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Exercice 1. Identités de polarisation ♥ [Corrigé] FFFFF

Montrer que, pour tout (x, y) ∈ Rn × Rn, on a :

〈x | y〉 =
1

2

(
‖x+ y‖2 − ‖x‖2 − ‖y‖2

)
=

1

2

(
‖x‖2 + ‖y‖2 − ‖x− y‖2

)
=

1

4

(
‖x+ y‖2 − ‖x− y‖2

)
.

Exercice 2. Identité du parallélogramme [Corrigé] FFFFF

Montrer que, pour tout (x, y) ∈ Rn × Rn, on a ‖x+ y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
.

Exercice 3. ♥ [Corrigé] FFFFF

1. Déterminer une équation de la sphère S de l’espace de rayon 2 et de centre Ω(1, 1, 1).

2. Vérifier que le point A(2, 2, 1 +
√

2) appartient à la sphère.

3. Déterminer une équation cartésienne du plan P tangent à la sphère S au point A.

Exercice 4. [Corrigé] FFFFF

Montrer que, pour toute matrice symétrique A ∈ Sn(R), la matrice A+ iIn ∈ GLn(C).
On pourra considérer le spectre de A.

Exercice 5. ♥ [Corrigé] FFFF

Montrer les propriétés suivantes :

1. ∀(x1, . . . , xn) ∈ Rn,

(
n∑

k=1

xk

)2

6 n

(
n∑

k=1

x2
k

)
.

2. ∀(x1, . . . , xn) ∈
(
R∗+
)n
,

n∑
k=1

xk = 1⇒
n∑

k=1

1

xk
> n2.

Exercice 6. ♥ [Corrigé] FFFF

Pour chacune des matrices A ci-dessous, déterminer une matrice carrée P telle que PTAP
soit une matrice diagonale.

A1 =

(
4 3
3 −4

)
A2 =

3 2 4
2 0 2
4 2 3

 A3

1 0 1
0 2 0
1 0 1

 A4 =

 2 2 −1
2 −1 2
−1 2 2



Exercice 7. Orthogonal d’une partie ♥ [Corrigé] FFFF

Pour toute partie A de E = Rn, on note A⊥ l’ensemble des vecteurs de Rn orthogonaux à
tout vecteur de A :

A⊥ = {x ∈ Rn | ∀a ∈ A, 〈x | a〉 = 0}.

1. Déterminer {0E}⊥ et E⊥.

2. Soient A et B des parties de Rn.

a. Montrer que A⊥ est un sous-espace vectoriel de Rn.

b. Montrer que A ⊂
(
A⊥
)⊥.

c. Montrer l’implication : A ⊂ B ⇒ B⊥ ⊂ A⊥.
d. Vérifier l’égalité A⊥ = Vect(A)⊥.

Exercice 8. Matrice d’une projection orthogonale ♥ [Corrigé] FFFF

Soit F le plan de R3 d’équation x− 2y + z = 0.
Déterminer la matrice de la projection orthogonale sur F dans la base canonique.

Exercice 9. Distance à un sous-espace vectoriel ♥ [Corrigé] FFFF

Soit F le sous-espace vectoriel de R3 engendré par les vecteurs e1 = (1, 2, 2) et e2 = (2, 1,−2).

1. Montrer que la famille (e1, e2) est orthogonale.

2. Déterminer la matrice de la projection orthogonale p sur F dans la base canonique de R3.

3. Montrer que la famille B définie ci-dessous est une base orthonormée de R3 :

B =

((
1

3
,

2

3
,

2

3

)
,

(
2

3
,

1

3
,−2

3

)
,

(
−2

3
,

2

3
,−1

3

))
4. Déterminer la matrice de p dans cette base.

5. Calculer la distance du point A de coordonnées (1, 1, 1) au plan F .

Exercice 10. ♥ [Corrigé] FFF

1. Soit F 6= {0} un sous-espace vectoriel de Rn et soit p la projection orthogonale sur F .
Montrer que pour tout x ∈ Rn, ‖p (x)‖ 6 ‖x‖.

