 = −3x2 − 2x3.

On en déduit que l’ensemble des points fixes de s est le plan :

F = Ker(s− Id) = Vect

−3
1
0

 ,

−2
0
1

 .

3. Un rapide calcul montre que A2 = I3, i.e. s ◦ s = Id. On en déduit que s est un
automorphisme de R3 et sa propre réciproque, i.e. s−1 = s.

4. Raisonnons par analyse-synthèse.

Analyse. Supposons que l’application p =
1

2
(s+ Id) est une projection orthogonale. On

sait alors que p est la projection orthogonale sur Im p = Ker(p− Id). Or :

p− Id =
1

2
(s+ Id)− Id =

1

2
(s− Id) .

On en déduit que p est la projection orthogonale sur Ker(s− Id) = F .

Synthèse. Montrons que p est la projection orthogonale sur F . Soit u ∈ R3.

• p(u) ∈ F puisque F = Im p.

• Montrons que u − p(u) est orthogonal à tout vecteur de F . Soit v un vecteur de

F = Im p. Il existe alors w ∈ R3 tel que v = p(w) =
1

2
(s− Id) (w). Notons W la

matrice des coordonnées de w dans la base canonique et U celle de u.

〈u− p(u) | v〉 =

〈
1

2
(s− Id) (u) | 1

2
(s− Id) (w)

〉
=

1

4
〈(s− Id)(u) | (s− Id)(w)〉

=
1

4
((A+ I3)U)

T
((A− I3)W )

=
1

4
UT (A+ I3)T (A− I3)W

=
1

4
UT (A+ I3)(A− I3)W

=
1

4
UT (A2 − I3)W

= 0.

Le vecteur u− p(u) est orthogonal à tout vecteur de F .

On en déduit que p(u) est le projeté orthogonal de u sur F . Ainsi p est la projection
orthogonale sur F = Ker(s− Id).

Corrigé de l’exercice 12. [Énoncé]
Corrigé de l’exercice 13. [Énoncé]
Corrigé de l’exercice 14. [Énoncé]
Corrigé de l’exercice 15. [Énoncé]

1. Première méthode : géométrique euclidienne.

a. Pour tout (x, y) ∈ R2, on a :

f(x, y) = (2x+ y − 1)2 + (x− 3y)2 + (y − 1)2 = ‖ux,y − v‖2

où ux,y = (2x+ y, x− 3y, y) et v = (1, 0, 1).
b. F =

{
ux,y ∈ R3, (x, y) ∈ R2

}
=
{

(2x+ y, x− 3y, y) ∈ R3, (x, y) ∈ R2
}

= Vect(a, b)
où a = (2, 1, 0) et b = (1,−3, 1).

c. Remarquons que :

d(v, F )2 = inf
u∈F
‖u− v‖2 = inf

(x,y)∈R2
‖ux,y − v‖2 = inf

(x,y)∈R2
f(x, y).

D’après le cours, on sait que cette borne inférieure est atteinte lorsque u est le projeté
orthogonal de v sur F , qu’on notera p(v). On en déduit que la fonction f admet un
minimum, égal à d(v, F )2.
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Un rapide calcul montre que la famille (c, d), où c =
1√
5

(2, 1, 0) et d =
1

3
√

30
(7,−14, 5),

forme une base orthonormée de F .
On a alors :

p(v) = 〈v | c〉c+ 〈v | d〉d =
1

9
(10,−2, 2).

On en déduit que le minimum de f sur R2 est : min
R2
f = ‖v − p(v)‖2 =

2

3
.

2. Seconde méthode : étude des points critiques.

a. La fonction f est polynômiale en ses deux variables donc de classe C1 sur R2.

b. Soit (x, y) ∈ R2.
∂f

∂x
(x, y) = 0

∂f

∂y
(x, y) = 0

⇔

{
4(2x+ y − 1) = 0 + 2(x− 3y) = 0

2(2x+ y − 1)− 6(x− 3y) + 2(y − 1) = 0

⇔

{
10x− 2y = 4

−2x+ 22y = 4

⇔


x =

4

9

x =
2

9

.

On en déduit que f admet pour unique pour critique le point (x0, y0) =

(
4

9
,

2

9

)
.

c. Remarquons que f(x0, y0) =
2

3
. Pour tout (h, k) ∈ R2, on a :

f(x0 + h, y0 + k)− f(x0, y0) =

(
2h+ k +

1

9

)2

+

(
h− 3k − 2

9

)2

+

(
k − 7

9

)2

− 2

3

= 5h2 + 11k2 − 2hk

= (h− k)2 + 4h2 + 10k2 > 0

On en déduit que f admet un minimum, atteint en (x0, y0), égal à f(x0, y0) =
2

3
.
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