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[Corrigé] v

Exercice 1. Identités de polarisation ©
Moutrer que, pour tout (z,y) € R™® x R™, on a :

(Il +l* = llll* = llyll*)

(Il + 1y l1* = llz = ylI*)

(z]y)

(Il +yll* = llz = 9l?) -

=N =N

[Corrigé| vy
Montrer que, pour tout (z,y) € R" X R™, on a ||z + y||® + |z — y[|* = 2 ([|=[* + [|y[|?).

Exercice 2. Identité du parallélogramme

[Corrigé| v v

Exercice 3. ©
1. Déterminer une équation de la sphére S de 'espace de rayon 2 et de centre Q(1,1,1).
2. Veérifier que le point A(2,2,1 -+ 1/2) appartient & la sphére.

3. Déterminer une équation cartésienne du plan P tangent a la sphére S au point A.

[Corrigé| Hvvr
Montrer que, pour toute matrice symétrique A € S, (R), la matrice A +il,, € GL,(C).

Exercice 4.
On pourra considérer le spectre de A.

[Corrigé| Je¥

Exercice 5. ©
Montrer les propriétés suivantes :

n 2
1. Y(x1,...,2,) € R, (Zwk> <n<2x2>.
k=1 k=1

3

n
1

2
— =n”.
Ty

2. Y(x1,...,2,) € (RY)", ka =1=
k=1 k=1

[Corrigé| ¥

Pour chacune des matrices A ci-dessous, déterminer une matrice carrée P telle que PT AP
soit une matrice diagonale.

43
4w )

Exercice 6. QO

[Corrigé] ¥
Pour toute partie A de £ = R”, on note A+ 'ensemble des vecteurs de R™ orthogonaux a
tout vecteur de A :

Exercice 7. Orthogonal d’une partie ¢

At ={z €R" |Vac A, (z]a)=0}.
1. Déterminer {Og}* et E+.
2. Soient A et B des parties de R"”.

a. Montrer que AL est un sous-espace vectoriel de R”.

b. Montrer que A C (AL)L.
c. Montrer I'implication : A ¢ B = B+ C AL,
d. Vérifier I'égalitée AL = Vect(A)= .

[Corrigé| k=

Exercice 8. Matrice d’une projection orthogonale ¢
Soit F le plan de R3 d’équation = — 2y 4+ z = 0.
Déterminer la matrice de la projection orthogonale sur F' dans la base canonique.

Exercice 9. Distance & un sous-espace vectoriel O

[Corrigé| Jed

Soit F le sous-espace vectoriel de R? engendré par les vecteurs e; = (1,2,2) et ex = (2,1, —2).
1. Montrer que la famille (eq,e2) est orthogonale.
2. Déterminer la matrice de la projection orthogonale p sur F' dans la base canonique de R3.

3. Montrer que la famille B définie ci-dessous est une base orthonormée de R :

g ((L22) (21 2\ .22 1
- \\3’3’3/’\3’3> 3)’\ 33 3

4. Déterminer la matrice de p dans cette base.
5. Calculer la distance du point A de coordonnées (1,1,1) au plan F.
Exercice 10. © [Corrigé] Yk

1. Soit F' # {0} un sous-espace vectoriel de R™ et soit p la projection orthogonale sur F'.
Montrer que pour tout z € R™, |p (z)| < ||z

2. Soit f un endomorphisme de R™ vérifiant fo f = f et : Vo € R, | f (z)| < ||z

a. Montrer que pour tout y € Im f, f(y) =y.
b. Montrer que le projeté orthogonal sur Ker f de tout vecteur de Im f est le vecteur nul.

c. En déduire que f est la projection orthogonale sur Im f.
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Exercice 11. Etude d’une symétrie de R? [Corrigé| %% ¢ Exercice 15. [Corrigé] Y%k
On considére I'endomorphisme s de R? dont la matrice dans la base canonique est : On considére la fonction suivante :
1 (6 —3 2 f R SR
A=-|-3 -2 -6 (r,y) = Qrt+y-12+(@@-3y?’+(y-1)°
-2 -6 3

