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3. D’apres la question précédente, on a (par linéarité et d’aprés les calculs faits en 1) :

1. cf. TP sur les tris. too g too 42 94 oo (1 4-2) dt too gt T
27 — / @ / _rd / d+)de / _7
2. On construit une liste, initialement vide, des éléments déja vus. Lorsqu’on lit un élé- o (1+12)? o (1423 0 (1+t2)? 0o 1+t2 2

ment de la liste, on vérifie qu’il n’est pas déja dans la liste des éléments déja vus.

Lorsque le parcours de la liste est terminé sans avoir renvoyé True, c’est qu’on n’a Ainsi - | T = ™
jamais rencontré un élément se répétant ; on renvoie donc False. 4
def repetition(L):
deja_vus = [] Exercice 3 (Agro-Véto MCR 2018) ‘
for x in L:
if x in deja_vus: I. Matrice de transition
return True
else: 1. a. Soit n € N. Puisque X,,(2) = [0,2], la famille ([X,, = k])o<rg2 forme un
deja_vus.append (x) systéme complet d’événements. D’aprés la formule des probabilités totales,
return False on trouve :
2
P(X, = 0) = 3_P(X, = By, (Xoss = O
k=0
1
1. La fonction (t — (1—|—t2)2) est continue sur [0, 400 par théorémes opératoires. Or, d’aprés la description de Iexpérience, on a :
1 1 1
Vit € [0, +o0f, 0 < < . Pix,=0)(Xnt1 =0) =0, Py, =1)(Xnt1 =0) = 5, Prx,=2(Xnt1=0)=0.
(1+12)2 = 14¢2 2
oo dt 1
Or lintégrale / T converge. En effet, pour A > 0, on a : On en déduit ainsi que P(X,,11 =0) = §P(Xn = 1). Par le méme argument,
0

on trouve que :
At A T
—— = [arctan(t)] = arctan(4) — .
0

1
1+¢2 0 Ao 2 P(Xp41 = 1) = P(X, = 0) + P(X, = 2) et P(Xp 11 = 2) = JP(X,, = 1).
. . - o tee At
Par comparaison de fonctions positives, I'intégrale I = m converge. On en déduit que :
0

1 1 1
2. La fonction ¢ : ¢ n est C! et strictement décroissante sur |0, +oo[. En posant z = 7 P(X,41 =0) §P(Xn =1)
dt = — <2 De plus, li i 0. Le tl de ch t de Pt =1) | = | P = 0) +B(Xn = 2)
on .a = ——3- Deplus, limyp = +oo et limyp = e théoréme de changemen P(Xpi1 = 2) EIP’(X,Z _
variable assure alors que : 2
0 dx Heo % dx oo 22dx oo 424t 0 1/2 0 P(X, =0)
voo 2 (1 35)" oo @t (l4g)" Joo @EADT Joo (148 0 1/2 0) \P(x,=2)

La convergence de la seconde intégrale est garantie par le théoréme de changement de
variable. Ainsi : |Vn e N, Y11 = A2Y,. ‘
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b. Soit A € R. Or, toujours d’aprés la description de I’expérience et par équiprobabilité, on a :
-A 1/2 0 1 -2 1 k sii=k—1letk>1
rg(A—As)=rg| 1 —-x 1 |=rg[ 0 1/2 —A ‘ %_k
0 1/2 —A A 1/2 0 Pix, =) (Xn41 = 1) = S si=ktleth<N-1
1 - 1 0 sinon.
=rg |0 1 —2X ) ) R . )x .
0 1/2- A2 i\ On obtient alors le résultat attendu de la méme maniére qu’a la question 1.a :
I A 1 (Vn €N, Y,p1 = AY, |
=rg|(0 1 —=2Xx|[, T
0 0 QMW 3. Lorsque N =2, A= A,. Soit X = (w y z) € M3 (R).
X ecKer(AT - L) o ATxX = X
ot Q(A) = A+ 2\ ( —)\2) :)\(2—2>\2) =22 A -1(A+1). o 247X = 2X
Ainsi : A € Sp(42) & rg(ds — A3) < 3 & X € {-1;0;1}. 2 = 2

On en déduit que Ay € M3(R) admet trois valeurs propres distinctes.

