

Moteur de Beau de Rochas

- 1. Donner le schéma du principe du fonctionnement d'un moteur capable de produire du travail mécanique à partir d'une source chaude à T_C et d'une source froide à T_F. On précisera le signe des différents transferts énergétiques.
- 2. Définir et exprimer le rendement de Carnot décrivant un cycle réversible en fonction de T_C et T_F.

Un moteur d'une automobile décrit le cycle réversible de Beau de Rochas ci-dessous. Les transformations AB et CD sont adiabatiques réversibles. On note $a = V_{MAX}/V_{MIN}$, le taux de compression. Le gaz est supposé parfait.

On rappelle la loi de Laplace au cours d'une transformation réversible adiabatique d'un gaz parfait : $TV^{\gamma-1} = cste$, où γ est un coefficient constant caractéristique du gaz parfait.

- **4.** Exprimer le travail total mis en jeu par cycle.
- 5. En déduire le rendement η du moteur en fonction des transferts thermiques puis en fonction des températures.
- **6.** Donner les expressions de T_B et T_C en fonction de T_A , T_D , a et γ .
- 7. Montrer que : $\eta = 1 a^{1-\gamma}$. Calculer le rendement pour a = 9 et $\gamma = 1,4$.