2. Soit f un endomorphisme de Rn vérifiant f ◦ f = f et : ∀x ∈ Rn, ‖f (x)‖ 6 ‖x‖.

a. Montrer que pour tout y ∈ Im f, f (y) = y.
b. Montrer que le projeté orthogonal sur Ker f de tout vecteur de Im f est le vecteur nul.
c. En déduire que f est la projection orthogonale sur Im f .
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Exercice 11. Étude d’une symétrie de R3 [Corrigé] FFFF

On considère l’endomorphisme s de R3 dont la matrice dans la base canonique est :

A =
1

7

 6 −3 −2
−3 −2 −6
−2 −6 3


1. Montrer que s conserve les distances (on dit que s est une isométrie), i.e. :

∀x ∈ R3, ‖s (x)‖ = ‖x‖ .

2. Déterminer l’ensemble F des points fixes de s.

3. Déterminer l’application s ◦ s. Que peut-on en déduire ?

4. Montrer que l’application p =
1

2
(s+ Id) est une projection orthogonale sur un sous-espace

vectoriel de R3 à déterminer (en fonction de s).

Exercice 12. [Corrigé] FFFF

Soit A ∈Mn(R) telle que N = A+AT soit nilpotente, i.e. il existe p ∈ N tel que Np = 0n.
En identifiant une matrice symétrique, montrer que A ∈ An(R), i.e. AT = −A.

Exercice 13. [Corrigé] FFF

Soient f un endomorphisme de Rn et A sa matrice dans la base canonique. On suppose que
A vérifie A+AT = 2In.

1. Soit X ∈Mn,1(R).
Déterminer à quel espace appartient XTAX puis en déduire que XTAX = XTATX.

2. Déterminer Ker f .

3. En déduire que f admet au plus une valeur propre.

Exercice 14. [Corrigé] FFF

1. Soit A ∈ Mn(R). Montrer que S = ATA est diagonalisable et que toutes ses valeurs
propres sont positives ou nulles.

2. Soit S une matrice symétrique de Mn(R) dont toutes les valeurs propres sont positives
ou nulles. On note S ∈ S+

n (R). Montrer qu’il existe une matrice A ∈ Mn(R) telle que
S = ATA.

3. Application : déterminer une matrice A ∈Mn(R) telle que ATA =

(
2 1
1 2

)
.

Exercice 15. [Corrigé] FFF

On considère la fonction suivante :

f R2 → R
(x, y) 7→ (2x+ y − 1)2 + (x− 3y)2 + (y − 1)2

Le but de cet exercice est de montrer que la fonction f admet un minimum sur R2.

1. Première méthode : géométrique euclidienne.

a. Montrer que, pour tout (x, y) ∈ R2, il existe un vecteur ux,y ∈ R3 dépendant de (x, y)
et un vecteur v indépendant de (x, y) tel que f(x, y) = ‖ux,y − v‖2.

b. Identifier l’ensemble F =
{
ux,y ∈ R3, (x, y) ∈ R2

}
.

c. En déduire que f admet un minimum en un point de R2 qu’on déterminera.

2. Seconde méthode : étude des points critiques.

a. Justifier que f est de classe C1.

b. Montrer que f admet un point critique qu’on déterminera.

c. En déduire que f admet un minimum.
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Corrigé de l’exercice 1. [Énoncé]
Soit (x, y) ∈ Rn × Rn. Puisque ‖x+ y‖2 = ‖x‖2 + 2〈x | y〉+ ‖y‖2, on trouve :

〈x | y〉 =
1

2

(
‖x+ y‖2 − ‖x‖2 − ‖y‖2

)
. (1)

De la même manière, puisque ‖x− y‖2 = ‖x‖2 − 2〈x | y〉+ ‖y‖2, on a :

〈x | y〉 =
1

2

(
‖x‖2 + ‖y‖2 − ‖x− y‖2

)
. (2)

En additionnant les égalités (1) et (2), on trouve :

2〈x | y〉 =
1

2

(
‖x+ y‖2 − ‖x− y‖2

)
.

On en déduit que :

〈x | y〉 =
1

4

(
‖x+ y‖2 − ‖x− y‖2

)
.