As est donc diagonalisable. S Ttz=2y

On trouve rapidement que : 2y =12z
Sr=Y ==z
e dimKer(As + I3) = Vect
1 1
1 On en déduit que | Ker(A” — I3) = Vect 1
e dimKer(A;) = Vect O 1
Lorsque N =3, on a:
1 0 1/3 0 0 0 1 0 0
o dimKer(As — I3) = Vect | [ 2 1 0 2/3 0 T 1/3 0 2/3 0
A= et A =
1 023 0 1 0 2/3 0 1/3
On en déduit que Ay = PDP~* 0 0 1/3 0 0 0 1 0
. T
R T 1 1 Soit X =(z y 2z t) € Myi(R).
D=0 0 o0]etP=[-2 0 2 3y = 32
0 0 1 1 -1 1
22 =3
X eKer(AT —I) o ATX = X 05Ty
20+t =3z
2. Soient n € N et ¢ € [0, NJ. 3, — 3t
Puisque X,,(©2) = [0, N], la famille ([X,, = k])ogk<n forme un systéme complet
d’événements. D’aprés la formule des probabilités totales, on trouve : 1
N On en déduit que | Ker(A” — 1) = Vect }
P(Xpyq =1i) = ];)IP’(X,, = k)Px, =k (Xns1 = 1) .
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4. Remarquons que la somme des coefficients de chaque colonne de A vaut 1. Ainsi
la somme des coefficients de chaque ligne de A” vaut 1.

1
On en déduit que le vecteur colonne X = | @ | € My41(R) vérifie AX = X.
1
Puisqu’il est non nul, c’est un vecteur propre de AT, associé a la valeur propre 1.

5. Puisque 1 est valeur propre de A7, alors la matrice A7 — I3 n’est pas inversible.
Or (A—1Iny1)T = AT — I3. La matrice (A — Ix,1)T n’est donc pas inversible.
On en déduit que sa transposée, la matrice A — In41, est aussi non inversible,
impliquant ainsi que 1 est valeur propre de A.

I1I. Détermination de ’espérance de la variable aléatoire X,

1. A chaque tour, on ne peut retirer ou ajouter une seule boule a I'urne U;.
Les seules valeurs que peut prendre la variable X, ;1 — X, sont 1 et -1.

2. On commence par remarquer que les variables aléatoires X,, et X, +1 — X,, sont
finies donc admettent chacune une espérance.
En appliquant la formule des probabilités totales avec le systéme complet
d’événements ([X,, = k])refo,n], on obtient :

I
M=

IP)()(n-‘,-l - Xn = _1) P(Xn = k)P[Xn:Ic] (Xn—i-l - Xn = _1)

>
Il

0

I
] =

P(Xy =k)Pix,—p)(Xny1 =k —1)

k=0
Nk
=> P =k)  (car Pix, g (Xn41 = —1) = 0)
k=1
N

(e}

1

=% > kP(X, = k)
1
N

D’aprés la question précédente, on a :
1
P X1 —-Xn=1)=1-PXp1 —X,,=-1)=1- NE(X,L)

Ainsi, par définition de ’espérance de X,, 11 — X,,, on a :

E(Xnt1 — Xp) =P(Xpg1 — Xn=1) = P(Xpy1 — Xp = —1) =1 — —E(X,).

3. D’aprés la question précédente, on a :
Vn c N, E(Xn+1) = —

La suite (E(X,))nen est donc arithmético-géométrique. Posons, pour tout entier

naturel n, u, = E(X,,) —

N -2
N

5 Ainsi, la suite (up)nen est géométrique de raison

N
et de premier terme uy = E(Xp) — 5 On en déduit que :

e u = (552) (3ot - )

Ainsi :

2 2

Wn e N, B(X,) = ¥ + (NNQ)n (E(Xo) - N) .

4. Puisque —1 <

N=2 1 il vient li N-2 n—Ot"'
N 71 vien que 1m N = et ainsi :

n——+oo

lim E(X,) =

n—-+o0o

N
5

On en déduit qu’aprés un grand nombre de tours, les urnes U; et Us contien-

dront en moyenne autant de boules.

III. Etude de la probabilité stationnaire

1. Montrons le résultat par récurrence double sur k € [0, n].

N
Puisque ( 0)3:0 = T, le résultat est vrai pour k = 0. En lisant la premiére ligne

1 N
du systeme AX = X, on obtient le = xg,i.e. x1 = Nxg = ( ] )xo. Le résultat

est donc vrai pour k£ = 1.
. N N
Soit k € [2,n]. Supposons que x_o = To et rp_q1 = Z0.
k—2 k—1
La lecture de la k-éme ligne de systéeme AX = X fournit I’égalité suivante

N—-k+2

Tp— — T = Th_1.
N k2+Nk k—1
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On en déduit que :

- 1x N+2—-k
=—Tp |- ——————Tf_
k= Tk A k—2
1/ N N+2-k( N \ ,
=z <k B 1) T~ (k B 2) xo (par hypothése de récurrence)

N N
- (k!(N+ 1 k) k(k—2)(N —k+ 1)!) o
B ( kN (k — l)N!)
= I X0

E(N —k)! k(N —k)

