
Mathématiques Corrigé du DS 4 BCPST 2 Jean-Baptiste Say

Exercice 1

1. cf. TP sur les tris.

2. On construit une liste, initialement vide, des éléments déjà vus. Lorsqu’on lit un élé-
ment de la liste, on vérifie qu’il n’est pas déjà dans la liste des éléments déjà vus.
Lorsque le parcours de la liste est terminé sans avoir renvoyé True, c’est qu’on n’a
jamais rencontré un élément se répétant ; on renvoie donc False.

def repetition(L):
deja_vus = []

for x in L:
if x in deja_vus:

return True
else:

deja_vus.append(x)

return False

Exercice 2

1. La fonction
(
t 7→ 1

(1 + t2)2

)
est continue sur [0,+∞[ par théorèmes opératoires.

∀t ∈ [0,+∞[, 0 6
1

(1 + t2)2
6

1

1 + t2
.

Or l’intégrale
∫ +∞

0

dt

1 + t2
converge. En effet, pour A > 0, on a :∫ A

0

dt

1 + t2
=
[

arctan(t)
]A
0

= arctan(A) −→
A→+∞

π

2
.

Par comparaison de fonctions positives, l’intégrale I =

∫ +∞

0

dt

(1 + t2)2
converge.

2. La fonction ϕ : t 7→ 1

t
est C1 et strictement décroissante sur ]0,+∞[. En posant x =

1

t
,

on a dt = −dx

x2
. De plus, lim

0+
ϕ = +∞ et lim

+∞
ϕ = 0. Le théorème de changement de

variable assure alors que :

I =

∫ 0

+∞
− dx

x2
(
1 + 1

x2

)2 =

∫ +∞

0

x2 dx

x4
(
1 + 1

x2

)2 =

∫ +∞

0

x2 dx

(x2 + 1)
2 =

∫ +∞

0

t2 dt

(1 + t2)
2 .

La convergence de la seconde intégrale est garantie par le théorème de changement de
variable.

3. D’après la question précédente, on a (par linéarité et d’après les calculs faits en 1) :

2I =

∫ +∞

0

dt

(1 + t2)2
+

∫ +∞

0

t2 dt

(1 + t2)
2 =

∫ +∞

0

(1 + t2) dt

(1 + t2)
2 =

∫ +∞

0

dt

1 + t2
=
π

2

Ainsi : I =
π

4
.

Exercice 3 (Agro-Véto MCR 2018)

I. Matrice de transition

1. a. Soit n ∈ N. Puisque Xn(Ω) = J0, 2K, la famille ([Xn = k])06k62 forme un
système complet d’événements. D’après la formule des probabilités totales,
on trouve :

P(Xn+1 = 0) =

2∑
k=0

P(Xn = k)P[Xn=k](Xn+1 = 0)

Or, d’après la description de l’expérience, on a :

P[Xn=0](Xn+1 = 0) = 0, P[Xn=1](Xn+1 = 0) =
1

2
, P[Xn=2](Xn+1 = 0) = 0.

On en déduit ainsi que P(Xn+1 = 0) =
1

2
P(Xn = 1). Par le même argument,

on trouve que :

P(Xn+1 = 1) = P(Xn = 0) + P(Xn = 2) et P(Xn+1 = 2) =
1

2
P(Xn = 1).

On en déduit que :

P(Xn+1 = 0)
P(Xn+1 = 1)
P(Xn+1 = 2)

 =


1

2
P(Xn = 1)

P(Xn = 0) + P(Xn = 2)
1

2
P(Xn = 1)


=

0 1/2 0
1 0 1
0 1/2 0

P(Xn = 0)
P(Xn = 1)
P(Xn = 2)


Ainsi : ∀n ∈ N, Yn+1 = A2Yn.
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b. Soit λ ∈ R.

rg(A− λI3) = rg

−λ 1/2 0
1 −λ 1
0 1/2 −λ

 = rg

 1 −λ 1
0 1/2 −λ
−λ 1/2 0


= rg

1 −λ 1
0 1 −2λ
0 1/2− λ2 λ


= rg

1 −λ 1
0 1 −2λ
0 0 Q(λ)

 ,

où Q(λ) = λ+ 2λ

(
1

2
− λ2

)
= λ

(
2− 2λ2

)
= −2λ(λ− 1)(λ+ 1).