Corrigé de l’exercice 2. [Énoncé]
Pour tout (x, y) ∈ Rn × Rn, on a

‖x+ y‖2 + ‖x− y‖2 =
(
‖x‖2 + 2〈x | y〉+ ‖y‖2

)
+
(
‖x‖2 − 2〈x | y〉+ ‖y‖2

)
= 2

(
‖x‖2 + ‖y‖2

)
.

Corrigé de l’exercice 3. [Énoncé]

1. Soit M(x, y, z) un point de l’espace.

M ∈ S ⇔ ΩM = 2

⇔
∥∥∥−−→ΩM

∥∥∥ = 2

⇔
∥∥∥−−→ΩM

∥∥∥2

= 4

⇔ (x− 1)2 + (y − 1)2 + (z − 1)2 = 4.

On en déduit que (x− 1)2 + (y − 1)2 + (z − 1)2 = 4 est une équation de la sphère S.

2. Puisque (2 − 1)2 + (2 − 1)2 +
(
(1 +

√
2)− 1

)2
= 4, le point A(2, 2, 1 +

√
2) appartient à

la sphère.

3. Soit M(x, y, z) un point de l’espace.

M ∈ P ⇔
−→
ΩA et

−−→
AM sont orthogonaux

⇔
−→
ΩA ·

−−→
AM = 0

⇔ (x− 2) + (y − 2) +
√

2(z − 1−
√

2) = 0

⇔ x+ y +
√

2z − 6−
√

2 = 0

Une équation cartésienne du plan P tangent à la sphère S au point A est :

x+ y +
√

2z − 6−
√

2 = 0.

Corrigé de l’exercice 4. [Énoncé]
Puisque la matrice A est symétrique réelle, elle est diagonalisable dans Mn(R). En parti-
culier, toutes ses valeurs propres sont réelles. Puisque −i n’est pas valeur propre de A, la
matrice A+ iIn est inversible, i.e. A+ iIn ∈ GLn(C).

Corrigé de l’exercice 5. [Énoncé]

1. Soit (x1, . . . , xn) ∈ Rn. Considérons les deux vecteurs u = (x1, . . . , xn) et v = (1, . . . , 1)
de Rn. D’après l’inégalité de Cauchy-Schwarz, on a 〈u | v〉2 = ‖u‖2‖v‖2, i.e. :

(
n∑

k=1

xk

)2

6 n

(
n∑

k=1

x2
k

)
.

2. Soit (x1, . . . , xn) ∈
(
R∗+
)n tel que

n∑
k=1

xk = 1.

Considérons les deux vecteurs u = (
√
x1, . . . ,

√
xn) et v =

(
1
√
x1
, . . . ,

1
√
xn

)
de Rn.

D’après l’inégalité de Cauchy-Schwarz, on a 〈u | v〉2 = ‖u‖2‖v‖2, i.e. :(
n∑

k=1

√
xk

1
√
xk

)2

6

(
n∑

k=1

√
xk

2

)(
n∑

k=1

1
√
xk

2

)
,

i.e.
n∑

k=1

1

xk
> n2. On en déduit donc que :

∀(x1, . . . , xn) ∈
(
R∗+
)n
,

n∑
k=1

xk = 1⇒
n∑

k=1

1

xk
> n2.

3
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Corrigé de l’exercice 6. [Énoncé]
Après calculs, on trouve :

(i) A1 = P1D1P
T
1 où PT

1 = P−1
1 , D1 =

(
5 0
0 −5

)
et P1 =

1√
10

(
3 1
1 −3

)
;

(ii) A2 = P2D2P
T
2 où PT

2 = P−1
2 , D2 =

−1 0 0
0 −1 0
0 0 8

 et P2 =


1√
5

−4
3
√

5
2
3

−2√
5

−2
3
√

5
1
3

0 5
3
√

5
2
3

 ;

(iii) A3 = P3D3P
T
3 où PT

3 = P−1
3 , D3 =

0 0 0
0 2 0
0 0 2

 et P3 =
1√
2

 1 1 0

0 0
√

2
−1 1 0

 ;

(iv) A4 = P4D4P
T
4 où PT

4 = P−1
4 , D4 =

−3 0 0
0 3 0
0 0 3

 et P4 =


1√
6

2√
5

−1√
30

−2√
6

1√
5

2√
30

1√
6

0 5√
30

.

