Chapitre 6 : Oscillateurs mécaniques Cadre d'étude : cas d'un système modélisé par un point matériel

I. Modèle de l'oscillateur mécanique harmonique libre

1.	Description du système d'étude				
	•	Schéma :			
	•	Référentiel:			
	•	Système :			
	•	Forces:			
2.	. Aspects énergétiques				
	• Rappel : $dE_m = \delta W_{nc}$				
	• Quelles sont les forces qui ne travaillent pas ?				
	• Quelles sont les forces conservatives ?				
	•	Bilan: $dE_m =$ Le système est:			
	• L'énergie mécanique est alors l'intégrale première du mouvement				
	→ en la dérivant par rapport au temps, on va obtenir l'équation différentielle du mouvemen				
3.	Eq	uation du mouvement			
•	Rappel : Etablissement à l'aide de la deuxième loi de Newton ou principe fondamental de la dynamique (P				
•	Eta	ablissement à l'aide du théorème de l'énergie mécanique :			

• Résolution

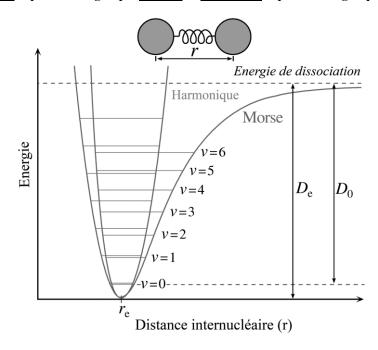
• Représentations graphiques

 $G\'{e}n\'{e}ralisation: L\'{e}quation\ diff\'{e}rentielle\ d\'{u}n\ oscillateur\ harmonique\ s\'{e}crit:$

Exercice nº1

II. Oscillateur harmonique quantique unidimensionnel: niveaux vibrationnels d'une molécule

<u>Classsique</u>: spectre énergétique <u>continu</u> ⇒ <u>Quantique</u>: spectre énergétique <u>discret</u>



La mécanique quantique montre que les seules énergies accessibles par l'oscillateur moléculaire sont :

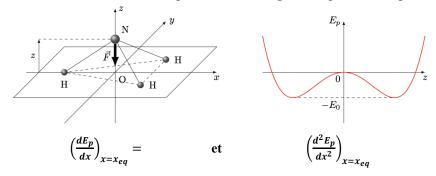
$$E_n = \left(n + \frac{1}{2}\right)hv$$
 avec n entier positif ou nul

Exercice n°2.1

III. Approximation harmonique

1. Position du problème

Etude des mouvements de faible amplitude au voisinage d'une position d'équilibre stable



2. Approximation locale par un puits de potentiel harmonique

En effectuant un développement limité de la fonction E_p au voisinage de la position d'équilibre et en se limitant au terme du second d'ordre :

$$E_p(x) = E_p(x_{eq}) + (x - x_{eq}) \left(\frac{dE_p}{dx}\right)_{x = x_{eq}} + \frac{(x - x_{eq})^2}{2} \left(\frac{d^2E_p}{dx^2}\right)_{x = x_{eq}}$$

$$E_p(x) = E_p(x_{eq}) + \frac{(x - x_{eq})^2}{2} \left(\frac{d^2 E_p}{dx^2}\right)_{x = x_{eq}} = E_p(x_{eq}) + \frac{1}{2}k(x - x_{eq})^2$$

En posant $\left(\frac{d^2 E_p}{dx^2}\right)_{x=x_{eq}} = k > 0$ et $X = \left(x - x_{eq}\right)$ est l'élongation de l'oscillateur par rapport à sa position d'équilibre :

$$E_p(x) = E_p(x_{eq}) + \frac{1}{2}kX^2$$

→ l'oscillateur se comporte comme un oscillateur harmonique en se limitant aux petits mouvements au voisinage d'un équilibre stable

Remarque:

La force dérivant de cette énergie potentielle s'écrit : $\vec{f} = f(x) \overrightarrow{u_x}$ avec $f(x) = -\frac{dE_p}{dx} = -k(x - x_{eq}) = -kX$

3. Equation différentielle linéarisé du mouvement au voisinage d'une position d'équilibre stable

Exercice n°2.2-4

III. De l'oscillateur harmonique à l'oscillateur anharmonique : l'exemple du pendule pesant

1. Description du système d'étude

• Schéma:

- Référentiel :
- Système :

• Forces:

2. Aspects énergétiques

- Rappel $:dE_m = \delta W_{nc}$
- Quelles sont les forces qui ne travaillent pas ?
- Quelles sont les forces conservatives ?
- Bilan: $dE_m =$