Le but de cet exercice est de montrer que la fonction f admet un minimum sur R2.
1. Montrer que s conserve les distances (on dit que s est une isométrie), i.e. :

1. Premiére méthode : géométrique euclidienne.

Vo € R?, ||s ()l = |12l
a. Montrer que, pour tout (z,y) € R?, il existe un vecteur u, , € R* dépendant de (z,y)
2. Déterminer I'ensemble F' des points fixes de s. et un vecteur v indépendant de (z,y) tel que f(z,y) = ||lug,, — v|*

3. Déterminer 'application s o s. Que peut-on en déduire ? b. Identifier I'ensemble F' = {Uacy eR?, (z,9) € RQ}-

1 c. En déduire que f admet un minimum en un point de R? qu’on déterminera.
4. Montrer que I'application p = 3 (s + Id) est une projection orthogonale sur un sous-espace
vectoriel de R? & déterminer (en fonction de s). 2. Seconde méthode : étude des points critiques.

a. Justifier que f est de classe C!.

Exercice 12. |Corrigé] Jedk'c o ,

Soit A € M, (R) telle que N = A+ AT soit nilpotente, i.e. il existe p € N tel que N? = 0,,. b. Montrer que f admet un point critique qu’on déterminera.
En identifiant une matrice symétrique, montrer que A € A,(R), i.e. AT = —A. c. En déduire que f admet un minimum.

Exercice 13. [Corrigé] Jek K

Soient f un endomorphisme de R™ et A sa matrice dans la base canonique. On suppose que
A vérifie A + AT = 21,,.

1. Soit X € Mnyl(R)
Déterminer & quel espace appartient X7 AX puis en déduire que XTAX = XTATX.
2. Déterminer Ker f.

3. En déduire que f admet au plus une valeur propre.

Exercice 14. [Corrigé| Y%k

1. Soit A € M, (R). Montrer que S = AT A est diagonalisable et que toutes ses valeurs
propres sont positives ou nulles.

2. Soit S une matrice symétrique de M, (R) dont toutes les valeurs propres sont positives
ou nulles. On note S € S;F(R). Montrer qu’il existe une matrice A € M, (R) telle que
S =ATA.

3. Application : déterminer une matrice A € M, (R) telle que AT A = <? ;)
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Corrigé de I’exercice 1. [Enoncé]
Soit (z,y) € R™ x R™. Puisque ||z +y[|* = [|z[|* + 2(z [ y) + [ly[|*, on trouve :

1
(@ ly) =5 (lz+l* = ll=l* = lly?)
De la méme maniére, puisque ||z — y||* = [|z[|* — 2(z [ y) + [|ly[*, on a
{@ly) =5 (||£EH2 +lyl* = [l = yl*) -
En additionnant les égalités (1) et (2), on trouve :
1 2 2
20z |y) = 5 (e +yl” = llz = y) -
On en déduit que :
1 2 2
(@ly) =7 (lz+yl* = llz = yl)
Corrigé de I’exercice 2. [Enoncé]

Pour tout (z,y) € R™ x R", on a

lz+ylI* + e = yl* = (l2l® + 26z [ y) + Iyll*) + (l21* = 262 | ) + [lyl?)
=2 (lll* + llyll*) -
Corrigé de I’exercice 3. [Enoncd]

1. Soit M(z,y, z) un point de l'espace.

MeS<& QM =2

< Ja]
2
= |jan] -
SE-1)2+@y-12+(z-1)>*=4.
On en déduit que (z — 1)% + (y — 1) + (2 — 1)? = 4 est une équation de la sphére S.

2. Puisque (2 — 1)?
la sphére.

+ (2 —1)?

+ ((1+v2) - 1)2 = 4, le point A(2,2,1+ /2) appartient &

3. Soit M(zx,y,z) un point de l'espace.

MEP@(ﬁet /T]\?sont orthogonaux
@ﬂ-mzo

+(y—-2)+vV2(2-1-v2)=0

Sr+y+vV22-6-v2=0

< (z—2)

2)

Une équation cartésienne du plan P tangent a la sphére S au point A est :
x+y+\/§z—6—\/§:O.