Corrigé de l’exercice 7. [Énoncé]

1. On trouve immédiatement que :

{0E}⊥ = {x ∈ Rn | 〈x | 0E〉 = 0} = Rn.

Soit x ∈ E⊥. Par définition, on a :

∀a ∈ E, 〈x | a〉 = 0.

En particulier pour a = x, on trouve que 〈x | x〉 = 0, i.e. ‖x‖2 = 0, i.e. x = 0E . On en
déduit que E⊥ ⊂ {0E}.
Réciproquement, le vecteur nul 0E est orthogonal à tout vecteur de E, il appartient donc
bien à E⊥. On en déduit donc que E⊥ = {0E}.

2. a. Par définition, A⊥ ⊂ Rn. De plus, le vecteur nul 0E est orthogonal à tout vecteur de
A, il appartient donc bien à A⊥.
Soient λ ∈ R et (x, y) ∈

(
A⊥
)2.

∀a ∈ A, 〈λx+ y | a〉 = λ〈x | a〉+ 〈y | a〉 = 0.

On en déduit que λx+ y ∈ A⊥.
L’ensemble A⊥ est donc bien un sous-espace vectoriel de Rn.

b. Soit x ∈ A. Montrons que x ∈
(
A⊥
)⊥, c’est-à-dire que x est orthogonal à tout vecteur

de A⊥. Or par définition, tout vecteur de A⊥ est orthogonal à tout vecteur de A, donc
en particulier au vecteur x.
On en déduit que A ⊂

(
A⊥
)⊥.

c. Supposons que A ⊂ B et montrons que B⊥ ⊂ A⊥.
Soit x ∈ B⊥. Montrons que x ∈ A⊥. Soit y ∈ A. Puisque A ⊂ B, y ∈ B et ainsi
x et y sont orthogonaux. Puisque le vecteur x est orthogonal à tout vecteur de A, il
appartient à A⊥.
On en déduit que A ⊂ B ⇒ B⊥ ⊂ A⊥.

d. Puisque A ⊂ Vect(A), Vect(A)⊥ ⊂ A⊥. ’après la question précédente. Montrons
l’inclusion réciproque.
Soit x ∈ A⊥. Soit y ∈ Vect(A). Il existe alors (λ1, . . . , λn) ∈ Rn et (a1, . . . , an) ∈ An

tel que y = λ1a1 + · · ·+ λnan.

〈x | y〉 =

n∑
k=1

λk〈x | ak〉 = 0.

Le vecteur x est orthogonal à tout vecteur de Vect(A), il appartient donc à Vect(A)⊥.
Vérifier l’égalité A⊥ = Vect(A)⊥.

Corrigé de l’exercice 8. [Énoncé]
On propose ici deux méthodes : la première est la méthode classique, la seconde consiste à
déterminer le projeté orthogonal sur la droite orthogonale au plan F .

• Première méthode (via une base orthonormée de F).
Déterminons une base orthonormée de F .
Les vecteurs e1 = (2, 1, 0) et e2 = (−1, 0, 1) appartiennent au plan F (leurs coordon-
nées vérifient l’équation définissant F ). Puisqu’ils ne sont pas colinéaires, il forment
une famille libre donc une base de F par un argument de cardinalité.
Soit (a, b) ∈ R2.

〈ae1 + be2 | e1〉 = 0⇔ a‖e1‖2 + b〈e1 | e2〉 = 0⇔ 5a− 2b = 0

Le vecteur u = 2e1 + 5e2 = (−1, 2, 5) est donc orthogonal à e1 (et appartient à F ).
Posons :

f1 =
1

‖e1‖
e1 =

1√
5

(2, 1, 0) et f2 =
1

‖u‖
u =

1√
30

(−1, 2, 5).

Par construction f1 et f2 sont orthogonaux ; ils forment donc une base orthonormée
de F puisque : F = Vect(e1, e2) = Vect(e1, 2e1 + 5e2) = Vect(e1, u) = Vect(f1, f2).
On a alors l’expression du projeté de tout vecteur orthogonal sur F :

∀pF (u) = 〈u | f1〉f1 + 〈u | f2〉f2.

