Chapitre 6 : Evolution et équilibre d'un système chimique

I. Exemple d'étude

$$H^{+}$$
 $H_{2}O$ H^{+} $H_{2}O$ H^{-} H^{-} $H_{2}O$ H^{-} H^{-

- Le système chimique est-il à l'équilibre ?
- S'il n'est pas à l'équilibre, dans quel sens évolue le système chimique ? Quel sera alors l'état d'équilibre ?

II. Critère d'évolution et d'équilibre d'un système siège d'une réaction chimique

1. Cadre d'étude

- Equilibre mécanique $P = P_{ext}$ et thermique $T = T_{ext}$ avec l'extérieur (P_{ext} et T_{ext} peuvent varier mais raisonnablement pour assurer l'équilibre)
- La seule source d'irréversibilité est la réaction chimique
- Le système n'échange aucun autre travail que celui des forces pressantes avec l'extérieur (W = 0).
- L'évolution du système est modélisée par une seule réaction chimique : $0 = \sum v_i A_i$

2. Relation entre enthalpie libre de réaction et entropie de création

• 1^{ère} expression de dG

$$dG = VdP - SdT + \sum_{i} \mu_{i} dn_{i} = VdP - SdT + \Delta_{r}Gd\xi$$
 avec $\Delta_{r}G = \sum_{i} \mu_{i} dn_{i} = \left(\frac{\partial G}{\partial \xi}\right)_{TP}$

• 2ème expression de dG

$$G = H - TS = U + PV - TS \Longrightarrow dG =$$

1er principe:

2nd principe:

$$\implies dG =$$

$$\Rightarrow dG =$$

• Par identification des deux expressions de dG, l'évolution spontanée du système est caractérisée par :

$$\Delta_r G d\xi = -T \delta S_c < 0$$

• Remarque: si T et P sont constants, alors $dG_{T,P} = \Delta_r G d\xi = -T \delta S_c < 0$

$\Delta_r G d\xi = -T \delta S_c < 0$
Cas n°1:
<u>Cas n°2 :</u>
4. Condition d'équilibre
<u>Cas n°3 :</u>
3. Illustration graphique pour une évolution à T et P cstes
TV T4-1-1-195
IV. Etude de l'équilibre chimique
IV. Etude de l'équilibre chimique 1. Expression de l'enthalpie libre de réaction en fonction du quotient réactionnel
1. Expression de l'enthalpie libre de réaction en fonction du quotient réactionnel
1. Expression de l'enthalpie libre de réaction en fonction du quotient réactionnel
1. Expression de l'enthalpie libre de réaction en fonction du quotient réactionnel
1. Expression de l'enthalpie libre de réaction en fonction du quotient réactionnel

3. Conséquence : « possibilité » thermodynamique d'une réaction chimique

Expression de l'enthalpie libre en fonction de K⁰ et Q

• Conséquences :	
	-
Application à l'exemple de l'estérification	
$K^0(298) =$	
Q =	
Conclusion sur le sens d'évolution :	
4. Variation de $K^0(T)$ avec T (dans le cadre de l'approximation d'Ellingham) : relation de Van't Hoff	
• Démonstration	
• Application	

• Application à l'exemple de l'estérification (Donnée : $\Delta_r H^0 = 5.9 kJ. mol^{-1}$)

Les questions à se poser à l'issue de ce chapitre

- Est-ce que je connais la relation entre l'enthalpie libre de réaction $\Delta_r G$ et les potentiels chimiques des espèces intervenant dans une réaction chimique ?
- Est-ce que je connais les critères d'évolution et d'équilibre (exprimés en terme de variation infinitésimale dG) d'un système modélisé par une réaction chimique ?
- Est-ce que je connais la relation entre la constante d'équilibre K^0 et l'enthalpie libre standard $\Delta_r G^0$?
- Est-ce que je connais la relation entre l'enthalpie libre de réaction $\Delta_r G$, la constante d'équilibre K^0 et le quotient réactionnel Q_r ?
- Est-ce que je sais écrire la relation de Van't Hoff? L'utiliser dans le cadre de l'approximation d'Ellingham?