Corrigé de I’exercice 4. [Enoncé]
Puisque la matrice A est symétrique réelle, elle est diagonalisable dans M, (R). En parti-
culier, toutes ses valeurs propres sont réelles. Puisque —i n’est pas valeur propre de A, la

matrice A + i1, est inversible, i.e. A+ iI, € GL,(C).

Corrigé de l’exercice 5. [Enoncé]

Zn)etv=_(1,...
%, ie

1. Soit (z1,...,2,) € R™. Considérons les deux vecteurs v = (z1,..., , 1)

de R™. D’aprés I'inégalité de Cauchy-Schwarz, on a (u | v)? = ||ul|?||v

(&) (&)

S (Ri)n tel que ka =1.

2. Soit (z1,...,%,)

k=1
1 1
Considérons les deux vecteurs u = (\/21,...,v/Tp) et v = —, ..., de R™.
(Vi) et o= (= )
D’apres I'inégalité de Cauchy—Schwarz, on a (u|v)? = ||ul]?||v]]? ie
s ) < (S (54
k=1 Tk k=1

n

1
ie. Z — >n? On en déduit donc que :
— Tk

1 Y 1>2
k=1

Y(z1,...,2n) €

(R3)"

T
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Corrigé de ’exercice 6.
Apreés calculs, on trouve :

(i) Ay =PD,Pl ou P = P! D, =

(ii) Ay = PoDyPf ou Pf = Pyt Dy

(iii) As = PsDsP] ou Pf = Py, D3

(iv) Ay = PyD,P] ot P} = P, D,

Corrigé de ’exercice 7.

1. On trouve immédiatement que :

Soit x € E. Par définition, on a :

{0p}t ={z e R" | (2| 0g) =0} =R".

Ya € E, (x|a)=0.

1 (3 1
0 5)‘3“31 m<1 3)
1 —4
-1 0 0 i
0 -1 0)etP=|F% -2
0 0 8 0 2=
000 L1
02 0fetePs=—1[0 o0
00 2 2\-1 1
1 2
~3 0 0 5
0 3 0)etpP=|2 &
1
0 0 3 ..

WM W= Wl

[ %
S0 [ o o
SEMEL 2

En particulier pour a = z, on trouve que (z | 2) = 0, i.e. ||z]|> =0, ie. z = 0g. On en

déduit que E+ C {0g}.

Réciproquement, le vecteur nul Og est orthogonal & tout vecteur de F, il appartient donc
bien & E+. On en déduit donc que E+ = {0g}.

2. a. Par définition, A C R”. De plus, le vecteur nul Oz est orthogonal & tout vecteur de

A, il appartient donc bien & A™’.
Soient A € R et (z,y) € (AL)Q.

On en déduit que Az +y € AL,

Vae A, (AM+y|a)=XNz|a)+(y|a)=0.

L’ensemble AL est donc bien un sous-espace vectoriel de R™.

. 1 .
b. Soit x € A. Montrons que x € (AL) , c’est-a-dire que x est orthogonal & tout vecteur

de AL. Or par définition, tout vecteur de AL est orthogonal a tout vecteur de A, donc
en particulier au vecteur x.

On en déduit que A C (AL)L.

. Supposons que A C B et montrons que B+ C AL.

Soit & € Bt. Montrons que x € AL, Soit y € A. Puisque A C B, y € B et ainsi
x et y sont orthogonaux. Puisque le vecteur = est orthogonal & tout vecteur de A, il
appartient & AL,

On en déduit que A C B = B+ C A+,

. Puisque A C Vect(A), Vect(A)~ C A+. ’aprés la question précédente. Montrons

I’inclusion réciproque.
Soit # € A+, Soit y € Vect(A). Il existe alors (Mg, ...
tel que y = A\ag + -+ + A\pan.

<I|y>zz>\k<$|ak>:0.
=1

JAn) € R™ et (ag,...,a,) € A™

Le vecteur = est orthogonal & tout vecteur de Vect(A), il appartient donc a Vect(A)=.
Vérifier 'égalité A+ = Vect(A)*.

