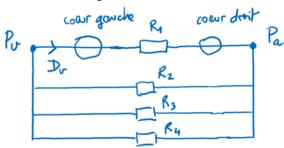
DS n°1 – Partie Physique - Correction

22. Circuit électrique modélisant la circulation sanguine :



- 23. Les résistances de chaque organe, autre que les poumons, sont en dérivation : $\frac{1}{R_s} = \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}$
- **24. 1.** Loi d'Ohm : u = Ri
- **24. 2.** D_v : débit volumique $\leftrightarrow i$: intensité

 R_s : résistance hydraulique $\leftrightarrow R$: résistance électrique

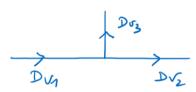
 $P_a - P_v$: différence de pression $\longleftrightarrow u$ (différence de potentiel): tension

25. Phase systolique:

d'après la loi des nœuds et l'analogie entre intensité et débit volumique : $D_{v1} = D_{v2} + D_{v3}$ où $D_{v3} = \frac{dV}{dt}$

On en déduit : $\frac{dV}{dt}$ =

$$D_{v1} - D_{v2}$$



Phase diastolique : le clapet étant fermé : $\boldsymbol{D}_{v1} = 0 \Longrightarrow \frac{dV}{dt} =$

 $-D_{n2}$

26. Pour un condensateur : $i = C \frac{du}{dt}$

Analogies:

 D_v : débit volumique $\longleftrightarrow i$: intensité

 C_0 : compliance $\leftarrow C$: capacité

 dP^* : différence (ici infinitésimale) de pression $\leftrightarrow u$: tension (d'après 24.2)

du serait rigoureusement analogue à d^2P^* mais cela correspond toujours à une différence infinitésimale de pression

27.
$$\frac{dV}{dt} = D_{v1} - D_{v2}$$
 avec : $D_{v2} = \frac{P^* - P_v}{R_s}$ et $\frac{dV}{dt} = C_0 \times \frac{dP^*}{dt}$
Il vient : $C_0 \times \frac{dP^*}{dt} = D_{v1} - \frac{P^* - P_v}{R_s} \Longrightarrow R_s C_0 \frac{dP^*}{dt} + (P^* - P_v) = R_s D_{v1}$

En remplaçant P^* par $P + P_v$, obtient : $R_s C_0 \frac{d(P + P_v)}{dt} + P = R_s D_{v1}$, P_v étant constant, on obtient : $R_s C_0 \frac{dP}{dt} + P = R_s D_{v1}$ $R_s D_{v1}$

28. D'après l'équation différentielle (1) précédente, $R_sC_0\frac{dP}{dt}$ est homogène à une pression, donc RC est homogène à un temps.

29.
$$R_s C_0 \frac{dP}{dt} + P = RD_{v1} \Longrightarrow \frac{dP}{dt} + \frac{P}{\tau} = \frac{RD_{v1}}{\tau}$$

La solution de l'équation différentielle s'écrit : $P(t) = K \times e^{-\frac{t}{\tau}} + B$ où $B = R_s D_{v1}$

$$A t=0, P(t=0) = P_1 \Longrightarrow K + B = P_1 \Longrightarrow K = P_1 - B = P_1 - R_s D_{v1}$$

On en déduit : $P(t) = (P_1 - R_s D_{v1}) \times e^{-\frac{t}{\tau}} + R_s D_{v1}$

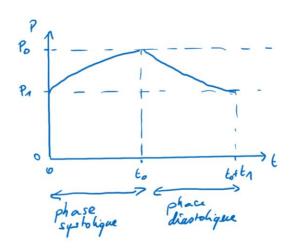
30.
$$P_0 = P(t = t_0) = (P_1 - R_s D_{v1}) \times e^{-\frac{t_0}{\tau}} + R_s D_{v1}$$

31. Dans la phase diastolique, le clapet est fermé, on a donc : $D_{v1} = 0$, l'équation différentielle devient : $\frac{dP}{dt} + \frac{P}{\tau} = 0$.

La solution s'écrit : $P(t) = K \times e^{-\frac{t}{\tau}}$ à t=0 (nouvelle origine des temps) : $P(t=0) = K = P_0$.

On en déduit : $P(t) = P_0 \times e^{-\frac{t}{\tau}}$

32.