4
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Après calculs, on trouve :

pF ((1, 0, 0)) =
1

6
(5, 2,−1), pF ((0, 1, 0)) =

1

6
(2, 2, 2) et pF ((0, 1, 0)) =

1

6
(−1, 2, 5).

La matrice de la projection orthogonale sur F est donc :

1

6

 5 2 −1
2 2 2
−1 2 5


• Seconde méthode (via une base orthonormée de F⊥).

Le vecteur b = (1,−2, 1) est normal au plan F . Il dirige donc une droite qu’on notera

∆. Notons a =
1

‖b‖
b =

1√
6

(1,−2, 1). Le vecteur a forme une base orthonormée de ∆.

Soit u de R3. Notons p∆(u) le projeté orthogonal sur ∆. Montrons que u− p∆(u) est
le projeté orthogonal sur F :

• le vecteur u− p∆(u) appartient à F puisqu’il est orthogonal à tout vecteur de ∆ ;

• le vecteur p∆(u) = u− (u− p∆(u)) appartient à ∆, il est donc orthogonal à tout
vecteur de F .

On en déduit que le projeté orthogonal de usur F vérifie :

pF (u) = u− p∆(u) = u− 〈u | a〉a.

la dernière égalité étant obtenue puisque (a) est une base orthonormée de ∆.

Calculons :

pF ((1, 0, 0)) = (1, 0, 0)− 1

6
(1,−2, 1) =

1

6
(5, 2,−1);

pF ((0, 1, 0)) = (0, 1, 0) +
2

6
(1,−2, 1) =

1

6
(2, 2, 2);

pF ((0, 1, 0)) = (0, 0, 1)− 1

6
(1,−2, 1) =

1

6
(−1, 2, 5).

La matrice de la projection orthogonale sur F est donc :

1

6

 5 2 −1
2 2 2
−1 2 5



Corrigé de l’exercice 9. [Énoncé]

1. Puisque 〈e1 | e2〉 = 0, la famille (e1, e2) est orthogonale.

2. Posons f1 =
1

‖e1‖
e1 =

1

3
(1, 2, 2) et f2 =

1

‖e2‖
e2 =

1

3
(2, 1,−2). Les vecteurs f1 et f2 sont

orthogonaux et normés. Puisqu’ils appartiennent à F par construction, ils en forment une
base orthonormée. On sait alors que :

∀u ∈ R3, p(u) = 〈u | f1〉f1 + 〈u | f2〉f2.

Après calculs, on trouve :

p((1, 0, 0)) =
1

9
(5, 4,−2), p((0, 1, 0)) =

1

9
(4, 5, 2), p((0, 0, 1)) =

1

9
(−2, 2, 8).

La matrice de la projection orthogonale p sur F dans la base canonique de R3 est donc :

A =
1

9

 5 4 −2
4 5 2
−2 2 8

 .

3. On peut remarquer que B = (f1, f2, f3), où f3 =

(
−2

3
,

2

3
,−1

3

)
.

On vérifie sans problème que f3 est normé et orthogonal à f1 et f2. La famille B est donc
une famille orthonormée de R3, donc libre (les vecteurs sont deux-à-deux orthogonaux et
non nuls). Par un argument de cardinalité, c’est une base orthonormée de R3.

4. On pourrait faire des calculs (en utilisant l’expression de la projection orthogonale dans la
base (f1, f2) de F ) mais on propose ici une solution géométrique : f1 et f2 appartiennent
à F donc p(f1) = f1 et p(f2) = f2.
Puisque f3 est orthogonal à f1 et f2, il est orthogonal à tout vecteur de F . Ainsi p(f3) = 0.
La matrice de p dans la base B est :

D =

1 0 0
0 1 0
0 0 0

 .

5. En identifiant le point A au vecteur u = (1, 1, 1), on trouve que la distance de A au plan
F est ‖u− p(u)‖. Or :

p(u) = 〈u | f1〉f1 + 〈u | f2〉f2 =
1

9
(7, 11, 8).

Ainsi, la distance du point A de coordonnées (1, 1, 1) au plan F est :

d(A,F ) = ‖u− p(u)‖ =

∥∥∥∥1

9
(2,−2, 1)

∥∥∥∥ =
1

3
.

