Chapitre 10 : Transformations modélisées par des réactions de précipitation-solubilisation

I. Introduction

Certains composés ioniques peuvent se révéler peu solubles en solution aqueuse car difficilement solvatés. Un solide (ou précipité) peut alors apparaître dans le milieu et il s'établit un **équilibre**, dit de précipitation, **hétérogène**. La solution est alors dite **saturée**.

Exemples:

II. Produit de solubilité et solubilité

1. Produit de solubilité Ks

• <u>Définition</u>:

Le produit de solubilité, noté K_s , correspond à la constante d'équilibre de dissolution d'un solide ionique.

 K_s , comme toute constante d'équilibre, ne dépend que de la température T.

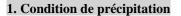
Exemples:

- $pK_S = log K_S$
- Si pKs est <u>élevé</u>, le précipité est

et inversement.

2. Notion de solubilité

• <u>Définition</u>:


La solubilité, en masse ou en quantité de matière, correspond à la masse ou à la quantité de matière maximale de soluté que l'on peut dissoudre dans 1 L de solvant.

La solubilité en masse est donnée en $g \cdot L^{-1}$, et la solubilité en quantité de matière en $mol \cdot L^{-1}$

$$AgCl_{(s)} = Ag^+ + Cl^-$$

$$(pK_S = 10,0)$$

III. Condition de précipitation et domaine d'existence d'un précipité

Exemple : $AgCl_{(s)} = Ag^+ + Cl^- (pK_S = 10,0)$

2. Domaine d'existence d'un précipité - Diagramme d'existence

On ne parle pas de domaine de prédominance : un précipité existe ou n'existe pas.

Exemple : on dispose d'1,0L d'une solution de nitrate d'argent $(Ag^++NO_3^-)$ à $C_0 = 1,0.10^{-2}$ mol/L. Quelle quantité d'ions chlorure, ajouté sans variation de volume, est nécessaire à l'apparition du précipité $AgCl_{(s)}$?

3. Application: Précipitation compétitive

Considérons une solution (S) saturée en chlorure de plomb (PbCl_{2 (s)} : $pK_{S1} = 4.8$). A la solution (S), est ajoutée, une solution aqueuse de nitrate d'argent (Ag⁺+Cl⁻). On indique que $pK_S(AgCl_{(s)})=pK_{S2}=10.0$. Prédire la réaction modélisant la transformation ayant lieu en solution.

IV. Facteurs influençant la solubilité

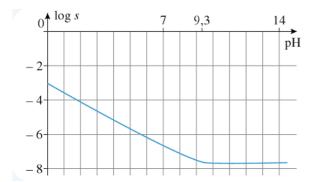
1. Température

2. Effet d'ion commun

Données: $pK_s(AgCl_{(s)}) = 10.0$

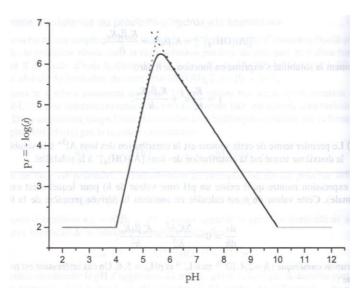
Calcul de la solubilité s' d'AgCl_(s) dans une solution aqueuse contenant déjà des ions chlorure à la concentration $C = 1,00.10^{-1} \text{mol/L}$.

3. Influence de la complexation


<u>Données</u>: pK_s (AgC)

$$pK_s(AgCl) = 10.0$$
 $\beta_2 = \beta(Ag(NH_3)_2^+) = 10^{7.2}$

Calcul de la solubilité s'' d'AgCl_(s) dans une solution aqueuse contenant déjà de l'ammoniac NH_3 à la concentration $C = 1,00.10^{-1} \text{mol/L}$.


4. Influence du pH: cas d'un anion basique

 $\underline{Donn\acute{e}s:}\ pK_a\ (HCN\ /\ CN^{\cdot})=9,3\ ;\ pK_s\ (AgCN)=15,8.$

5. Influence du pH: cas d'un précipité amphotère

<u>Données</u>: $pK_s(Al(OH)_3) = 33$; $\beta_4(Al(OH)_4) = 31$.

• Diagramme de prédominance :

•	Dissolution en milieu acide – pH de disparition du précipité :
•	Dissolution en milieu basique – pH de disparition du précipité :

Les questions à se poser à l'issue de ce chapitre

- Est-ce que je sais à quoi correspond le produit de solubilité ?
- Est-ce que je sais à quoi correspond la solubilité et ce que je sais comment la calculer ?
- Est-ce que je connais la condition de précipitation d'un solide ionique ?
- Est-ce que je sais établir le diagramme d'existence d'un solide ionique ?
- Est-ce que je sais prévoir qualitativement l'évolution de la solubilité d'un solide ionique suite à une modification de température, à l'introduction d'un ion commun ou d'un ligand ?
- Est-ce que je sais justifier qualitativement l'allure et exploiter une courbe de solubilité en fonction du pH?