Chapitre 5 : Grandeurs de réaction – Premier principe appliqué aux transformations physico-chimiques

<u>Rappels</u>: Enthalpie: $\mathbf{H} = \mathbf{U} + \mathbf{PV}$

Pour une transformation (MONO) ISOBARE: $\Delta H = W' + Q \implies \Delta H = Q$ si W' = 0

I. Grandeur de réaction

1. Ecriture schématique d'une réaction chimique

Soit une réaction chimique s'écrivant schématiquement :

Exemple : Propulseur à eau oxygénée $2H_2O_{2(l)} \rightarrow 2H_2O_{(g)} + O_{2(g)}$

2. Expression de l'avancement chimique ξ

Exemple:

- Expression générale de l'avancement :
- Expression générale de l'avancement élémentaire :

3. Enthalpie libre de réaction

- Expression de dG:
- Enthalpie libre de réaction :

4. Généralisation aux autres fonctions d'état extensives : enthalpie de réaction et entropie de réaction

- Entropie de réaction :
- Enthalpie de réaction :

II. Grandeur standard de réaction

1. Etat standard

L'état standard d'un composé physico-chimique est défini par son état physique stable à la température T, sous la pression standard : $p^0 = 1$ bar = 10^5 Pa. Cet état peut être hypothétique.

	Fluide / Phase	Pression	Température	Concentration	Autre
Gaz	GP	$P^0 = 1 bar$	T		
Phase condensée	Phase condensée	$P^0 = 1 bar$	T		
(liquide ou solide)					
Soluté	Soluté	$P^0 = 1 bar$	T	$C^0 = 1 mol. L^{-1}$	Absence
					d'interactions
Solvant	Liquide pur	$P^0 = 1 bar$	T		

2. Définitions et conséquences

 Les grandeurs standards de réaction correspondent aux grandeurs de réaction, les constituants étant pris dans leur état standard:

$$\Delta_{r}G^{0}(T) = \sum_{i} \nu_{i} \mu_{i}^{0} \qquad \qquad \Delta_{r}S^{0}(T) = \sum_{i} \nu_{i} S_{m,i}^{0} \qquad \qquad \Delta_{r}H^{0}(T) = \sum_{i} \nu_{i} H_{m,i}^{0}$$

Smi⁰: entropie molaire standard absolue

- Remarque importante :
- Nature des réactions chimiques :

$$\Delta_r H^0 > 0$$
 :
$$\Delta_r G^0 > 0$$
 :
$$\Delta_r G^0 < 0$$
 :
$$\Delta_r G^0 < 0$$
 :
$$\Delta_r H^0 = 0$$
 :

• Exemples : dans le cas de la décomposition de l'eau oxygénée on a, à 25°C:

$$\Delta_r G^0 = -304 \, kJ \cdot mol^{-1}$$

$$\Delta_r H^0 = -196 \, kJ \cdot mol^{-1}$$

$$\Delta_r S^0 = 364 \, J \cdot K^{-1} \cdot mol^{-1}$$

2	Relation	antua	A C0	A 11 0	at A	C 0
.).	Keistion	entre	Art v.	$\Lambda_r H^*$	et A.	

•	Expression	•
•	EVANT COSTOR	•

• Approximation d'Ellingham :

4. Calcul de l'enthalpie standard de réaction à partir de l'enthalpie standard de formation

a. Enthalpie standard de formation Δ_fH⁰_i

• L'état standard de référence (ESR) <u>d'un élément</u> à la température T est l'état standard de son état d'agrégation le plus stable.

Exemples (à 25°C): Iode \rightarrow H \rightarrow C \rightarrow

• Enthalpie standard de formation :

Définition : L'enthalpie standard de formation, $\Delta_f H^0$, d'un composé chimique, correspond à l'enthalpie standard de la reaction de formation d'une mole de ce composé à partir des corps simples le constituant, pris dans leur état standard de référence.

Exemples: 1) $C_{(graphite)}$ + $O_{2(g)}$ = $O_{2(g)}$ = $O_{2(g)}$ $O_{2(g)}$ = $O_{2(g)}$ $O_{2(g)}$ ESR du carbone ESR de l'oxygène

2) $\Delta_{\rm r} H^0{}_2 = \Delta_{\rm f} H^0 \ ({\rm CH}_{4(g)})$

 $\Delta_{\rm r} H^0_3 = \Delta_{\rm f} H^0 ({\rm O}_{2({\rm g})})$

b. Loi de Hess:

• Exemple: $CaCO_{3(s)} = CaO_{(s)} + CO_{2(g)}$

Généralisation:

Remarque:

5. Application à l'étude de la réaction : $2H_2O_{2(l)} \rightarrow 2H_2O_{(g)} + O_{2(g)}$

Données (à 25°C):

Espèce chimique	$H_2O_{2(l)}$	$O_{2(g)}$	$H_2O_{(g)}$
$\Delta_f H^0$ en kJ . mol^{-1}	- 187		- 285
S_m^0 en J . K^{-1} . mol^{-1}	109,6	205	189

Calculer $\Delta_r H^0$, $\Delta_r S^0$ et $\Delta_r G^0$ (à 298 K)

III. Application du 1er principe à l'étude des transformations physico-chimiques : effets thermiques en réacteur monobare

$$\underline{Donn\acute{e}e:}\ C_{pm}(H_2O_{(g)})=64,6\ J.\ K^{-1}\ mol^{-1} \qquad \qquad C_{pm}(O_{2(g)})=24,4\ J.\ K^{-1}\ mol^{-1}$$

$$C_{nm}(O_{2(n)}) = 24.4 J. K^{-1} mol^{-1}$$

1. Transfert thermique associé à une transformation chimique en réacteur monobare isotherme

Sous pression constante (égale à 35 bar) et température constante, exprimer la quantité de chaleur fournie par la décomposition d'une mole d'eau oxygénée.

2. Variation de température en réacteur adiabatique monobare

Calculer la variation de température maximale au cours de la décomposition d'une mole d'eau oxygénée à pression constante (égale à 35 bar). Commenter.

Les questions à se poser à l'issue de ce chapitre

Grandeurs standards de réaction

- Est-ce que je sais déterminer l'enthalpie standard $\Delta_r H^0$ et l'entropie standard $\Delta_r S^0$ de réaction à l'aide de données thermodynamiques?
- Est-ce que je sais interpréter le signe de l'enthalpie standard de réaction $\Delta_r H^0$?
- Est-ce que je sais prévoir le signe de l'entropie standard de réaction $\Delta_r S^0$?
- Est-ce que je connais la relation entre enthalpie libre standard $\Delta_r G^0$, enthalpie standard $\Delta_r H^0$ et entropie standard $\Delta_r S^0$ de réaction?

Applications du 1er principe à l'étude des transformations physico-chimiques

- Est-ce que je connais la formule permettant de déterminer le transfert thermique associé à une transformation chimique en réacteur monobare isotherme (en fonction de l'enthalpie standard $\Delta_r H^0$ et de l'avancement final de la réaction ξ_f ?
- Est-ce que je connais la méthode permettant de déterminer la variation de température maximale en réacteur adiabatique monobare ?