Corrigé de I’exercice 8. [Enoncé]

On propose ici deux méthodes : la premiére est la méthode classique, la seconde consiste a
déterminer le projeté orthogonal sur la droite orthogonale au plan F'.

e Premiére méthode (via une base orthonormée de F).

Déterminons une base orthonormée de F'.

Les vecteurs e; = (2,1,0) et e3 = (—1,0,1) appartiennent au plan F' (leurs coordon-
nées vérifient ’équation définissant F'). Puisqu’ils ne sont pas colinéaires, il forment
une famille libre donc une base de F' par un argument de cardinalité.

Soit (a,b) € R%.
(aey +bea | e1) =0 < aller]|® +bley | e2) =04 5a —2b=0

Le vecteur u = 2e; + 5es = (—1,2,5) est donc orthogonal & e; (et appartient a F).
Posons : 1 ! 1 1
fl = —€e1 = 7(2, 1,0) et f2 = —Uu= 7(—1,2,5).
lleal] V5 llull = /30
Par construction f; et fy sont orthogonaux ; ils forment donc une base orthonormée
de F puisque : F' = Vect(ey, ea) = Vect(e1, 2e; + beg) = Vect(eq, u) = Vect(fy, f2).

On a alors 'expression du projeté de tout vecteur orthogonal sur F :

Vpr(u) = (u | f1)fi + (u| f2) fo.
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Apres calculs, on trouve :

pr((1,0,0)) = £(5,2,-1), pr((0,1,0)) = £(2,2,2) et pr((0,1,0)) = §(~1,2,5).

6
La matrice de la projection orthogonale sur F' est donc :
5 2 -1
1
g 2 2 2
-1 2 5

e Seconde méthode (via une base orthonormée de F).
Le vecteur b = (1,—2,1) est normal au plan F. Il dirige donc une droite qu’on notera

1 1
A. Notons a = —b=—

1l V6
Soit u de R3. Notons pa(u) le projeté orthogonal sur A. Montrons que u — pa(u) est
le projeté orthogonal sur F' :

(1,—2,1). Le vecteur a forme une base orthonormée de A.

e le vecteur u — pa (u) appartient a F' puisqu’il est orthogonal a tout vecteur de A ;

e le vecteur pa(u) = u — (u— pa(u)) appartient & A, il est donc orthogonal a tout
vecteur de F'.

On en déduit que le projeté orthogonal de usur F' vérifie :
pr(u) =u—pa(u) =u— (u| a)a.

la derniére égalité étant obtenue puisque (a) est une base orthonormée de A.

Calculons :
1 1
pF((l,O,O)) = (1,0,0) — 6(1, -2, 1) = 6(5727 —1);
2 1
pF((O, 1,0)) = (0, 1,0) -+ 6(1, -2, 1) = 6(2,2,2);
pi((0,1,0)) = (0,0,1) — %(1,_2, 1) = é(_1,2,5).

La matrice de la projection orthogonale sur F' est donc :

5 2 -1
Ty o o
6\_1 2 5

Corrigé de I’exercice 9. [Enoncé]

1. Puisque (e | e2) = 0, la famille (e1,e2) est orthogonale.
1 1 1 1

2. Posons f; = ——e1; = =(1,2,2) et fo = ——ea = =(2,1,—2). Les vecteurs f1 et fo sont
el 3 ez]] 3

orthogonaux et normés. Puisqu’ils appartiennent & F' par construction, ils en forment une
base orthonormée. On sait alors que :

Yu € R3 p(u) = (u| fi)f1 + (u| fo) fo.

Apres calculs, on trouve :

p((l,0,0)) = é(574’ _2)7 p(<07 1’0)) = %(47572)a p((0,0,l)) = é<_27278>'

La matrice de la projection orthogonale p sur F dans la base canonique de R? est donc :

1 5 4 =2
A:§ 4 5 2
-2 2 8

22 1
3. On peut remarquer que B = (f1, fa, f3), ou f5 = (—3, 3 —3).