Ainsi : λ ∈ Sp(A2) ⇔ rg(A2 − λI3) < 3 ⇔ λ ∈ {−1; 0; 1}.
On en déduit que A2 ∈ M3(R) admet trois valeurs propres distinctes.
A2 est donc diagonalisable.
On trouve rapidement que :

• dim Ker(A2 + I3) = Vect

 1
−2
1


• dim Ker(A2) = Vect

 1
0
−1


• dim Ker(A2 − I3) = Vect

1
2
1

.

On en déduit que A2 = PDP−1 où :

D =

−1 0 0
0 0 0
0 0 1

 et P =

 1 1 1
−2 0 2
1 −1 1

 .

2. Soient n ∈ N et i ∈ J0, NK.
Puisque Xn(Ω) = J0, NK, la famille ([Xn = k])06k6N forme un système complet
d’événements. D’après la formule des probabilités totales, on trouve :

P(Xn+1 = i) =

N∑
k=0

P(Xn = k)P[Xn=k](Xn+1 = i)

Or, toujours d’après la description de l’expérience et par équiprobabilité, on a :

P[Xn=k](Xn+1 = i) =


k

N
si i = k − 1 et k > 1

N − k
N

si i = k + 1 et k 6 N − 1

0 sinon.

On obtient alors le résultat attendu de la même manière qu’à la question 1.a :

∀n ∈ N, Yn+1 = AYn.

3. Lorsque N = 2, A = A2. Soit X =
(
x y z

)T ∈M3,1(R).

X ∈ Ker(AT − I3)⇔ AT2X = X

⇔ 2AT2X = 2X

⇔


2y = 2x

x+ z = 2y

2y = 2z

⇔ x = y = z.

On en déduit que Ker(AT − I3) = Vect

1
1
1

 .

Lorsque N = 3, on a :

A =


0 1/3 0 0
1 0 2/3 0
0 2/3 0 1
0 0 1/3 0

 et AT =


0 1 0 0

1/3 0 2/3 0
0 2/3 0 1/3
0 0 1 0


Soit X =

(
x y z t

)T ∈M4,1(R).

X ∈ Ker(AT − I4)⇔ ATX = X ⇔


3y = 3x

x+ 2z = 3y

2y + t = 3z

3z = 3t

⇔ x = y = z = t

On en déduit que Ker(AT − I4) = Vect




1
1
1
1


 .
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4. Remarquons que la somme des coefficients de chaque colonne de A vaut 1. Ainsi
la somme des coefficients de chaque ligne de AT vaut 1.

On en déduit que le vecteur colonne X =

1
...
1

 ∈ MN+1(R) vérifie AX = X.

Puisqu’il est non nul, c’est un vecteur propre de AT , associé à la valeur propre 1.
5. Puisque 1 est valeur propre de AT , alors la matrice AT − I3 n’est pas inversible.

Or (A− IN+1)T = AT − I3. La matrice (A− IN+1)T n’est donc pas inversible.
On en déduit que sa transposée, la matrice A − IN+1, est aussi non inversible,
impliquant ainsi que 1 est valeur propre de A.

II. Détermination de l’espérance de la variable aléatoire Xn

1. À chaque tour, on ne peut retirer ou ajouter une seule boule à l’urne U1.
Les seules valeurs que peut prendre la variable Xn+1 −Xn sont 1 et -1.

2. On commence par remarquer que les variables aléatoires Xn et Xn+1 −Xn sont
finies donc admettent chacune une espérance.
En appliquant la formule des probabilités totales avec le système complet
d’événements ([Xn = k])k∈J0,NK, on obtient :

P(Xn+1 −Xn = −1) =

N∑
k=0

P(Xn = k)P[Xn=k](Xn+1 −Xn = −1)

=

N∑
k=0

P(Xn = k)P[Xn=k](Xn+1 = k − 1)

=

N∑
k=1

k

N
P(Xn = k) (car P[Xn=0](Xn+1 = −1) = 0)

=
1

N

N∑
k=0

kP(Xn = k)

=
1

N
E(Xn).

D’après la question précédente, on a :

P(Xn+1 −Xn = 1) = 1− P(Xn+1 −Xn = −1) = 1− 1

N
E(Xn).

Ainsi, par définition de l’espérance de Xn+1 −Xn, on a :

E(Xn+1 −Xn) = P(Xn+1 −Xn = 1)− P(Xn+1 −Xn = −1) = 1− 2

N
E(Xn).

3. D’après la question précédente, on a :

∀n ∈ N, E(Xn+1) =
N − 2

N
E(Xn) + 1.

