Point méthode : Conduction thermique

I. Régime stationnaire

1. Sans source interne ou fuite thermique:

a) Justifier que le flux thermique est constant

Méthode n°1:

	Symétrie axiale	Symétrie cylindrique	Symétrie sphérique
Système d'étude (evec sehéme)	Tranche étudiée entre t et $t+dt$		
Système d'étude (avec schéma)	comprise entre x et $x + dx$	comprise entre r et $r+dr$	
Transformation monobare $(P_{ext} = cst)$	$dH = \delta Q(x) - \delta Q(x + dx)$	$dH = \delta Q(r) - \delta Q(r + dr)$	
Régime stationnaire : $dH=0$ \Longrightarrow	$\delta Q(x) - \delta Q(x + dx) = 0$ $\Phi_{th}(x)dt - \Phi_{th}(x + dx)dt = 0$ $\Phi_{th}(x) - \Phi_{th}(x + dx) = 0$ $\Phi_{th}(x) = \Phi_{th}(x + dx)$ $\Phi_{th} = cst$	$\delta Q(r) - \delta Q(r + dr) = 0$ $\Phi_{th}(r)dt - \Phi_{th}(r + dr)dt = 0$ $\Phi_{th}(r) - \Phi_{th}(r + dr) = 0$ $\Phi_{th}(r) = \Phi_{th}(r + dr)$ $\Phi_{th} = cst$	

<u>Méthode n°2:</u> « en régime stationnaire et en absence de source interne ou de fuite thermique, le flux thermique se conserve » : $\Phi_{th} = cst$

b) Ecrire la loi de Fourier

	Symétrie axiale	Symétrie cylindrique (cylindre de hauteur H)	Symétrie sphérique (sphère)
Loi de Fourier	$\Phi_{th} = -\lambda S \frac{dT}{dx}$	$egin{aligned} \Phi_{th} &= -\lambda S rac{dT}{dr} \ \Phi_{th} &= -\lambda 2\pi r H rac{dT}{dr} \end{aligned}$	$egin{aligned} \Phi_{th} &= -\lambda S rac{dT}{dr} \ \Phi_{th} &= -\lambda 4\pi r^2 rac{dT}{dr} \end{aligned}$

c) Application n°1 : Résistance thermique R_{th} conductive

$$R_{th} = \frac{T_{amont} - T_{aval}}{\Phi_{th}}$$

Symétrie		
axiale (matériau d'épaisseur L)	$\begin{aligned} \Phi_{th} &= -\lambda S \frac{dT}{dx} \\ &\Rightarrow \int_{T_{amont}}^{T_{aval}} dT = -\frac{\Phi_{th}}{\lambda S} \int_{0}^{L} dx \Rightarrow T_{aval} - T_{amont} = -\frac{\Phi_{th}}{\lambda S} \times L \end{aligned}$	$R_{th} = \frac{L}{\lambda S}$
cylindrique (coquille cylindrique comprise entre les rayons R ₁ et R ₂)	$\begin{split} & \Phi_{th} = -\lambda 2\pi r H \frac{dT}{dr} \\ & \Longrightarrow \int_{T_{amont}}^{T_{aval}} dT = -\frac{\Phi_{th}}{\lambda 2\pi H} \int_{R_1}^{R_2} \frac{dr}{r} \Longrightarrow T_{aval} - T_{amont} = -\frac{\Phi_{th}}{\lambda 2\pi H} \times ln\left(\frac{R_2}{R_1}\right) \end{split}$	$R_{th} = \frac{ln\left(\frac{R_2}{R_1}\right)}{2\pi\lambda H}$
sphérique (coquille sphérique comprise entre les rayons R ₁ et R ₂)	$\begin{split} & \Phi_{th} = -\lambda 4\pi r^2 \frac{dT}{dr} \\ & \Longrightarrow \int_{T_{amont}}^{T_{aval}} dT = -\frac{\Phi_{th}}{\lambda 4\pi} \int_{R_1}^{R_2} \frac{dr}{r^2} \Longrightarrow T_{aval} - T_{amont} = -\frac{\Phi_{th}}{4\pi\lambda} \times \left(-\frac{1}{R_2} + \frac{1}{R_1} \right) \end{split}$	$R_{th} = \frac{\frac{1}{R_1} - \frac{1}{R_2}}{4\pi\lambda}$