On vérifie sans probléme que f3 est normé et orthogonal a f1 et fo. La famille B est donc
une famille orthonormée de R?, donc libre (les vecteurs sont deux-a-deux orthogonaux et
non nuls). Par un argument de cardinalité, c’est une base orthonormée de R3.

4. On pourrait faire des calculs (en utilisant expression de la projection orthogonale dans la
base (f1, f2) de F) mais on propose ici une solution géométrique : f; et fo appartiennent
a F donc p(f1) = fi et p(f2) = f.
Puisque f3 est orthogonal a f; et fa, il est orthogonal a tout vecteur de F'. Ainsi p(f3) = 0.

La matrice de p dans la base B est :

1
D=10
0

S = O
oS O O

5. En identifiant le point A au vecteur u = (1,1,1), on trouve que la distance de A au plan
F est |Ju—p(u)|. Or:

1
p(u) = (ul| fi)fi + (ul| f2) fo = 5(77 11,8).
Ainsi, la distance du point A de coordonnées (1,1,1) au plan F est :

A, F) = u )] = g2 -2 = 5.
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Corrigé de I’exercice 10. [Enoncé| Ainsi :
1. Soit € R™. Puisque p(z) et & — p(x) sont orthogonaux, on utilise le théoréme de |s(z)]? = (AX)T(AX)
Pythagore : , , ,
= — ((6z7 — 3xe — 223)° + (—3x1 — 229 — 623)° + (—221 — 622 + 323)
lz]1* = llp(z) + (& = p(@)) [ = Ip@)1* + o = p(@)|* = [p)]*. B )

Corrigé de I’exercice 11. [Enoncé]

o . =2} + a3 + 23
Par positivité de la norme, on obtient le résultat : pour tout x € R3, ||z| > ||p(2)||.

= [l*.
Soit f un endomorphisme de R™ vérifiant fo f = f et
vz e R™, |If (@)]| < ||| On en déduit que s est une isométrie.

a. Soit y € Im f. Il existe z € R™ tel que y = f(z). Ainsi f(y) = fo f(z) = f(z) = . 2. On cherche I'ensemble vecteurs x = (x1, 72, 23) de R? tels que s(z) = x. Or :
On obtient le résultat attendu : pour tout y € Im f, f (y) = y.

b. Soit p la projection orthogonale sur Ker f et soit y € Im f. 621 — 372 — 223 = T11
Puisque p(y) et y — p(y) sont orthogonaux, on trouve, par le méme argument qu’a la s(z) =z & § =321 — 2wy — b3 = Ty
question précédente, —2x1 — 622 + 313 = Tx3

2 _ 2 -~ 2
[yll* = llp@)II" + lly — p(»)II” — 2y — 31y — 25 = 0
Par hypothése sur f, on obtient alors : < =321 — 929 — 623 =0
y11* = eI + 11f (v = p@) I = @) + [ (y) = Fe)I? = [lp@)]* + lyl*. —2x1 — 625 — 423 =0
On en déduit que ||p(y)||? =0, i.e. p(y) = 0. & x1 = —3wy — 2u3.

Le projeté orthogonal sur Ker f de tout vecteur de Im f est donc bien le vecteur nul. . .
. 3 L On en déduit que I’ensemble des points fixes de s est le plan :
c. Soit x € R®. Montrons que f(z) est le projeté orthogonal de = sur Im f :

o f(z) elmf; -3 —2
e vérifions que = — f(x) est orthogonal & tout vecteur de Im f. Puisque f(z— f(z)) = F =Ker(s —Id) = Vect 191,10
f(x) — f2(z) =0, 2 — f(x) appartient & Ker f. Or d’aprés la question précédente, 0 1
tout vecteur de Ker f est orthogonal & tout vecteur de Im f. Donc & — f(x) est
orthogonal & tout vecteur de Im f. 3. Un rapide calcul montre que A?> = I3, i.e. sos = Id. On en déduit que s est un
On a donc bien prouvé que f(x) est le projeté orthogonal de x sur Im f pour tout automorphisme de R3 et sa propre réciproque, i.e. s~ = s.

vecteur x € R™. L’endomorphisme f est donc bien la projection orthogonale sur Im f.
4. Raisonnons par analyse-synthése.