- 33. La différence entre l'enregistrement de pression du patient et le modèle de Windkessel vient probablement du fait que le débit volumique D_{v1} n'est pas constant dans la phase systolique.
- 34. La pression artérielle systolique correspond à la pression artérielle maximale mesurée : $\Delta P_{\rm a,sys} \approx 120~mmHg$ La pression artérielle diastolique correspond à la pression artérielle minimale mesurée : $\Delta P_{\rm a,dia} \approx 80~mmHg$
- 35. $\Delta P_{\rm a,moy} = \frac{\Delta P_{\rm a,sys} + 2\Delta P_{\rm a,dia}}{3} = 96 \, mmHg$. Sur une période du signal de la mesure de la pression artérielle en fonction du temps ($\approx 1s$), la phase systolique dure approximativement deux fois moins de temps que la phase diastolique, ce qui justifie la formule utilisée pour déterminer la pression artérielle moyenne.
- **36.** $f = \frac{1}{T}$ avec $T \approx 1$ s (par battement), on en déduit $f \approx 1$ battements \cdot s⁻¹ = 60 battements \cdot min⁻¹.

37.
$$D_V = \frac{V_1}{\Delta t_{battement}} = \frac{V_1}{T} = V_1 \times f \implies V_1 = \frac{D_V}{f}$$
 l'AN donne : $V_1 = \frac{5.0}{60} = 8.3 \times 10^{-2} L = 83 \text{ mL}$

- **38.** Si le spectre de la pression artérielle ne contenait pas d'harmonique, le signal de la mesure de la pression artérielle en fonction du temps serait une constante (correspondante à la valeur moyenne). Par conséquent le spectre contient des harmoniques.
- **39.** Si l'on désire déterminer la pression artérielle moyenne (fréquence nulle), il faut supprimer tous les harmoniques donc appliquer un filtre passe-bas. Il faudrait une fréquence de coupure (si l'on suppose le filtre idéal) comprise entre 0 Hz et la fréquence du fondamental (ou harmonique de rang 1) soit 1 Hz.
- **40.** Voir cours :

 $LDM: v_e = v_R + v_s$

Loi sur R et C:
$$v_e = Ri_e + v_s = RC\frac{dv_s}{dt} + v_s \Rightarrow \frac{dv_s}{dt} + \frac{1}{RC}v_s = \frac{1}{RC}v_e$$

RSF, passage en complexe: $\frac{dv_s}{dt} + \frac{1}{RC}\frac{v_s}{v_s} = \frac{1}{RC}\frac{v_e}{v_s} \Rightarrow jC\omega v_s + \frac{1}{RC}\frac{v_s}{v_s} = \frac{1}{RC}\frac{v_e}{v_s} \Rightarrow \left(jC\omega + \frac{1}{RC}\right)v_s = \frac{1}{RC}\frac{v_e}{v_s}$

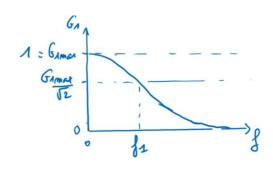
$$\Rightarrow \underline{H}_1 = \frac{v_s}{v_e} = \frac{1}{jC\omega + \frac{1}{RC}} = \frac{1}{1 + jRC\omega}$$

41.
$$G_1(\omega) = \left| \underline{H}_1 \right| = \frac{1}{\sqrt{1 + (RC\omega)^2}}$$

$$\lim_{\omega \to 0} G_1 = 1 = G_{1max}$$

$$\lim_{\omega \to +\infty} G_1 = 0$$

Le filtre ainsi constitué est un filtre passe-bas.



42.
$$G_1(\omega_C) = \frac{G_{1max}}{\sqrt{2}} \Rightarrow \frac{1}{\sqrt{1 + (RC\omega_C)^2}} = \frac{1}{\sqrt{2}} \Rightarrow \frac{1}{1 + (RC\omega_C)^2} = \frac{1}{2} \Rightarrow 1 + (RC\omega_C)^2 = 2 \Rightarrow (RC\omega_C)^2 = 1$$

$$\Rightarrow \omega_C = \frac{1}{RC} \Rightarrow f_1 = \frac{\omega_C}{2\pi} = \frac{1}{2\pi RC}$$
AN: $f_1 = 1,59 \text{ Hz}$

La fréquence de coupure est trop élevée par rapport à l'intervalle défini précédemment [0;1 Hz]

43.
$$G_2(\omega) = \left| \underline{H}_2 \right| = \frac{1}{\sqrt{(1 - R^2 C^2 \omega^2)^2 + (3RC\omega)^2}}$$

$$\lim_{\omega \to 0} G_2 = 1 = G_{1max}$$

$$\lim_{\omega \to +\infty} G_2 = 0$$

Le filtre ainsi constitué est bien un filtre passe-bas en accord avec la courbe de réponse en gain donnée en Figure 7.

44. Graphiquement, on peut estimer la fréquence de coupure du filtre F_2 : $f_2 \approx 0.7 \, Hz$, ce qui est en accord cette fois-ci avec l'intervalle désiré de la fréquence de coupure défini précédemment $[0;1 \, Hz]$. Le filtre F_2 sera plus efficace pour sélectionner la valeur moyenne de la mesure de pression artérielle (mais pas uniquement, le filtre n'étant pas idéal).