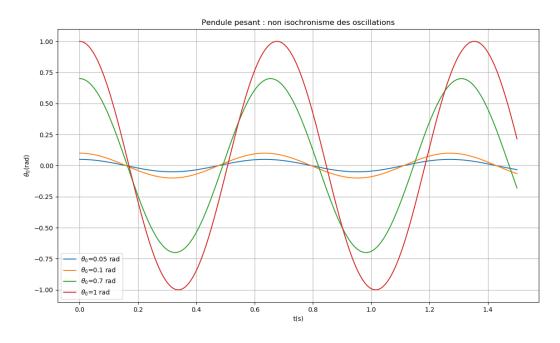
Le système est :

3. Equation du mouvement

4. Approximation harmonique aux petites oscillations du point M au voisinage de sa position d'équilibre

 $sin\theta \approx \theta \Rightarrow$

5. Oscillateur anharmonique : non-isochronisme des oscillations



$$\begin{aligned} \frac{d\theta}{dt} &= \dot{\theta} \\ \frac{d\dot{\theta}}{dt} &= \ddot{\theta} &= -\frac{g}{\ell} \sin(\theta) \end{aligned}$$

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint

t0,tmax=0,1.5#s
N=1000
t=np.linspace(t0,tmax,N)

g=9.8 #m/s^2
l=0.10 #m
theta0=[0.05,0.1,0.7,1]

def derive(F,t):
    theta=F[0]
    thetaprim=F[1]
    return np.array([thetaprim,-g/l*np.sin(theta)])

for i in range(len(theta0)):
    F0=[theta0[i],0]
    F=odeint(derive,F0,t)
    theta=F[:,0]
    plt.plot(t,theta,label=r"$\theta_0$"+f"={theta0[i]} rad")