1
Analyse. Supposons que Iapplication p = 3 (s +1Id) est une projection orthogonale. On

T . N
. Soit = (w1, 72,23) € R3. Notons X = | 22 | la matrice des coordonnées de z dans la sait, alors que p est la projection orthogonale sur Imp = Ker(p — Id). Or :
T3 1
base canonique de R?. Les coordonnées de s(x) dans cette base sont données par : p—ld= B} (s+1d) —Id = B (s —1d).

1 61’1 — 31’2 — 2{E3
AX = - | =321 — 229 — 623
—2z1 — 629 + 373 Synthése. Montrons que p est la projection orthogonale sur F. Soit u € R3.

On en déduit que p est la projection orthogonale sur Ker(s —Id) = F.



Mathématiques Géomeétrie euclidienne BCPST 2 J-B. Say

e p(u) € F puisque F' =TImp. 2. Soit € Ker f ; notons X la matrice de ses coordonnées dans la base canonique. On a

e Montrons que u — p(u) est orthogonal a tout vecteur de F. Soit v un vecteur de alors AX = 0n,1. Remarquons alors que :

1
F = Imp. Il existe alors w € R? tel que v = p(w) = B (s —Id) (w). Notons W la 20z =2XTX = XT(2L,)X = XT(A+ AT)X = XTAX + XTATX = 2X7(AX) = 0.

matrice des coordonnées de w dans la base canonique et U celle de w. On en déduit que x = 0 et ainsi que Ker f C {0}. Puisque Ker f contient toujours le
1 1 vecteur nul, le noyau de f est réduit au simple vecteur nul, i.e. f est injective (et méme
(u—p(u) |v) = <2 (s —1d) (u) | 3 (s —Id) (w)> un automorphisme de lespace vectoriel R", étant de dimension finie).
1 3. Supposons que f admette une valeur propre qu’on notera A. Il existe alors un vecteur non
= (s =1d)(u) | (s = Id)(w)) nul z tel que f(z) = Az. En reprenant les notations et calculs de la question précédente,
1 . on trouve AX = \X et :
- 1((A+13)U) (A~ I)W) 2 T T T T T AT T T 2
| 2zl =2X" X = X" (A+A )X = X" AX+X A" X =2X" (AX) =22X" X = 2)\||z||°.
_ LT Tia
- 4U (A+1)" (A - I)W Puisque z # 0, ||z||* # 0 et ainsi A = 1.
_ lUT(A T+ L)(A— L)W On en déduit que f admet au plus une valeur propre, qui, si elle existe, est égale a 1.
4
_ iUT(A2 W Corrigé de I’exercice 14. [Enoncg]
—0. 1. Puisque S € M,,(R) et puisque ST = (ATA)T = AT A, la matrice S est symétrique réelle.
Elle est donc diagonalisable en vertu du théoréme spectral.
Le vecteur u — p(u) est orthogonal a tout vecteur de F. Soit A une valeur propre de S. Il existe un vecteur non nul X € M,, 1(R) tel que SX = A X.
On en déduit que p(u) est le projeté orthogonal de u sur F. Ainsi p est la projection Soit x le vecteur de R™ dont la matrice des coordonnées dans la base canonique est X et
orthogonale sur F = Ker(s — Id). soit f I’endomorphisme de R™ dont A est la matrice dans la base canonique.

Remarquons qu’on a :

) - . i ) e d'une part XTSX = AXTX = \||z|]? ;
Puisque N* = A* + A = N, la matrice N est symétrique réelle. D’aprés le théoréme spec- , - T AT - 9
tral, il existe une matrice diagonale D € M3(R) et une matrice orthogonale P € M3(R) e d'autre part X* SX = XTATAX = (AX)" (AX) = [|f(2)[.

telle que N = PDP~!. 1f()]?
On en deduit que £ ()| = Alle|” puis que A = 20

On a donc bien prouvé que S = AT A est diagonalisable et que toutes ses valeurs propres

Corrigé de P’exercice 12. [Enoncé]

Soit p € N tel que N? =0,,. On a alors PDPP—1 = 0,, (cela se montre par récurrence). > 0 puisque x # 0.