()

ce qui conclut la récurrence. Ainsi :

Vk € [[O,N]], T = (Jk\jv){l}o

2. On sait que 1 est valeur propre de A donc dim E; > 1.
D’aprés la question précédente, F1 C Vect(u), ou :

()
()
On en déduit que

3. D’aprés la formule du biné6me de Newton, on a :

o
4. Soit m = : € E;. D’aprés la question précédente,

TN

™o N
€ F tel que Zﬂ'k =1, il s’agit du
k=0

Il existe donc un unique vecteur m =

TN
vecteur vérifiant

1 /N
Vk € [0,N], m = 2N(}£>

et ror == L ()= (M) () ()"

1
La variable X, suit donc la loi binomiale de paramétres N et 3 et :

. Puisque :

E(Xo) = g ot V(Xo) = %

. On suppose que X suit la méme loi que X,,. Montrons par récurrence que pour

1
tout n € N, X, suit la loi binomiale de paramétre N et 3
Le résultat est vrai pour n = 0 par hypothése.

1
Soit n € N. On suppose que X,, suit la loi binomiale de paramétres NV et —. Cela

signifie que Y,, = 7. Puisque 7w € Ey, Y11 = AY,, = Ax = 7 (le vecteur 7 est
vecteur propre associé a la valeur propre 1). Ainsi X,,4; suit la loi binomiale de

paramétres N et 3 ce qui conclut la récurrence.

Si X suit la loi binomiale de paramétres N et %, alors pour tout n € N, la variable
X, suit la loi binomiale de paramétres N et %

Si le nombre initial de boules dans 'urne 1 suit la loi stationnaire (la loi binomiale

1
de paramétres N et 5), le nombre de boules dans 'urne 1 suivra encore cette loi

a chaque tour.

‘ Exercice 4 (Oraux Agro-Véto 2021) ‘

. La fonction G est dérivable sur |0, 1[ par théorémes opératoires et :

1N T R Sk T _
Vxe]OJ[,G(m)—lnx—i—x In(1 — ) l—x_ln<1—x>_g($)'

La fonction G est donc bien une primitive de g sur ]0,1][.
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1
b. Soit A > 0. Les fonctions u:x — x et v:x — —Xe’m sont C! sur [0, +o0] et :

Vo € [0, 400], u/(x) =1 et v'(z) = e,

Remarquons que lim uv = 0 par croissances comparées. Par intégration par par-
—+oo

+o0 1
ties, I'intégrale a étudier est de méme nature que l'intégrale I = / ——e M dg.
0

Soit A > 0.
4 1

/A_]' 7)\md _ i —Az N -
; e T =3¢ At AT

“+ o0
Puisque l'intégrale I converge, 'intégrale / ze ™ dz converge et :
0

too +oo oo g 1
Y _ T\ Y _
/0 ze dxr = [—Xe ”}O —/O —Xe ’”dx—ﬁ.

2. La fonction f est continue et positive sur R. Soit A €] — 00,0] et B € [0, 4+o0].

0 1 1% 1 1 1
INCES e

B B
1 1 1 1
do=|——| =—" 2 5 =
/Of(x) v [14—6—40 1+e B 2Bostoo 2

e — H —
A 2 1+€_A A——oo 2

On en déduit que 'intégrale / f converge et vaut 1, et ainsi que f est une densité de
R
probabilité.

3. Pour tout réel x, on a :

U U e’ e’ 1
P(ln(——)<z)=P <) =P (U< _ _
(n(1U> x) (1U e) (U 1+em) lter 1teo

X

U
puisque €]0,1]. La fonction de répartition de In (1(]) est C! sur R par

1+e® _
théoréme opératoires ; In -0 est donc & densité, de densité donnée par la fonc-
tion
67113

) et X suivent donc la méme loi.

U
L iables aléatoires In [ ——
es variables aléatoires In (1 T

6.

import numpy as np
import random as rd

def simule_X(Q):
u = rd.random()
return np.log(u/(1—u))

. D’aprés le théoréme du transfert, étudier I'existence de E(X) revient a étudier la con-

vergence de l'intégrale
1
/ In <u) du.
0 1—u

Remarquons que pour tout u €]0, 1], on a :

1
ln( v )20@ Y 21@u>17u@u>§.

1—u
1n< Y >
1—u

1 1 1
U 2 U 2
In (M)’du— —/A In (1”) du = —{ulnu—&—(l—u)ln(l—u)}A1:61112
B U B U B
/ In ()‘du:/ In () du = [ulnu—l—(l—u)ln(l—u)} — In2.
1 1—wu 1 1—u 1 B—0

1
On en déduit que lintégrale In

Remarquons que la fonction ¢ +— est continue sur |0, 1[. Soit A €]0, 1].