5
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Corrigé de l’exercice 10. [Énoncé]

1. Soit x ∈ Rn. Puisque p(x) et x − p(x) sont orthogonaux, on utilise le théorème de
Pythagore :

‖x‖2 = ‖p(x) + (x− p(x)) ‖2 = ‖p(x)‖2 + ‖x− p(x)‖2 > ‖p(x)‖2.

Par positivité de la norme, on obtient le résultat : pour tout x ∈ R3, ‖x‖ > ‖p(x)‖.

2. Soit f un endomorphisme de Rn vérifiant f ◦ f = f et

∀x ∈ Rn, ‖f (x)‖ 6 ‖x‖ .

a. Soit y ∈ Im f . Il existe x ∈ Rn tel que y = f(x). Ainsi f(y) = f ◦ f(x) = f(x) = y.
On obtient le résultat attendu : pour tout y ∈ Im f, f (y) = y.

b. Soit p la projection orthogonale sur Ker f et soit y ∈ Im f .
Puisque p(y) et y − p(y) sont orthogonaux, on trouve, par le même argument qu’à la
question précédente,

‖y‖2 = ‖p(y)‖2 + ‖y − p(y)‖2.
Par hypothèse sur f , on obtient alors :

‖y‖2 > ‖p(y)‖2 + ‖f (y − p(y)) ‖2 = ‖p(y)‖2 + ‖f(y)− f(p(y))‖2 = ‖p(y)‖2 + ‖y‖2.

On en déduit que ‖p(y)‖2 = 0, i.e. p(y) = 0.
Le projeté orthogonal sur Ker f de tout vecteur de Im f est donc bien le vecteur nul.

c. Soit x ∈ R3. Montrons que f(x) est le projeté orthogonal de x sur Im f :
• f(x) ∈ Im f ;
• vérifions que x−f(x) est orthogonal à tout vecteur de Im f . Puisque f(x−f(x)) =
f(x)− f2(x) = 0, x− f(x) appartient à Ker f . Or d’après la question précédente,
tout vecteur de Ker f est orthogonal à tout vecteur de Im f . Donc x − f(x) est
orthogonal à tout vecteur de Im f .

On a donc bien prouvé que f(x) est le projeté orthogonal de x sur Im f pour tout
vecteur x ∈ Rn. L’endomorphisme f est donc bien la projection orthogonale sur Im f .

Corrigé de l’exercice 11. [Énoncé]

1. Soit x = (x1, x2, x3) ∈ R3. Notons X =

x1

x2

x3

 la matrice des coordonnées de x dans la

base canonique de R3. Les coordonnées de s(x) dans cette base sont données par :

AX =
1

7

 6x1 − 3x2 − 2x3

−3x1 − 2x2 − 6x3

−2x1 − 6x2 + 3x3



Ainsi :

‖s(x)‖2 = (AX)T (AX)

=
1

49

(
(6x1 − 3x2 − 2x3)2 + (−3x1 − 2x2 − 6x3)2 + (−2x1 − 6x2 + 3x3)2

)
= x2

1 + x2
2 + x2

3

= ‖x‖2.

On en déduit que s est une isométrie.

2. On cherche l’ensemble vecteurs x = (x1, x2, x3) de R3 tels que s(x) = x. Or :

s(x) = x⇔


6x1 − 3x2 − 2x3 = 7x1

−3x1 − 2x2 − 6x3 = 7x2

−2x1 − 6x2 + 3x3 = 7x3

⇔


−x1 − 3x2 − 2x3 = 0

−3x1 − 9x2 − 6x3 = 0

−2x1 − 6x2 − 4x3 = 0

⇔ x1 = −3x2 − 2x3.

On en déduit que l’ensemble des points fixes de s est le plan :

F = Ker(s− Id) = Vect

−3
1
0

 ,

−2
0
1

 .

3. Un rapide calcul montre que A2 = I3, i.e. s ◦ s = Id. On en déduit que s est un
automorphisme de R3 et sa propre réciproque, i.e. s−1 = s.

