
Le fer dans le plasma sanguin

Question simple

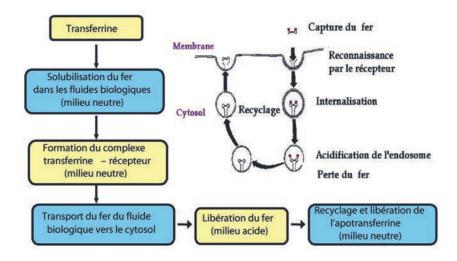
Principe et utilisation de la spectrophotométrie UV-visible

Question ouverte

Le fer sérique correspond à l'élément fer en circulation libre dans le **plasma sanguin** et non fixé à l'hémoglobine des globules rouges. Sa concentration normale est comprise entre 10 μmol.L⁻¹ et 30 μmol.L⁻¹. À l'état normal, le fer sérique est, pour sa quasi-totalité, sous forme d'ions ferriques Fe³⁺ liés à la transferrine, protéine capable de complexer les ions Fe³⁺ selon la réaction :

$$Tr + Fe^{3+} \rightarrow [FeTr]^{3+}$$
.

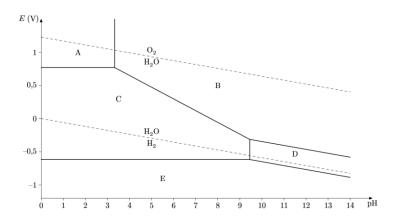
Une partie de la transferrine, notée M, est représentée dans le document 5

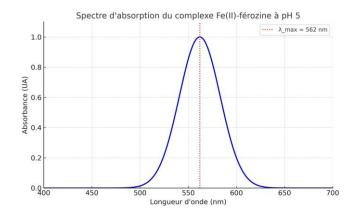

Déterminer, en exploitant le document 4 la concentration de fer sérique dans le sang analysé.

Proposer une synthèse de la molécule M à partir de la molécule A, d'éthène et de méthanol (document 5)

Document 1: le transferrine

- taux de fer dans le sang dans 100mL : de 10 à 30 μmol/L
- taux de transferrine dans 100mL : La transferrine est présente dans le sérum d'un sujet normal à une concentration de 200 à 300 mg par 100 ml.
- Masse molaire de la transferrine : 77000 g.mol⁻¹
- On constate une saturation à 30% de la transferrine
- Le pH sanguin est autour de 7,40


Document 2 : mécanisme d'action de la transferrine


Document 3 : diagramme potentiel pH du fer

La convention de tracé étant que la somme des concentrations des espèces dissoutes en solution est égale à $1\times 10^{-6}~\text{mol}\cdot\text{L}^{-1}$

Les espèces chimiques considérées sont $Fe_{(s)}$, $Fe^{2+}_{(aq)}$, $Fe^{3+}_{(aq)}$, $Fe(OH)_{2(s)}$ et $Fe(OH)_{3(s)}$.

Document 4

Document 4 : dosage colorimétrique du fer sérique dans le plasma humain

À pH = 5 et en présence de guanidine les ions Fe³⁺ sont libérés de la transferrine. Sous l'action de l'hydroxylamine, ils sont réduits en fer (II) qui forme alors un complexe coloré avec la ferrozine dont le maximum d'absorption se situe à 562 nm.

$$\begin{split} & [\text{FeTr}]^{3+} \xrightarrow{\text{guanidine-HCl}} \text{Fe}^{3+} \quad (\text{r\'eaction 1}) \\ & \text{Fe}^{3+} \xrightarrow{\text{hydroxylamin e}} \text{Fe}^{2+} \quad (\text{r\'eaction 2}) \\ & \text{Fe}^{2+} \xrightarrow{\text{ferrozine}} \text{complexe color\'e} \quad (\text{r\'eaction 3}) \end{split}$$

Les trois réactions sont considérées comme totales. La ferrozine est un ligand noté L^{2-} à pH = 5. Il faut trois ligands ferrozine pour complexer un ion Fe²⁺.

Réactif 1	Solution d'ions Fe^{3+} : $C_{\text{etal}} = 2,00 \text{ mg.L}^{-1}$
Réactif 2	chlorhydrate de guanidine 4,5 mol.L ⁻¹ hydroxylamine 230 mmol.L ⁻¹ tampon pH = 5
Réactif 3	ferrozine : $C_3 = 44.4 \text{ mmol.L}^{-1}$ tampon pH = 5

Solutions à préparer	Blanc réactif	Etalon	Blanc échantillon	Echantillon
Eau distillée	200 μL			
Réactif 1		200 μL		
Plasma du patient			200 μL	200 μL
Réactif 2			1 mL	
Solution de travail*	1 mL	1 mL		1 mL

^{*}Solution de travail : 40 mL de réactif 2 + 1,5 mL de réactif 3

- Exp 1 : on réalise le blanc à 562 nm avec le réactif 2 et on mesure l'absorbance du tube « blanc échantillon », $A_{blanc,ech} = 0,008$
- Exp 2 : on réalise le blanc à 562 nm avec le tube « blanc réactif » et on mesure l'absorbance du tube « échantillon », $A_{ech} = 0,115$
- Exp 3 : on réalise le blanc à 562 nm avec le tube « blanc réactif » et on mesure l'absorbance du tube « étalon », $A_{etalon} = 0.164$

Document 5

<u>Document 6</u> : banque de réactions

Transformation	Réactif
R	mcpba
CI CI R	Cl ₂
R HO OH	$\mathrm{H_2O,H^+}$
R OH R OH R	n-Pr ₄ N ⁺ ,RuO ₄ - (cat), NMO
$R \longrightarrow R_1 \longrightarrow R_2 \longrightarrow NH_2$	pH = 5

Corredion: le for dans le plusma sanguin Questien ouvale doc4. Exp1: Ablanc, esh = 0,008 correspond à l'absorbance du plasma à 1 = 562 mm Expa: Ach = A Fer- Periogine + A plusma =) Fech = El[Fe31] palient + Ablanc, ech Elle 31 Joulient = Pech - Ablung ech Exp3: Aétalen = El [Fe] étalen =) [Fe 31] patient = Alech - Ablunc, ech [Fe 31] étalen Même facteur de ditation pour exp 2el 3 [Fe31] étalen = 2.10-3 = 35,8 mml.L-1 =) [Fe31] palient = 0,115-0,008, 35,8= 93,4 limos.L" Ag: questions autour cliquemme E-pH. options = 7,4 => Fertite) devicuit ètre sous forme Felonz (1) mais excès de l'uns feriore solubilise Fer (+ 11) Fe 3+ + Tr = (Fe Tr) 3 kon 10

$$\frac{doe 5}{doute} = \frac{cl_0}{doute} (D')$$

$$= \frac{doe 5}{doute} (D')$$

$$= \frac{$$