-

assurant

du converge absolument,

I’existence de I’espérance de X. D’aprés les calculs précédents,

E(X):/2111<u> du+/ 11n<“> du=—1n2+1In2=0.

x —x
< ze™®. De plus, la fonction x +—
= P 1+e2
400
xe~* dx converge d’aprés la question 1.b

xre
a. Pour tout x > 0, 0 < est con-

S l4e
tinue sur [0, +oo[. Or lintégrale

0
(ou en tant qu’espérance de la loi exponentielle de paramétre 1). Par comparaison
re *
14+e "

+o00
de fonctions positives, I'intégrale / dz est convergente.
0
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—

e
b. Les fonction u : 2+ 2% et v : x Tre= sont C! sur R, et :
e

question 1.b.

n +OO
e’ (=1)* ze”FHDZ g
Ve e Ry, v'(z) =2z et v/ (2) = ———. Z
+ ( ) ( ) (1_'_6_1)2 =0 0
+o00 n &
Puisque Lirm uv = 0 (par croissances comparées), on trouve par intégration par = / xe Z (—eﬂ”) dx par linéarité
o0

0 k=0

parties que

+o0 1—(—e = n+1
= / ace_”# de (Vz>0,—e ™ #1)
0

/-‘rOO 2Qre~ T 4 $2e—x +o0 N /+<>o $26_”c d /+oc IEQE_‘E d 1 + e
€r = = aATr = —— 5 dx
o lte* 1+e ], o (I+e®)? o (I+e )2 oo ge i1 [T zem (22
= ——dz —(-1) — dz.
0 1 + e~ 0 1 + e~
(la convergence de la seconde intégrale étant assurée par le théoréme d’intégration
par parties). La convergence de la derniére intégrale est assurée par linéarité : toutes les autres

c. D’aprés le théoréme du transfert, étudier 'existence de E (X 2) revient a étudier intégrales convergent. On a donc bien :

I'intégrale
+o00 +o00 —x +oo —x n +o0
/ oo / 2 4 / T e = Z(_l)k/ e (07 g 4 ]
—00 0 l+e k=0 0

—oo (1+e7)
Or l'intégrande est ici paire :

—x
,TQ ¢
2

(1 te)

mef(n+2)a:

—(—=) z x - e. Soit n € N. Pour tout réel z > 0, ——— < ze~ (2% Par croissance de
Vr eR, (—z)? c 5 = a? c s =a? < 5 = a? < 5 - . l4e® .
(14 e () (1+4e7) e?r (e~ 4+ 1) (14+e®) l'intégrale (la convergence des deux intégrales a déja été prouvée) :
+oo —x +o00 —x +oo xef(n+2):z: +oo 1
Puisque l'intégrale / x2672 dz converge, / x2€72 dx con- / ————dz < / ze” ("7 Qg = g
0 (14 e 2) oo (14e®) 0 L+e 0 (n+2)
verge par parité, assurant I'existence de E(X?), et :
1
Too _x +o0 —a too — On en déduit que |I,| < —— (par positivité de l'intégrale) puis que I,, tend
E(X?) = 2 ¢ dr=2 2 °  _qw=4af X _q (n +2)2
(X7) = - z 1+ e‘w)2 T = 0 x 1+ e—””)z T = o 14+e= L. vers 0 par théoréme d’encadrement. Par passage a la limite de la relation 6.d, on
trouve que :
Puisque X admet un moment d’ordre 2, X admet une variance, donnée par la "
formule de Konig-Huygens : /+°° xe " do — ZOO (—1)k
0 l1+e® 7k0(k+1)2.
+o0 re~ "
V(X)=E(X?) -E(X)? = 4/ ———du.
0 lte Remarque : cela prouve dans le méme temps la convergence de la série ci-dessus
(méme si on le savait déja car elle converge absolument en temps que série de
d. Soit n € N. Toutes les intégrales de la somme ci-dessous convergent d’apreés la référence).
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f. Soit N € N*.

2N+1 (71)]6

k=0

2 G

On en déduit que |V(X) =

S~ (D
_ 2
k=1
2N 2N
-y By B
k2 k2
k=1 k=1
k pair k impair
- 2 1.2
= (2p) =k
k impair
N 2N
1 1 1
=12 2t > =
p=1 k=1
k impair
1 i L N1 &1
— 7 2 2 .2
4 p=1 p k=1 k k=1 k
k pair
N 2N
1 1 1 I o
= = — — — —— 4 — = —
2;;92 +k:1 B Notee 1276 12
“+oo
- 42 (=1" - ™
AR




