Programme de colle pour la semaine n°7 (17 au 21 novembre)

Chimie:

E.7 Application des principes de la thermodynamique à l'étude des transformations physico-chimiques

Notions et contenus	Capacités exigibles
Grandeur de réaction.	Déterminer l'enthalpie standard et l'entropie standard de
État standard.	réaction à l'aide de données thermodynamiques.
Enthalpie standard de réaction et entropie standard de ré-	Interpréter le signe de l'enthalpie standard de réaction.
action.	Prévoir le signe de l'entropie standard de réaction.
Enthalpie standard de formation, état standard de réfé-	11-20 1.000.000 11
rence d'un élément, entropie molaire standard absolue.	
Loi de Hess.	
Effets thermiques en réacteur monobare :	Prévoir la température atteinte par un système siège d'une
- transfert thermique associé à une transformation	transformation physico-chimique supposée monobare et
chimique en réacteur monobare isotherme;	réalisée dans un réacteur modélisé comme adiabatique.
 variation de température en réacteur adiabatique 	•
monobare.	
monobare.	

Chapitre 5 : Grandeurs et grandeurs standards de réaction

- Grandeurs de réaction : $\Delta_r G$, $\Delta_r S$ et $\Delta_r H$.
- <u>Grandeurs standards de réactions</u>: notion d'état standard; $\Delta_r G^0$, $\Delta_r S^0$ et $\Delta_r H^0$; signification du signe de ces grandeurs; lien entre ces grandeurs; approximation d'Ellingham; $\Delta_r H^{\alpha} = \Delta_r H^0$ (non démontré).
- Enthalpie standard de formation ; loi de Hess.
- Applications : 1) calcul d'un transfert thermique associé à une transformation chimique en réacteur monobare isotherme $(\Delta H = Q_P = \xi_f.\Delta_r H^0)$; 2) calcul d'une variation de température en réacteur adiabatique monobare

Questions de cours possibles :

Q1C: Expressions et valeurs numériques à 298 K de l'enthalpie standard, de l'entropie standard et de l'enthalpie libre standard de la réaction : $2H_2O_{2(l)} \rightarrow 2H_2O_{(g)} + O_{2(g)}$. Interprétation des valeurs obtenues.

Espèce chimique	$H_2O_{2(l)}$	$O_{2(g)}$	$H_2O_{(g)}$
$\Delta_f H^0$ en kJ . mol^{-1}	- 187	0	- 285
S_m^0 en J . K^{-1} . mol^{-1}	109,6	205	189

Physique:

Notions et contenus	Capacités exigibles	
Modèle phénoménologique de la conduction thermique Loi phénoménologique de Fourier donnant le flux ther- mique en fonction de la dérivée de la température par rap- port à une seule coordonnée spatiale, à travers une surface plane, cylindrique ou sphérique, adaptée à la géométrie considérée.	Discuter des dépendances du flux thermique à travers une paroi en fonction de ses paramètres géométriques (épais- seur et surface de la paroi) et physiques (conductivité ther- mique du milieu).	
Conductivité thermique.	Citer l'ordre de grandeur de la conductivité thermique de l'air, de l'eau et d'un métal, à température et pression am- biantes.	
Coefficient de diffusivité thermique.	Exploiter la relation fournie exprimant le coefficient de diffusivité thermique en fonction de la conductivité ther- mique, de la masse volumique et de la capacité thermique massique.	
Loi d'échelle liant les échelles caractéristiques spatiales et temporelles et le coefficient de diffusivité thermique.	Exploiter la loi d'échelle liant les échelles caractéristiques spatiales et temporelles et le coefficient de diffusivité thermique.	
Bilan d'énergie en régime stationnaire ou quasi- stationnaire.	Établir un bilan d'énergie, éventuellement en présence de sources internes. Exploiter la conservation du flux thermique en régime sta- tionnaire et en l'absence de sources internes.	

Chapitre 4: Conduction thermique

I. Rappels

- 1. Les différents types de transferts thermiques
- 2. Grandeurs caractéristiques

II. Modèle phénoménologique de la conduction thermique

- 1. Loi de Fourier
- 2. Généralisation
- 3. Coefficient de diffusivité thermique

III. Bilan d'énergie en regime stationnaire ou quasi-stationnaire

- 1. Système d'étude
- 2. Bilan d'énergie
- 3. En absence de sources internes
- 4. En présence de sources internes

REVISIONS DE 1^{ERE} **ANNEE**: Calorimétrie, Transferts thermiques (Ch. 8)

Questions de cours possibles :

Q1P: Loi phénoménologique de Fourier – Application à la détermination de l'expression de la résistance thermique d'un matériau en symétrie axiale, cylindrique ou sphérique

Q2P : Flux thermique, résistance thermique, association de résistances thermiques // Loi de Newton pour le transfert conducto-convectif