plt.xlabel("t(s)")
plt.xlabel(""$\theta_0$(rad)")
plt.title("Pendule pesant : non isochronisme des oscillations")
plt.grid()
plt.legend()
plt.show()
```

Exercice n°3

V. Oscillateur mécanique amorti par frottement visqueux

1. Description du système d'étude

Schéma:

- Référentiel:
- Système:
- Forces:

2. Aspects énergétiques : prévision qualitative

- Rappel : $dE_m = \delta W_{nc}$
- Quelles sont les forces qui ne travaillent pas ?
- Quelles sont les forces conservatives ?
- Bilan: $dE_m =$

Le système est :

3. Equation différentielle du mouvement

• Etablissement à l'aide de la deuxième loi de Newton ou principe fondamental de la dynamique (PFD)

• Etablissement à l'aide du théorème de l'énergie mécanique :

L'équation différentielle peut être écrite sous forme canonique :

$$\ddot{x} + \frac{\omega_0}{Q}\dot{x} + \omega_0^2 x = 0$$

Avec: $\omega_0 = \dots \qquad \dots \qquad \dots$

Q =.....

4. Solutions de l'équation différentielle

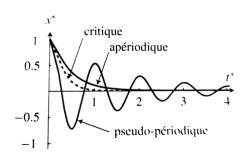
Q			
Régime			
x(t) =	$Ae^{r_1t} + Be^{r_2t}$ avec: $r_i = -\frac{\omega_0}{2Q} \pm \frac{\sqrt{\Delta}}{2}$ $\Delta = (2\omega_0)^2 \left(\frac{1}{4Q^2} - 1\right)$	$e^{-\omega_0 t}(A+Bt)$	$e^{-\frac{\omega_0}{2Q}t}(A\cos(\Omega t) + B\sin(\Omega t))$ $Ae^{-\frac{\omega_0}{2Q}t}\cos(\Omega t + \varphi)$ avec: $\Omega = \frac{\sqrt{-\Delta}}{2} = \omega_0 \sqrt{1 - \frac{1}{4Q^2}}$
Graphique			

5. Ordre de grandeur de la durée du régime transitoire

Régime critique $Q = \frac{1}{2}$: quelques $\tau_{critique} = \frac{1}{\omega_0}$

Régime apériodique $Q < \frac{1}{2}$: quelques $\tau_{apériodique} = \frac{1}{Q\omega_0} > \tau_{critique}$ (cas où $Q \ll 1$)

Régime pseudopériodique $Q>\frac{1}{2}$: quelques $au_{pseudopériodique}=\frac{2Q}{\omega_0}> au_{critique}$



Le régime critique est le plus court de tous les régimes : il correspond au retour le plus rapide à l'équilibre

Exercice nº4.I

VI. Oscillateur mécanique forcé

1. L'oscillateur harmonique soumis à une excitation sinusoïdale

• Description du modèle

L'extrémité du ressort est soumise, en plus des autres forces, à une force $\vec{F} = F \overrightarrow{u_z} = F_m \cos(\omega t) \overrightarrow{u_z}$.

- Schéma:

- <u>Référentiel</u>:
- Système:
- Forces:

• Equation différentielle du mouvement et résolution

- Application du principe fondamental de la dynamique :
- En projetant sur l'axe (Oz):
- En posant : $z(t) = Z_m \cos(\omega t + \varphi) \Rightarrow \underline{z} = Z_m e^{j(\omega t + \varphi)}$ et $F = F_m \cos \omega t \Rightarrow \underline{F} = F_m e^{j\omega t}$, l'équation devient :

$$\underline{z} =$$

Et donc :
$$Z_m =$$

$$\varphi =$$

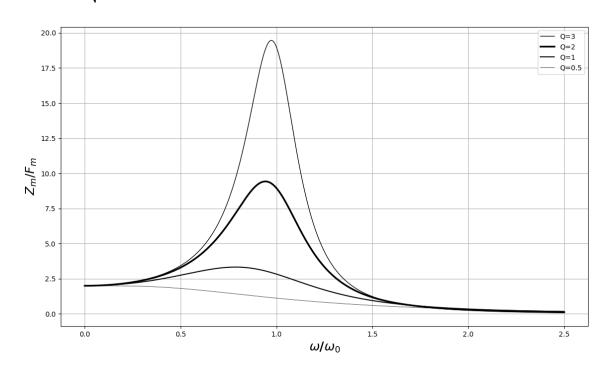
- Tracé de Z_m en fonction de ω :

Conclusion: insuffisance du modèle

2. Effet de l'amortissement

Force de frottement : $\overline{f_{frott}} = -\alpha \vec{v}$ (où α est une constante positive)

Force de frottement : $\overrightarrow{f_{frott}} = -\alpha \vec{v}$ Facteur de qualité : $Q = \frac{\sqrt{km}}{\alpha}$ Pulsation propre : $\omega_0 = \sqrt{\frac{k}{m}}$

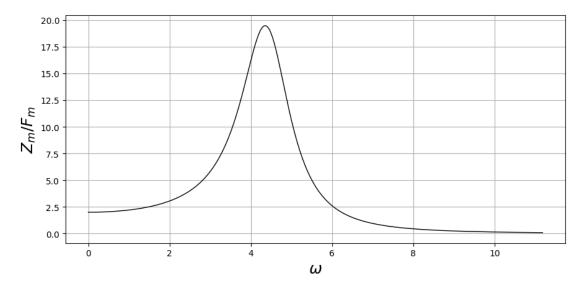


Conclusion:

- Le calcul montre qu'une **résonance** est observée si le facteur de qualité $Q > \frac{1}{\sqrt{2}}$
- Plus le facteur de qualité Q est grand, plus l'acuité de la résonance est forte (on parle de résonance aigüe)

3. Pulsation de résonance et bande-passante

Cas où
$$k=80~N.m^{-1}$$
 et $m=4.0~kg \Longrightarrow \omega_0=\sqrt{\frac{k}{m}}=4.47~rad.~s^{-1}$



On montre que : $Q = \frac{\omega_0}{\Delta \omega}$ donc plus le facteur de qualité est grand et plus la bande passante est étroite.

Exercice nº4.II

Les questions à se poser à l'issue de ce chapitre

• Est-ce que je sais définir / distinguer : oscillations libres, oscillations forcées, oscillations harmoniques, oscillations amorties

Cours 1^{ère} année

• Est-ce que je sais déterminer et résoudre l'équation différentielle du mouvement dans le cas d'un système masse – ressort en utilisant la deuxième loi de Newton ? De cette équation, est-ce que je sais déduire les expressions de la pulsation et de la période propres du mouvement ?

Oscillateurs libres

Oscillateur harmonique

- Est-ce que je sais procéder à un bilan énergétique pour déterminer l'équation différentielle du mouvement dans le cas d'un système masse ressort en utilisant ?
- Est-ce que je sais dans quel cas un oscillateur quelconque peut être approximer par un oscillateur harmonique?

Oscillateur anharmonique

Est-ce que je sais à quoi correspond le non-isochronisme des oscillations d'un oscillateur anharmonique ?

Oscillateur amorti par frottement visqueux

- Est-ce que je sais établir l'équation différentielle du mouvement dans le cas d'un oscillateur amorti par frottement visqueux ?
- Est-ce que, de l'équation différentielle, je peux déduire la pulsation propre et le facteur de qualité ?
- Est-ce que je peux identifier les différents types de régimes selon la valeur du facteur de qualité ? Résoudre l'équation différentielle du mouvement dans les différents cas ?

Oscillateurs forcés

- Est-ce que je connais la méthode pour résoudre un problème d'oscillateur en régime sinusoïdal forcé?
- Est-ce que je sais à quoi correspond le phénomène de résonance ? Comment celui-ci dépend du facteur de qualité ?
- Sur une courbe donnée, est-ce que je sais déterminer la valeur de la pulsation de résonance et l'intervalle de pulsations ou de fréquences correspondant à la bande passante.