4. Raisonnons par analyse-synthèse.

Analyse. Supposons que l’application p =
1

2
(s+ Id) est une projection orthogonale. On

sait alors que p est la projection orthogonale sur Im p = Ker(p− Id). Or :

p− Id =
1

2
(s+ Id)− Id =

1

2
(s− Id) .

On en déduit que p est la projection orthogonale sur Ker(s− Id) = F .

Synthèse. Montrons que p est la projection orthogonale sur F . Soit u ∈ R3.

6
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• p(u) ∈ F puisque F = Im p.

• Montrons que u − p(u) est orthogonal à tout vecteur de F . Soit v un vecteur de

F = Im p. Il existe alors w ∈ R3 tel que v = p(w) =
1

2
(s− Id) (w). Notons W la

matrice des coordonnées de w dans la base canonique et U celle de u.

〈u− p(u) | v〉 =

〈
1

2
(s− Id) (u) | 1

2
(s− Id) (w)

〉
=

1

4
〈(s− Id)(u) | (s− Id)(w)〉

=
1

4
((A+ I3)U)

T
((A− I3)W )

=
1

4
UT (A+ I3)T (A− I3)W

=
1

4
UT (A+ I3)(A− I3)W

=
1

4
UT (A2 − I3)W

= 0.

Le vecteur u− p(u) est orthogonal à tout vecteur de F .

On en déduit que p(u) est le projeté orthogonal de u sur F . Ainsi p est la projection
orthogonale sur F = Ker(s− Id).

Corrigé de l’exercice 12. [Énoncé]
Puisque NT = AT + A = N , la matrice N est symétrique réelle. D’après le théorème spec-
tral, il existe une matrice diagonale D ∈ M3(R) et une matrice orthogonale P ∈ M3(R)
telle que N = PDP−1.
Soit p ∈ N tel que Np = 0n. On a alors PDpP−1 = 0n (cela se montre par récurrence).
Puisque P est inversible, on trouve que Dp = 0n en multipliant à gauche par P−1 et à droite
par P .
Si on note D = diag(λ1, . . . , λn), alors Dp = diag(λp1, . . . , λ

p
n). On trouve alors que D = 0n.

On en déduit que N = P0nP
−1 = 0n, i.e. AT = −A.

Corrigé de l’exercice 13. [Énoncé]

1. Il vient que AX ∈Mn,1(R) puis que XTAX ∈M1(R).

Puisque toutes les matrices de M1(R) (qu’on peut assimiler à R) sont symétriques,
XTAX = (XTAX)T = XTATX

2. Soit x ∈ Ker f ; notons X la matrice de ses coordonnées dans la base canonique. On a
alors AX = 0n,1. Remarquons alors que :

2‖x‖2 = 2XTX = XT (2In)X = XT (A+AT )X = XTAX +XTATX = 2XT (AX) = 0.

On en déduit que x = 0 et ainsi que Ker f ⊂ {0}. Puisque Ker f contient toujours le
vecteur nul, le noyau de f est réduit au simple vecteur nul, i.e. f est injective (et même
un automorphisme de l’espace vectoriel Rn, étant de dimension finie).

3. Supposons que f admette une valeur propre qu’on notera λ. Il existe alors un vecteur non
nul x tel que f(x) = λx. En reprenant les notations et calculs de la question précédente,
on trouve AX = λX et :

2‖x‖2 = 2XTX = XT (A+AT )X = XTAX+XTATX = 2XT (AX) = 2λXTX = 2λ‖x‖2.

Puisque x 6= 0, ‖x‖2 6= 0 et ainsi λ = 1.
On en déduit que f admet au plus une valeur propre, qui, si elle existe, est égale à 1.

Corrigé de l’exercice 14. [Énoncé]

1. Puisque S ∈Mn(R) et puisque ST =
(
ATA

)T
= ATA, la matrice S est symétrique réelle.

Elle est donc diagonalisable en vertu du théorème spectral.
Soit λ une valeur propre de S. Il existe un vecteur non nulX ∈Mn,1(R) tel que SX = λX.
Soit x le vecteur de Rn dont la matrice des coordonnées dans la base canonique est X et
soit f l’endomorphisme de Rn dont A est la matrice dans la base canonique.
Remarquons qu’on a :

• d’une part XTSX = λXTX = λ‖x‖2 ;
• d’autre part XTSX = XTATAX = (AX)T (AX) = ‖f(x)‖2.