La suite (E(Xn))n∈N est donc arithmético-géométrique. Posons, pour tout entier

naturel n, un = E(Xn) − N

2
. Ainsi, la suite (un)n∈N est géométrique de raison

N − 2

N
et de premier terme u0 = E(X0)− N

2
. On en déduit que :

∀n ∈ N, un =

(
N − 2

N

)n(
E(X0)− N

2

)
.

Ainsi :

∀n ∈ N, E(Xn) =
N

2
+

(
N − 2

N

)n(
E(X0)− N

2

)
.

4. Puisque −1 <
N − 2

N
< 1, il vient que lim

n→+∞

(
N − 2

N

)n
= 0 et ainsi :

lim
n→+∞

E(Xn) =
N

2
.

On en déduit qu’après un grand nombre de tours, les urnes U1 et U2 contien-
dront en moyenne autant de boules.

III. Étude de la probabilité stationnaire

1. Montrons le résultat par récurrence double sur k ∈ J0, nK.

Puisque
(
N

0

)
x0 = x0, le résultat est vrai pour k = 0. En lisant la première ligne

du système AX = X, on obtient
1

N
x1 = x0, i.e. x1 = Nx0 =

(
N

1

)
x0. Le résultat

est donc vrai pour k = 1.

Soit k ∈ J2, nK. Supposons que xk−2 =

(
N

k − 2

)
x0 et xk−1 =

(
N

k − 1

)
x0.

La lecture de la k-ème ligne de système AX = X fournit l’égalité suivante

N − k + 2

N
xk−2 +

k

N
xk = xk−1.

3
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On en déduit que :

xk =
1

k
xk−1 −

N + 2− k
k

xk−2

=
1

k

(
N

k − 1

)
x0 −

N + 2− k
k

(
N

k − 2

)
x0 (par hypothèse de récurrence)

=

(
N !

k!(N + 1− k)!
− N !

k(k − 2)!(N − k + 1)!

)
x0

=

(
kN !

k!(N − k)!
− (k − 1)N !

k!(N − k)!

)
x0

=

(
n

k

)
x0,

ce qui conclut la récurrence. Ainsi :

∀k ∈ J0, NK, xk =

(
N

k

)
x0.

2. On sait que 1 est valeur propre de A donc dimE1 > 1.
D’après la question précédente, E1 ⊂ Vect(u), où :

u =


(
n
0

)
...(
n
n

)
 .

On en déduit que dimE1 = 1.

3. D’après la formule du binôme de Newton, on a :

S =

N∑
k=0

(
N

k

)
=

N∑
k=0

(
N

k

)
1k1N−k = 2N .

4. Soit π =

π0
...
πN

 ∈ E1. D’après la question précédente,

N∑
k=0

πk = π0

N∑
k=0

(
N

k

)
= 2Nπ0.

Il existe donc un unique vecteur π =

π0
...
πN

 ∈ E1 tel que
N∑
k=0

πk = 1, il s’agit du

vecteur vérifiant

∀k ∈ J0, NK, πk =
1

2N

(
N

k

)
.

5. Puisque :

∀k ∈ J0, NK, P(X∞ = k) =
1

2N

(
N

k

)
=

(
N

k

)(
1

2

)k (
1

2

)N−k
.

La variable X∞ suit donc la loi binomiale de paramètres N et
1

2
et :

E(X∞) =
N

2
et V (X∞) =

N

4
.

6. On suppose que X0 suit la même loi que X∞. Montrons par récurrence que pour

tout n ∈ N, Xn suit la loi binomiale de paramètre N et
1

2
.

Le résultat est vrai pour n = 0 par hypothèse.

Soit n ∈ N. On suppose que Xn suit la loi binomiale de paramètres N et
1

2
. Cela

signifie que Yn = π. Puisque π ∈ E1, Yn+1 = AYn = Aπ = π (le vecteur π est
vecteur propre associé à la valeur propre 1). Ainsi Xn+1 suit la loi binomiale de

paramètres N et
1

2
, ce qui conclut la récurrence.

Si X0 suit la loi binomiale de paramètres N et
1

2
, alors pour tout n ∈ N, la variable

Xn suit la loi binomiale de paramètres N et
1

2
.

Si le nombre initial de boules dans l’urne 1 suit la loi stationnaire
(
la loi binomiale

de paramètres N et
1

2

)
, le nombre de boules dans l’urne 1 suivra encore cette loi

à chaque tour.

Exercice 4 (Oraux Agro-Véto 2021)

1. a. La fonction G est dérivable sur ]0, 1[ par théorèmes opératoires et :

∀x ∈]0, 1[, G′(x) = lnx+
x

x
− ln(1− x)− 1− x

1− x
= ln

(
x

1− x

)
= g(x).