Puisque P est inversible, on trouve que DP = 0,, en multipliant & gauche par P! et & droite

par P. sont positives ou nulles.
Si on note D = diag(\1, ..., \n), alors DP = diag(\}, ..., AP). On trouve alors que D = 0,,. - o o . .
On en déduit que N = P0,P~1 =0,, i.e. AT — —A. 2. D’apreés le théoréme spectral, il existe une matrice diagonale D € M, (R) et une ma-

trice orthogonale P € M, (R) telle que S = PDPT. Notons D = diag(A1,...,\n) et
D = diag(v/A1, - ..,V n). On a immédiatement I'égalité : D = D? = DDT.

Corrigé de P’exercice 13. [Enoncé] On obtient al
n obtient alors :

1. Il vient que AX € M,, 1(R) puis que XTAX € M;(R). S — ppPT — pDDTPT — (DTPT)T (DTPT> — AT 4,
Puisque toutes les matrices de M;(R) (qu'on peut assimiler & R) sont symeétriques, ) ~ ~
XTAX = (XTAX)T = XTATX en posant A = DT PT = DPT. Remarquez qu’on aurait pu poser A = PDTPT.
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3. On ortho-diagonalise S sans difficulté et on peut écrire S = PDPT ou PT = P~ et : b. Soit (z,y) € R2.
10 1 /1 1 of _
0= (0 3) G <1 1)' g?@’y) =0 faeery-D=0+2-3y) =0
—(z,y) =0 22z +y—1)—6(x—3y)+2(y—1)=0
En posant : dy
= r L (1 0\/1 -1y _ 1 (/1 -1 o 10 —2y =4
A=DP' = =— ) —2r+22y =4
v2\o v3)\1 1 V2 \WV3 V3 Yy
4
on a bien S = AT A d’aprés les calculs de la question précédente. N T = g
) ==
Corrigé de l’exercice 15. [Enoncé] 9
(3N 2 2 2 . . 1. 4 2
1. Premiére méthode : géométrique euclidienne. On en déduit que f admet pour unique pour critique le point (xo,yo) = (9, 9).

a. Pour tout (z,y) € R?, on a : 2
c. Remarquons que f(xo,y0) = 3 Pour tout (h,k) € R? on a:

flz,y)=QRe4+y—1)2+(x -3y +y—-1)7>*= luz,y — vl?

2 2 2
1 2 7 2
ol uy,y = (22 +y,z — 3y,y) et v=(1,0,1). f(330+h7yo+k’)—f($o,yo)=(2h+k+9> +<h—3k—) +<k/’—> 3

9
b. F = {uyy €R? (z,y) eR*} = {2z +y,z—3y,y) €R?, (z,y) € R*} = Vect(a,b) — 5h2 4 11K2 — 2hk
ot a=(21,0)etb=(1,-3,1).

=(h—k)* +4h* +10k* > 0
c. Remarquons que :

. . . 1 s 2
dw,F)? = inf [Ju—v? = inf Jusy—o|>= inf f(z,y). On en déduit que f admet un minimum, atteint en (zg,yo), égal & f(zo,yo) = 3
ueEF (z,y)€R? (z,y)€R?

D’aprés le cours, on sait que cette borne inférieure est atteinte lorsque u est le projeté
orthogonal de v sur F, qu'on notera p(v). On en déduit que la fonction f admet un
minimum, égal a d(v, F)?.

Un rapide calcul montre que la famille (¢,d), ot c = —=(2,1,0) et d =

7,—14,5),
3\/%( )

1
NG
forme une base orthonormée de F'.

On a alors :

p(0) = (v ] e+ (v | dyd = 3(10,_2,2).

2
On en déduit que le minimum de f sur R? est : Dﬁéiznf =|lv—p)|]* = 3

2. Seconde méthode : étude des points critiques.

a. La fonction f est polynomiale en ses deux variables donc de classe C! sur R2.