On en déduit que ‖f(x)‖2 = λ‖x‖2 puis que λ =
‖f(x)‖2

‖x‖2
> 0 puisque x 6= 0.

On a donc bien prouvé que S = ATA est diagonalisable et que toutes ses valeurs propres
sont positives ou nulles.

2. D’après le théorème spectral, il existe une matrice diagonale D ∈ Mn(R) et une ma-
trice orthogonale P ∈ Mn(R) telle que S = PDPT . Notons D = diag(λ1, . . . , λn) et
D̃ = diag(

√
λ1, . . . ,

√
λn). On a immédiatement l’égalité : D = D̃2 = D̃D̃T .

On obtient alors :

S = PDPT = PD̃D̃TPT =
(
D̃TPT

)T (
D̃TPT

)
= ATA,

en posant A = D̃TPT = D̃PT . Remarquez qu’on aurait pu poser A = PD̃TPT .
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3. On ortho-diagonalise S sans difficulté et on peut écrire S = PDPT où PT = P−1 et :

D =

(
1 0
0 3

)
et P =

1√
2

(
1 1
−1 1

)
.

En posant :

A = D̃PT =
1√
2

(
1 0

0
√

3

)(
1 −1
1 1

)
=

1√
2

(
1 −1√
3
√

3

)
,

on a bien S = ATA d’après les calculs de la question précédente.

Corrigé de l’exercice 15. [Énoncé]

1. Première méthode : géométrique euclidienne.

a. Pour tout (x, y) ∈ R2, on a :

f(x, y) = (2x+ y − 1)2 + (x− 3y)2 + (y − 1)2 = ‖ux,y − v‖2

où ux,y = (2x+ y, x− 3y, y) et v = (1, 0, 1).

b. F =
{
ux,y ∈ R3, (x, y) ∈ R2

}
=
{

(2x+ y, x− 3y, y) ∈ R3, (x, y) ∈ R2
}

= Vect(a, b)
où a = (2, 1, 0) et b = (1,−3, 1).

c. Remarquons que :

d(v, F )2 = inf
u∈F
‖u− v‖2 = inf

(x,y)∈R2
‖ux,y − v‖2 = inf

(x,y)∈R2
f(x, y).

D’après le cours, on sait que cette borne inférieure est atteinte lorsque u est le projeté
orthogonal de v sur F , qu’on notera p(v). On en déduit que la fonction f admet un
minimum, égal à d(v, F )2.

Un rapide calcul montre que la famille (c, d), où c =
1√
5

(2, 1, 0) et d =
1

3
√

30
(7,−14, 5),

forme une base orthonormée de F .
On a alors :

p(v) = 〈v | c〉c+ 〈v | d〉d =
1

9
(10,−2, 2).

On en déduit que le minimum de f sur R2 est : min
R2
f = ‖v − p(v)‖2 =

2

3
.

2. Seconde méthode : étude des points critiques.

a. La fonction f est polynômiale en ses deux variables donc de classe C1 sur R2.

b. Soit (x, y) ∈ R2.
∂f

∂x
(x, y) = 0

∂f

∂y
(x, y) = 0

⇔

{
4(2x+ y − 1) = 0 + 2(x− 3y) = 0

2(2x+ y − 1)− 6(x− 3y) + 2(y − 1) = 0

⇔

{
10x− 2y = 4

−2x+ 22y = 4

⇔


x =

4

9

x =
2

9

.

On en déduit que f admet pour unique pour critique le point (x0, y0) =

(
4

9
,

2

9

)
.

c. Remarquons que f(x0, y0) =
2

3
. Pour tout (h, k) ∈ R2, on a :

f(x0 + h, y0 + k)− f(x0, y0) =

(
2h+ k +

1

9

)2

+

(
h− 3k − 2

9

)2

+

(
k − 7

9

)2

− 2

3

= 5h2 + 11k2 − 2hk

= (h− k)2 + 4h2 + 10k2 > 0

On en déduit que f admet un minimum, atteint en (x0, y0), égal à f(x0, y0) =
2

3
.
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