La fonction G est donc bien une primitive de g sur ]0, 1[.

4
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b. Soit λ > 0. Les fonctions u : x 7→ x et v : x 7→ − 1

λ
e−λx sont C1 sur [0,+∞[ et :

∀x ∈ [0,+∞[, u′(x) = 1 et v′(x) = e−λx.

Remarquons que lim
+∞

uv = 0 par croissances comparées. Par intégration par par-

ties, l’intégrale à étudier est de même nature que l’intégrale I =

∫ +∞

0

− 1

λ
e−λx dx.

Soit A > 0. ∫ A

0

− 1

λ
e−λx dx =

[
1

λ2
e−λx

]A
0

→
A→+∞

− 1

λ2
.

Puisque l’intégrale I converge, l’intégrale
∫ +∞

0

xe−λx dx converge et :

∫ +∞

0

xe−λx dx =
[
−x
λ
e−λx

]+∞
0
−
∫ +∞

0

− 1

λ
e−λx dx =

1

λ2
.

2. La fonction f est continue et positive sur R. Soit A ∈]−∞, 0] et B ∈ [0,+∞[.∫ 0

A

f(x) dx =

[
1

1 + e−x

]0
A

=
1

2
− 1

1 + e−A
−→

A→−∞

1

2∫ B

0

f(x) dx =

[
1

1 + e−x

]B
0

=
1

1 + e−B
− 1

2
−→

B→+∞

1

2
.

On en déduit que l’intégrale
∫
R
f converge et vaut 1, et ainsi que f est une densité de

probabilité.

3. Pour tout réel x, on a :

P
(

ln

(
U

1− U

)
6 x

)
= P

(
U

1− U
6 ex

)
= P

(
U 6

ex

1 + ex

)
=

ex

1 + ex
=

1

1 + e−x

puisque
ex

1 + ex
∈]0, 1[. La fonction de répartition de ln

(
U

1− U

)
est C1 sur R par

théorème opératoires ; ln

(
U

1− U

)
est donc à densité, de densité donnée par la fonc-

tion

g : x 7→ e−x

(1 + e−x)
2 = f(x).

Les variables aléatoires ln

(
U

1− U

)
et X suivent donc la même loi.

4.
import numpy as np
import random as rd

def simule_X():
u = rd.random()

return np.log(u/(1−u))

5. D’après le théorème du transfert, étudier l’existence de E(X) revient à étudier la con-
vergence de l’intégrale ∫ 1

0

∣∣∣∣ln( u

1− u

)∣∣∣∣du.
Remarquons que pour tout u ∈]0, 1[, on a :

ln

(
u

1− u

)
> 0⇔ u

1− u
> 1⇔ u > 1− u⇔ u >

1

2
.

Remarquons que la fonction t 7→
∣∣∣∣ln( u

1− u

)∣∣∣∣ est continue sur ]0, 1[. Soit A ∈]0, 1[.

∫ 1
2

A

∣∣∣∣ln( u

1− u

)∣∣∣∣ du = −
∫ 1

2

A

ln

(
u

1− u

)
du = −

[
u lnu+ (1− u) ln(1− u)

] 1
2

A
−→
A→0

ln 2∫ B

1
2

∣∣∣∣ln( u

1− u

)∣∣∣∣ du =

∫ B

1
2

ln

(
u

1− u

)
du =

[
u lnu+ (1− u) ln(1− u)

]B
1
2

−→
B→0

ln 2.

On en déduit que l’intégrale
∫ 1

0

ln

(
u

1− u

)
du converge absolument, assurant

l’existence de l’espérance de X. D’après les calculs précédents,

E(X) =

∫ 1
2

0

ln

(
u

1− u

)
du+

∫
1
2

1 ln

(
u

1− u

)
du = − ln 2 + ln 2 = 0.

6. a. Pour tout x > 0, 0 6
xe−x

1 + e−x
6 xe−x. De plus, la fonction x 7→ xe−x

1 + e−x
est con-

tinue sur [0,+∞[. Or l’intégrale
∫ +∞

0

xe−x dx converge d’après la question 1.b

(ou en tant qu’espérance de la loi exponentielle de paramètre 1). Par comparaison

de fonctions positives, l’intégrale
∫ +∞

0

xe−x

1 + e−x
dx est convergente.

5
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b. Les fonction u : x 7→ x2 et v : x 7→ e−x

1 + e−x
sont C1 sur R+ et :

∀x ∈ R+, u
′(x) = 2x et v′(x) = − e−x

(1 + e−x)2
.