d) Application $n^{\circ}2$: Flux thermique Φ_{th} conductif

Symétrie		
axiale	$T_{aval} - T_{amont} = -\frac{\Phi_{th}}{\lambda S} \times L$	$\Phi_{th} = \frac{\lambda S}{L} \times (T_{amont} - T_{aval})$
cylindrique	$T_{aval} - T_{amont} = -\frac{\Phi_{th}}{\lambda 2\pi H} \times ln\left(\frac{R_2}{R_1}\right)$	$\Phi_{th} = \frac{2\pi\lambda H}{ln\left(\frac{R_2}{R_1}\right)} \times (T_{amont} - T_{aval})$
sphérique	$T_{aval} - T_{amont} = -\frac{\Phi_{th}}{4\pi\lambda} \times \left(-\frac{1}{R_2} + \frac{1}{R_1}\right)$	$\Phi_{th}=rac{rac{1}{R_1}rac{1}{R_2}}{4\pi\lambda}$

e) Application n°3 : Profil de température

Symétrie	exemple si T _{amont} est connue		
axiale	$\Phi_{th} = -\lambda S \frac{dT}{dx} \Longrightarrow \int_{T_{amont}}^{T(x)} dT = -\frac{\Phi_{th}}{\lambda S} \int_{0}^{x} dx$	$T(x) = T_{amont} - \frac{\Phi_{th}}{\lambda S} x$	
cylindrique	$\Phi_{th} = -\lambda 2\pi r H \frac{dT}{dr} \Longrightarrow \int_{T_{amont}}^{T(r)} dT = -\frac{\Phi_{th}}{\lambda 2\pi H} \int_{R_1}^{r} \frac{dr}{r}$	$T(r) = T_{amont} - \frac{\Phi_{th}}{\lambda 2\pi H} ln\left(\frac{r}{R_1}\right)$	
sphérique	$\Phi_{th} = -\lambda 4\pi r^2 \frac{dT}{dr} \Longrightarrow \int_{T_{amont}}^{T(r)} dT = -\frac{\Phi_{th}}{\lambda 4\pi} \int_{R_1}^{r} \frac{dr}{r^2}$	$T(r) = T_{amont} - \frac{\Phi_{th}}{4\pi\lambda} \times \left(-\frac{1}{r} + \frac{1}{R_1}\right)$	

2. Avec source interne ou fuite thermique (autre que la conduction thermique) :

Application : Profil de température exemple dans le cas d'une symétrie axiale en présence d'une source interne

Système d'étude (avec schéma)	Tranche étudiée entre t et $t+dt$ comprise entre x et $x+dx$	
Transformation monobare $(P_{ext} = cst)$	$dH = \delta Q(x) - \delta Q(x + dx) + \delta Q_P$ avec $\delta Q_P = PSdxdt$ (terme de création avec P = puissance volumique crée supposée este)	
Régime stationnaire : $dH = 0$	$\delta Q(x) - \delta Q(x + dx) + \delta Q_P = 0$ $\Phi_{th}(x)dt - \Phi_{th}(x + dx)dt + PSdxdt = 0$ $\Phi_{th}(x + dx) - \Phi_{th}(x) = PSdx$ $d\Phi_{th}(x) = PSdx$ $\frac{d\Phi_{th}}{dx} = \mathbf{P}$ (1)	
Loi de Fourier	$\Phi_{th} = -\lambda S \frac{dT}{dx} \qquad (2)$	
Combinaison des équations (1) et (2)	$-\lambda S \frac{d^2T}{dx^2} = P \Rightarrow \frac{d^2T}{dx^2} = -\frac{P}{\lambda S} \Rightarrow T(x) = -\frac{1}{2} \frac{P}{\lambda S} x^2 + Ax + B$ Détermination de A et B à partir des conditions aux limites	

II. Régime quasi-stationnaire

Application : Evolution temporelle de la température T(t) d'un système subissant un transfert thermique (conduction et/ou convection et/ou rayonnement)

Système d'étude (avec schéma)	Système entier de capacité C et de température variable $T(t)$ étudié entre t et $t+dt$	
Transformation monobare $(P_{ext} = cst)$	$dH = \delta Q$	(1)
dH	dH = CdT	(2)
δQ	$\delta Q = -\Phi_{th} dt = -\frac{T - T_{ext}}{R_{th}} dt$	(3)
Combinaison des équations (1), (2) et (3)	$CdT = -\frac{T - T_{ext}}{R_{th}}dt \Rightarrow \frac{dT}{dt} + \frac{1}{R_{th}C}T = \frac{1}{R_{th}C}T_{ext} \Rightarrow T(t) = A \times exp\left(-\frac{t}{R_{th}C}\right) + T_{ext}$ Détermination de A à partir des conditions initiales	