Puisque lim
+∞

uv = 0 (par croissances comparées), on trouve par intégration par
parties que

∫ +∞

0

2xe−x

1 + e−x
dx =

[
x2e−x

1 + e−x

]+∞
0

+

∫ +∞

0

x2e−x

(1 + e−x)2
dx =

∫ +∞

0

x2e−x

(1 + e−x)2
dx

(la convergence de la seconde intégrale étant assurée par le théorème d’intégration
par parties).

c. D’après le théorème du transfert, étudier l’existence de E
(
X2
)
revient à étudier

l’intégrale ∫ +∞

−∞

∣∣∣∣∣x2 e−x

(1 + e−x)
2

∣∣∣∣∣ dx =

∫ +∞

−∞
x2

e−x

(1 + e−x)
2 dx.

Or l’intégrande est ici paire :

∀x ∈ R, (−x)2
e−(−x)(

1 + e−(−x)
)2 = x2

ex

(1 + ex)
2 = x2

ex

e2x (e−x + 1)
2 = x2

e−x

(1 + e−x)
2 .

Puisque l’intégrale
∫ +∞

0

x2
e−x

(1 + e−x)
2 dx converge,

∫ +∞

−∞
x2

e−x

(1 + e−x)
2 dx con-

verge par parité, assurant l’existence de E(X2), et :

E(X2) =

∫ +∞

−∞
x2

e−x

(1 + e−x)
2 dx = 2

∫ +∞

0

x2
e−x

(1 + e−x)
2 dx = 4

∫ +∞

0

xe−x

1 + e−x
dx.

Puisque X admet un moment d’ordre 2, X admet une variance, donnée par la
formule de König-Huygens :

V(X) = E
(
X2
)
− E(X)2 = 4

∫ +∞

0

xe−x

1 + e−x
dx.

d. Soit n ∈ N. Toutes les intégrales de la somme ci-dessous convergent d’après la

question 1.b.

n∑
k=0

(−1)k
∫ +∞

0

xe−(k+1)x dx

=

∫ +∞

0

xe−x

(
n∑
k=0

(
−e−x

)k)
dx par linéarité

=

∫ +∞

0

xe−x
1− (−e−x)

n+1

1 + e−x
dx (∀x > 0,−e−x 6= 1)

=

∫ +∞

0

xe−x

1 + e−x
dx− (−1)n+1

∫ +∞

0

xe−(n+2)x

1 + e−x
dx.

La convergence de la dernière intégrale est assurée par linéarité : toutes les autres
intégrales convergent. On a donc bien :

∫ +∞

0

xe−x

1 + e−x
dx =

n∑
k=0

(−1)k
∫ +∞

0

xe−(k+1)x dx+ In.

e. Soit n ∈ N. Pour tout réel x > 0,
xe−(n+2)x

1 + e−x
6 xe−(n+2)x. Par croissance de

l’intégrale (la convergence des deux intégrales a déjà été prouvée) :

∫ +∞

0

xe−(n+2)x

1 + e−x
dx 6

∫ +∞

0

xe−(n+2)x dx =
1

(n+ 2)2

On en déduit que |In| 6
1

(n+ 2)2
(par positivité de l’intégrale) puis que In tend

vers 0 par théorème d’encadrement. Par passage à la limite de la relation 6.d, on
trouve que :

∫ +∞

0

xe−x

1 + e−x
dx =

+∞∑
k=0

(−1)k

(k + 1)2
.

Remarque : cela prouve dans le même temps la convergence de la série ci-dessus
(même si on le savait déjà car elle converge absolument en temps que série de
référence).
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f. Soit N ∈ N∗.

2N+1∑
k=0

(−1)k

(k + 1)2
= −

2N∑
k=1

(−1)k

k2

= −
2N∑
k=1
k pair

(−1)k

k2
−

2N∑
k=1

k impair

(−1)k

k2

= −
N∑
p=1

(−1)2p

(2p)2
+

2N∑
k=1

k impair

1

k2

= −1

4

N∑
p=1

1

p2
+

2N∑
k=1

k impair

1

k2

= −1

4

N∑
p=1

1

p2
+

2N∑
k=1

1

k2
−

2N∑
k=1
k pair

1

k2

= −1

2

N∑
p=1

1

p2
+

2N∑
k=1

1

k2
−→

N→+∞
−π

2

12
+
π2

6
=
π2

12
.

On en déduit que V(X) = 4

+∞∑
k=0

(−1)k

(k + 1)2
=
π2

3
.

* *
*
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